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Mincost Flow

Problem Definition:

min >, c(e)f(e)
st. VeeE: 0< f(e) <u(e)
YveV: f(v)=b)

v

G = (V,E) is a directed graph.

u:E — Rj U {oo} is the capacity function.

v

v

c:E — R is the cost function
(note that c(e) may be negative).

» b:V - R, >,eyb(v) =0isademand function.
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> Given a flow network for a standard maxflow problem.
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Solve Maxflow Using Mincost Flow
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> Given a flow network for a standard maxflow problem.

> Set b(v) = 0 for every node. Keep the capacity function u for
all edges. Set the cost c(e) for every edge to 0.
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> Given a flow network for a standard maxflow problem.

> Set b(v) = 0 for every node. Keep the capacity function u for
all edges. Set the cost c(e) for every edge to 0.

» Add an edge from t to s with infinite capacity and cost —1.
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Solve Maxflow Using Mincost Flow
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v

Given a flow network for a standard maxflow problem.

Set b(v) = 0O for every node. Keep the capacity function u for
all edges. Set the cost c(e) for every edge to 0.

Add an edge from t to s with infinite capacity and cost —1.
Then, val(f*) = — cost(fmin), Where f* is a maxflow, and
fmin is @ mincost-flow.

v
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Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

> Given a flow network for a standard maxflow problem, and a
value k.
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Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

> Given a flow network for a standard maxflow problem, and a
value k.

> Set b(v) = 0 for every node apart from s or t. Set b(s) = —k
and b(t) = k.

> Set edge-costs to zero, and keep the capacities.

> There exists a maxflow of value at least k if and only if the
mincost-flow problem is feasible.
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Generalization

Our model:

min >, c(e)f(e)
st. VeeE: 0< f(e) <ul(e)
VvveV: fw)=>b)

whereb:V =R, >, b(v) =0; u:E - Rj U {oo}; c: E - R;
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Generalization

Our model:

min >, c(e)f(e)
st. VeeE: 0< f(e) <ul(e)
VveV: fw)=>b)

whereb:V =R, >, b(v) =0; u:E - Rj U {oo}; c: E - R;
A more general model?

min >, c(e)f(e)
s.t. VeeE: f(e) < f(e) <ule)
YVveV: alv) < f(v) <b(v)

wherea:V-R,b:V-R;{:E-RU{-0}, u:E - RU{0}
c:E - R;
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Generalization

Differences
» Flow along an edge e may have non-zero lower bound ¥(e).
> Flow along e may have negative upper bound u(e).

» The demand at a node v may have lower bound a(v) and
upper bound b(v) instead of just lower bound = upper
bound = b(v).
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Set £(e) = c(e) = O for these
edges.
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Reduction |

min >, c(e)f(e)
s.t. VecE: {(e) < f(e) <ule)
VveV: a(v) < f(v) <b(v)

We can assume that a(v) = b(v):

Add new node 7.
Add edge (r,v) forall v € V.

Set £(e) = c(e) = O for these
edges.

Setu(e) = b(v) —a(v) for
edge (r,v).

Seta(v) =b(v) forallv e V.

Setbh(r)=->,cvb(v).

— >, b(v) is negative; hence 7 is only sending flow.



Reduction lI

min >, c(e)f(e)
s.t. VeeE: fe) < f(e) <ule)
YveV: f(v)=>b)

We can assume that either £(e) = —c or u(e) # oo:

ue) = ]
f(e) = —c0

cle) =0
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Reduction lI

min >, c(e)f(e)
s.t. VeeE: fe) < f(e) <ule)
YveV: f(v)=b)

We can assume that either £(e) = —c or u(e) # oo:

ue) = ]
{(e) = —

cle) =0

If c(e) = 0 we can contract the edge/identify nodes u and v.

