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How do you measure?

> Implementing and testing on representative inputs

» How do you choose your inputs?

> May be very time-consuming.

> Very reliable results if done correctly.

» Results only hold for a specific machine and for a specific set
of inputs.
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How do you measure?

> Implementing and testing on representative inputs
» How do you choose your inputs?
> May be very time-consuming.
> Very reliable results if done correctly.
» Results only hold for a specific machine and for a specific set
of inputs.

» Theoretical analysis in a specific model of computation.
> Gives asymptotic bounds like “this algorithm always runs in
time O(n?)”.
» Typically focuses on the worst case.
> Can give lower bounds like “any comparison-based sorting
algorithm needs at least Q(nlogn) comparisons in the worst
case”.
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4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage space,
comparisons, multiplications, program size etc.).
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4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f: N — N
that maps the input length to the running time (or storage space,
comparisons, multiplications, program size etc.).

The input length may e.g. be
> the size of the input (humber of bits)

> the number of arguments

Example 1

Suppose n numbers from the interval {1,...,N} have to be
sorted. In this case we usually say that the input length is n
instead of e.g. nlog N, which would be the number of bits
required to encode the input.
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Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a
simplified, idealized model of computation, e.g. Random
Access Machine (RAM), Turing Machine (TM), ...

2. Calculate number of certain basic operations: comparisons,
multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation
makes it more difficult to obtain meaningful results.
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Turing Machine

» Very simple model of computation.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit
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state holds program and can
act as constant size memory
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Turing Machine
» Very simple model of computation.
> Only the “current” memory location can be altered.

> Very good model for discussing computabiliy, or polynomial
vs. exponential time.
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» Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower

bound.
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Turing Machine

» Very simple model of computation.

> Only the “current” memory location can be altered.

> Very good model for discussing computabiliy, or polynomial

vs. exponential time.

» Some simple problems like recognizing whether input is of
the form xx, where x is a string, have quadratic lower

bound.

=> Not a good model for developing efficient algorithms.

~)[1]ofo)1]o]o]1]o]o]1]olo]1]1]0]-

control
unit

e -

state holds program and can
act as constant size memory
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Random Access Machine (RAM)

> |nput tape and output tape (sequences of zeros and ones;

unbounded length).

:Note that in the picture on the right |
'the tapes are one-directional, and thatn
ua READ- or WRITE-operation always ad-|
| vances its tape. y

input tape — memory
) ] 0 ] 0 0 ] ] R[O]
R[1]
R[2]
control |, \
unit |V 7l R[3]
R[4]
~N R[5]
D011 [ [ ]
output tape —>
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» Memory unit: infinite but countable number of registers
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)10 110(0]1

memory

R[0]

—

R[1]

R[2]

control
unit
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o

R[3]
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_________________________ ~ R[5]
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Random Access Machine (RAM)

> |nput tape and output tape (sequences of zeros and ones;
unbounded length).

» Memory unit: infinite but countable number of registers
R[O],R[1],R[2],....

> Registers hold integers.  inputtape —  memory

. . =)[1]0 1{0({O[1]1:
> Indirect addressing. g
R[1]
R[2]
control |, \
unit |V 7l R[3]
R[4]
_________________________ ~- R[5]
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Random Access Machine (RAM)

Operations
> input operations (input tape — R[i])
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Random Access Machine (RAM)

Operations

> input operations (input tape — R[i])
> READ i

> output operations (R[i] — output tape)
> WRITE i

> register-register transfers
> R[j] := R[i]
> R[j] =4

» indirect addressing
> R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register
> R[R[i]]:=RI[j]
loads the content of the j-th into the R[i]-th register
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Random Access Machine (RAM)

Operations
» branching (including loops) based on comparisons

| Thejump -directives are very close to the l
| jump-instructions contained in the as- .
: sembler language of real machines. :
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reads the next operation to perform from register R[x]
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jump to x if R[i] =0
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Random Access Machine (RAM)

Operations

» branching (including loops) based on comparisons
> jump x
jumps to position x in the program;

sets instruction counter to x;

reads the next operation to perform from register R[x]
> jumpz x R[i]
jump to x if R[i] =0
if not the instruction counter is increased by 1;

> jumpi

i

jump to R[1i] (indirect jump);

» arithmetic instructions: +, —,

> R[i]
R[1i]

R[j1 + RIk];

-R[k];

><1/

| TheJump -directives are very close to the
| jump-instructions contained in the as-
i sembler language of real machines.
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Model of Computation

» uniform cost model
Every operation takes time 1.

