
6 Introduction
Flow Network

ñ directed graph G = (V , E); edge capacities c(e)

ñ two special nodes: source s; target t;
ñ no edges entering s or leaving t;
ñ at least for now: no parallel edges;
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Cuts

Definition 28

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A and

t ∈ V \A.

Definition 29

The capacity of a cut A is defined as

cap(A,V \A) :=
∑

e ∈ out(A)
c(e) ,

where out(A) denotes the set of edges of the form A× V \A
(i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.
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Cuts

Example 30
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The capacity of the cut is cap(A,V \A) = 28.
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Flows

Definition 31

An (s, t)-flow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
e∈out(v)

f(e) =
∑

e∈into(v)
f(e) .

(flow conservation constraints)
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Flows

Definition 32

The value of an (s, t)-flow f is defined as

val(f ) =
∑

e∈out(s)
f(e) .

Maximum Flow Problem: Find an (s, t)-flow with maximum

value.
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Flows

Example 33
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The value of the flow is val(f ) = 24.
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Flows

Lemma 34 (Flow value lemma)

Let f be a flow, and let A ⊆ V be an (s, t)-cut. Then the net-flow

across the cut is equal to the amount of flow leaving s, i.e.,

val(f ) =
∑

e∈out(A)
f(e)−

∑
e∈into(A)

f(e) .
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Proof.

val(f )

=
∑

e∈out(s)
f(e)

=
∑

e∈out(s)
f(e)+

∑
v∈A\{s}

( ∑
e∈out(v)

f(e)−
∑

e∈in(v)
f(e)

)

=
∑

e∈out(A)
f(e)−

∑
e∈into(A)

f(e)

The last equality holds since every edge with both end-points in A
contributes negatively as well as positively to the sum in Line 2.

The only edges whose contribution doesn’t cancel out are edges

leaving or entering A.
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Example 35
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The net-flow across the cut is val(f ) = 24.
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Corollary 36

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f ) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f ′ with larger value. Then

cap(A,V \A) < val(f ′)

=
∑

e∈out(A)
f ′(e)−

∑
e∈into(A)

f ′(e)

≤
∑

e∈out(A)
f ′(e)

≤ cap(A,V \A)
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