If c(e) + 0 we can transform the graph so that c(e) = 0.
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Reduction lI

We can transform any network so that a particular edge has
cost c(e) = O:

u(e) = o
f(e) = —c0
cle)=6+0
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Reduction lI
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Reduction lI

We can transform any network so that a particular edge has
cost c(e) = O:

)
O) O)
b(x) = b(u) ue)= o
- o E(e) = —00
/ f cle)=6=+0

Additionally we set b(u) = 0.
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Reduction lll

min >, c(e)f(e)

s.t. VeeE: fe) < f(e) <ule)
VveV: f(v)=b)

We can assume that £(e) = —oo:

O, ®
ue) =d + o
L) = -
cle)=a

® ®
ue) = o
l(e) =—-d
cle) =—-a

Replace the edge by an edge in opposite direction.
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Reduction IV

min >, c(e)f(e)
s.t. VeeE: fe) < f(e) <ule)
YveV: f()=>b)

We can assume that £(e) = O:

u(e)
#(e) = d+ 40
c(e)
bw)=d b(v)=-d
b —ag @
@~ ®
ue) —d
f(e)=0
c(e)

The added edges have infinite capacity and cost c(e)/2.
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Applications

Caterer Problem

> She needs to supply ¥; hapkins on N successive days.
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Applications

Caterer Problem
> She needs to supply ¥; hapkins on N successive days.
» She can buy new napkins at p cents each.

» She can launder them at a fast laundry that takes m days and
cost f cents a napkin.

» She can use a slow laundry that takes k > m days and costs s
cents each.

> At the end of each day she should determine how many to
send to each laundry and how many to buy in order to fulfill
demand.

» Minimize cost.
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day edges:

upper bound: u(e;) = oo;
lower bound: €(e;) = 7;;
cost: c(e) =0
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reservoir

upper bound: u(e;) = o;
buy edges: |lower bound: £(e;) = 0;
cost: c(e) =p




reservoir

upper bound: u(e;) = ;
forward edges: |lower bound: £(e;) = 0;
cost: c(e) =0




reservoir

upper bound: u(e;) = o;
slow edges: |lower bound: £(e;) = 0;
cost: c(e) = s




reservoir

upper bound: u(e;) = o;
fast edges: |lower bound: £(e;) = 0;
cost: c(e) = f




trash edges:

reservoir

upper bound: u(e;) = o;
lower bound: £(e;) = 0;
cost: c(e) =0







Residual Graph

Version A:
The residual graph G’ for a mincost flow is just a copy of the
graph G.

If we send f'(e) along an edge, the corresponding edge ¢’ in the
residual graph has its lower and upper bound changed to

L(e’) ="L(e) — f(e) and u(e’) = u(e) — f(e).
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Residual Graph

Version A:

The residual graph G’ for a mincost flow is just a copy of the
graph G.

If we send f'(e) along an edge, the corresponding edge ¢’ in the
residual graph has its lower and upper bound changed to

L(e') =L(e) — f(e) and u(e’) = ule) — f(e).

Version B:

The residual graph for a mincost flow is exactly defined as the
residual graph for standard flows, with the only exception that
one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, 1) has capacity
z and a cost of —c((u,v)).
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10 Mincost Flow

A circulation in a graph G = (V,E) is a function f: E — R* that
has an excess flow f(v) = O for every node v € V.
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10 Mincost Flow

A circulation in a graph G = (V,E) is a function f: E — R* that
has an excess flow f(v) = O for every node v € V.

A circulation is feasible if it fulfills capacity constraints, i.e.,
f(e) <u(e) for every edge of G.
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Lemma 73

A given flow is a mincost-flow if and only if the corresponding
residual graph Gy does not have a feasible circulation of negative
cost.
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A given flow is a mincost-flow if and only if the corresponding
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= Suppose that g is a feasible circulation of negative cost in the
residual graph.

Then f + g is a feasible flow with cost
cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.



Lemma 73

A given flow is a mincost-flow if and only if the corresponding
residual graph Gy does not have a feasible circulation of negative
cost.
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Then f + g is a feasible flow with cost
cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

< Let f be a non-mincost flow, and let f* be a min-cost flow.
We need to show that the residual graph has a feasible
circulation with negative cost.