:The latter model is quite realistic as the word-size of:
1a standard computer that handles a problem of size n
| must be at least log, n as otherwise the computer could |
! either not store the problem instance or not address all :
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Model of Computation

» uniform cost model
Every operation takes time 1.

» logarithmic cost model
The cost depends on the content of memory cells:
» The time for a step is equal to the largest operand involved;
> The storage space of a register is equal to the length (in bits)
of the largest value ever stored in it.

:The latter model is quite realistic as the word-size of:
1a standard computer that handles a problem of size n
| must be at least log, n as otherwise the computer could |
! either not store the problem instance or not address all :
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Model of Computation

» uniform cost model
Every operation takes time 1.

» logarithmic cost model
The cost depends on the content of memory cells:
» The time for a step is equal to the largest operand involved;
> The storage space of a register is equal to the length (in bits)
of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed 2%, where usually w = log, n.

:The latter model is quite realistic as the word-size of:
1 a standard computer that handles a problem of size n
| must be at least log, n as otherwise the computer could |
! either not store the problem instance or not address all :
ts memory. i
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=
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Example 2

Algorithm 1 RepeatedSquaring(n)
1: v < 2;

2. fori=1-ndo

3: ¥ —1r?

4: return v
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2. fori=1-ndo
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4: return v

> running time (for Line 3):
> uniform model: n steps
> logarithmic model:
2+3+5+ -+ (1+2") =2""1—-1+n=0(2")
> space requirement:

» uniform model: O(1)
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There are different types of complexity bounds:
> best-case complexity:

Che(n) :=min{C(x) | |x| = n}

Usually easy to analyze, but not very meaningful.

. I
1C) |

1

' xl input length ofI
__________________ i X! instance x ]
'u is a probability distribu- . : I set of mstances:
3 tion over inputs of length n.] 1 " oflengthn !
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Usually easy to analyze, but not very meaningful.
> worst-case complexity:
Cwe(n) := max{C(x) | [x| = n}

Usually moderately easy to analyze; sometimes too
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There are different types of complexity bounds:
> best-case complexity:

Che(n) :=min{C(x) | |x| =n}
Usually easy to analyze, but not very meaningful.
> worst-case complexity:
Cwe(m) :=max{C(x) | | x| =n}
Usually moderately easy to analyze; sometimes too
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> average case complexity:
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There are different types of complexity bounds:
> best-case complexity:

Che(n) :=min{C(x) | |x| =n}
Usually easy to analyze, but not very meaningful.
> worst-case complexity:
Cwe(m) :=max{C(x) | | x| =n}
Usually moderately easy to analyze; sometimes too

pessimistic.
> average case complexity:

Cavg(n) = ul' S CO0) o

xl=n ' C(x) |

more general: probability measure u g s s °f'
__________________ i instance x |
e is a probability distribu- . Cavg(n) = Z [.l(X) - C(x) : I set of mstances:
1 tion over inputs of length n. x€ly i " oflength n !
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There are different types of complexity bounds:

» amortized complexity:
The average cost of data structure operations over a worst
case sequence of operations.

. I
'C(x)x |

1

' xl input length ofI
__________________ i X! instance x ]
'u is a probability distribu- . : I set of mstances:
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There are different types of complexity bounds:

» amortized complexity:

The average cost of data structure operations over a worst
case sequence of operations.

» randomized complexity:
The algorithm may use random bits. Expected running time
(over all possible choices of random bits) for a fixed input x.
Then take the worst-case over all x with |x| = n.

L is a probability distribu- .
a tion over inputs of length n.]

1
cost of instance
Clx) :

input length ofl
instance x

set of instances
of length n
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