Lemma 73

A given flow is a mincost-flow if and only if the corresponding
residual graph Gy does not have a feasible circulation of negative
cost.

= Suppose that g is a feasible circulation of negative cost in the
residual graph.

Then f + g is a feasible flow with cost
cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

< Let f be a non-mincost flow, and let f* be a min-cost flow.
We need to show that the residual graph has a feasible
circulation with negative cost.

Clearly f* — f is a circulation of negative cost. One can also
easily see that it is feasible for the residual graph. (after
sending —f in the residual graph (pushing all flow back) we arrive
at the original graph; for this f* is clearly feasible)



10 Mincost Flow

Lemma 74

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.
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10 Mincost Flow

Lemma 74

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.

> Suppose that we have a negative cost circulation.
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10 Mincost Flow

Lemma 74

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.
> Suppose that we have a negative cost circulation.
> Find directed cycle only using edges that have non-zero flow.
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10 Mincost Flow

Lemma 74

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.
> Suppose that we have a negative cost circulation.
> Find directed cycle only using edges that have non-zero flow.

> If this cycle has negative cost you are done.
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10 Mincost Flow

Lemma 74

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.

> Suppose that we have a negative cost circulation.

> Find directed cycle only using edges that have non-zero flow.
> If this cycle has negative cost you are done.
>

Otherwise send flow in opposite direction along the cycle
until the bottleneck edge(s) does not carry any flow.
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10 Mincost Flow

Lemma 74

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.

> Suppose that we have a negative cost circulation.

> Find directed cycle only using edges that have non-zero flow.
> If this cycle has negative cost you are done.
>

Otherwise send flow in opposite direction along the cycle
until the bottleneck edge(s) does not carry any flow.

> You still have a circulation with negative cost.
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10 Mincost Flow

Lemma 74

A graph (without zero-capacity edges) has a feasible circulation of
negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.

> Suppose that we have a negative cost circulation.

> Find directed cycle only using edges that have non-zero flow.
> If this cycle has negative cost you are done.
>

Otherwise send flow in opposite direction along the cycle
until the bottleneck edge(s) does not carry any flow.

> You still have a circulation with negative cost.
> Repeat.
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10 Mincost Flow

Algorithm 45 CycleCanceling(G = (V,E),c,u,b)

1: establish a feasible flow f in G

2: while G contains negative cycle do

3: use Bellman-Ford to find a negative circuit Z
4

5

0 —min{ug(e) | e € Z}
augment & units along Z and update Gy
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How do we find the initial feasible flow?

» Connect new node s to all nodes with negative b(v)-value.
» Connect nodes with positive b(v)-value to a new node t.

» There exist a feasible flow in the original graph iff in the
resulting graph there exists an s-t flow of value

> (=b(w)= > bw).

v:b(v)<0 v:b(v)>0



10 Mincost Flow

0 — demand
> cost
> .
: capacity
flow

3
0
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10 Mincost Flow

Lemma 75
The improving cycle algorithm runs in time ©(nm?CU), for
integer capacities and costs, when for all edges e, |c(e)| < C and
lule)| < U.

» Running time of Bellman-Ford is O (mn).

» Pushing flow along the cycle can be done in time O (n).
» Each iteration decreases the total cost by at least 1.
>

The true optimum cost must lie in the interval
[-mCU,...,+mCU].

Note that this lemma is weak since it does not allow for edges
with infinite capacity.
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10 Mincost Flow

A general mincost flow problem is of the following form:

min >, c(e)f(e)
s.t. VeeE: fe) < f(e) <ule)
VveV: alw) < f(v) <b)

wherea:V-R,b:V-R;{:E-RU{-0}, u:E—-RU {0}
c:E-R;

Lemma 76 (without proof)

A general mincost flow problem can be solved in polynomial time.
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