
Preflows

Definition 53

An (s, t)-preflow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
e∈out(v)

f(e)≤
∑

e∈into(v)
f(e) .
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Preflows

Example 54
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A node that has
∑
e∈out(v) f(e)<

∑
e∈into(v) f(e) is called an active

node.
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Preflows

Definition:

A labelling is a function ` : V → N. It is valid for preflow f if

ñ `(u) ≤ `(v)+ 1 for all edges (u,v) in the residual graph Gf
(only non-zero capacity edges!!!)

ñ `(s) = n
ñ `(t) = 0

Intuition:

The labelling can be viewed as a height function. Whenever the

height from node u to node v decreases by more than 1 (i.e., it

goes very steep downhill from u to v), the corresponding edge

must be saturated.
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Preflows
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Preflows

Lemma 55

A preflow that has a valid labelling saturates a cut.

Proof:

ñ There are n nodes but n+ 1 different labels from 0, . . . , n.

ñ There must exist a label d ∈ {0, . . . , n} such that none of the

nodes carries this label.

ñ Let A = {v ∈ V | `(v) > d} and B = {v ∈ V | `(v) < d}.
ñ We have s ∈ A and t ∈ B and there is no edge from A to B in

the residual graph Gf ; this means that (A, B) is a saturated

cut.

Lemma 56

A flow that has a valid labelling is a maximum flow.
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Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 343/372



Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 343/372



Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 343/372



Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 343/372



Changing a Preflow

An arc (u,v) with cf (u,v) > 0 in the residual graph is admissible

if `(u) = `(v)+ 1 (i.e., it goes downwards w.r.t. labelling `).

The push operation

Consider an active node u with excess flow

f(u) =∑e∈into(u) f(e)−
∑
e∈out(u) f(e) and suppose e = (u,v)

is an admissible arc with residual capacity cf (e).

We can send flow min{cf (e), f (u)} along e and obtain a new

preflow. The old labelling is still valid (!!!).

ñ saturating push: min{f(u), cf (e)} = cf (e)
the arc e is deleted from the residual graph

ñ deactivating push: min{f(u), cf (e)} = f(u)
the node u becomes inactive
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Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing

admissible arc.

Increasing the label of u by 1 results in a valid labelling.

ñ Edges (w,u) incoming to u still fulfill their constraint

`(w) ≤ `(u)+ 1.

ñ An outgoing edge (u,w) had `(u) < `(w)+ 1 before since

it was not admissible. Now: `(u) ≤ `(w)+ 1.

9.1 Generic Push Relabel 15. Dec. 2022
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Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a

height/label of n and the target a height/label of 0. If we see an

active node u with an admissible arc we push the flow at u
towards the other end-point that has a lower height/label. If we

do not have an admissible arc but excess flow into u it should

roughly mean that the level/height/label of u should rise. (If we

consider the flow to be water then this would be natural.)

Note that the above intuition is very incorrect as the labels are

integral, i.e., they cannot really be seen as the height of a node.
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Reminder

ñ In a preflow nodes may not fulfill conservation constraints; a

node may have more incoming flow than outgoing flow.

ñ Such a node is called active.

ñ A labelling is valid if for every edge (u,v) in the residual

graph `(u) ≤ `(v)+ 1.

ñ An arc (u,v) in residual graph is admissible if

`(u) = `(v)+ 1.

ñ A saturating push along e pushes an amount of c(e) flow

along the edge, thereby saturating the edge (and making it

dissappear from the residual graph).

ñ A deactivating push along e = (u,v) pushes a flow of f(u),
where f(u) is the excess flow of u. This makes u inactive.
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Push Relabel Algorithms

Algorithm 1 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do

3: if there is admiss. arc e out of u then

4: push(G, e, f , c)
5: else

6: relabel(u)
7: return f

In the following example we always stick to the same active node

u until it becomes inactive but this is not required.
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Preflow Push
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Analysis

Lemma 57

An active node has a path to s in the residual graph.

Proof.

ñ Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s ∈ A.

ñ In the following we show that a node b ∈ B has excess flow

f(b) = 0 which gives the lemma.

ñ In the residual graph there are no edges into A, and, hence,

no edges leaving A/entering B can carry any flow.

ñ Let f(B) =∑v∈B f(v) be the excess flow of all nodes in B.
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denote the remaining nodes. Note that s ∈ A.
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f(b) = 0 which gives the lemma.
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Let f : E → R+0 be a preflow. We introduce the notation

f(x,y) =
{

0 (x,y) ∉ E
f((x,y)) (x,y) ∈ E

We have

f(B) =
∑
b∈B

f(b)

=
∑
b∈B

( ∑
v∈V

f(v, b)−
∑
v∈V

f(b,v)
)

=
∑
b∈B

( ∑
v∈A

f(v, b)+
∑
v∈B

f(v, b)−
∑
v∈A

f(b,v)−
∑
v∈B

f(b,v)
)

=
∑
b∈B

∑
v∈A

f(v, b)−
∑
b∈B

∑
v∈A

f(b,v)+
∑
b∈B

∑
v∈B

f(v, b)−
∑
b∈B

∑
v∈B

f(b,v)

≤ 0

Hence, the excess flow f(b) must be 0 for every node b ∈ B.
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Hence, the excess flow f(b) must be 0 for every node b ∈ B.
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Analysis

Lemma 58

The label of a node cannot become larger than 2n− 1.

Proof.

ñ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label of

the source is n.

Lemma 59

There are only O(n2) relabel operations.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 352/372



Analysis

Lemma 58

The label of a node cannot become larger than 2n− 1.

Proof.

ñ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label of

the source is n.

Lemma 59

There are only O(n2) relabel operations.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 352/372



Analysis

Lemma 58

The label of a node cannot become larger than 2n− 1.

Proof.

ñ When increasing the label at a node u there exists a path
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Analysis

Lemma 60

The number of saturating pushes performed is at most O(mn).

Proof.

ñ Suppose that we just made a saturating push along (u,v).
ñ Hence, the edge (u,v) is deleted from the residual graph.

ñ For the edge to appear again, a push from v to u is required.

ñ Currently, `(u) = `(v)+ 1, as we only make pushes along

admissible edges.

ñ For a push from v to u the edge (v,u) must become

admissible. The label of v must increase by at least 2.

ñ Since the label of v is at most 2n− 1, there are at most n
pushes along (u,v).
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Lemma 61

The number of deactivating pushes performed is at most

O(n2m).

Proof.

ñ Define a potential function Φ(f ) =∑active nodes v `(v)
ñ A saturating push increases Φ by ≤ 2n (when the target node

becomes active it may contribute at most 2n to the sum).

ñ A relabel increases Φ by at most 1.

ñ A deactivating push decreases Φ by at least 1 as the node

that is pushed from becomes inactive and has a label that is

strictly larger than the target.

ñ Hence,

#deactivating_pushes ≤ #relabels+ 2n · #saturating_pushes

≤ O(n2m) .
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Analysis

Theorem 62

There is an implementation of the generic push relabel algorithm

with running time O(n2m).
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Analysis

Proof:

For every node maintain a list of admissible edges starting at that

node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

ñ check whether edge (v,u) needs to be added to Gf
ñ check whether (u,v) needs to be deleted (saturating push)

ñ check whether u becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time O(n)

ñ check for all outgoing edges if they become admissible

ñ check for all incoming edges if they become non-admissible
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Analysis
For special variants of push relabel algorithms we organize the

neighbours of a node into a linked list (possible neighbours in the

residual graph Gf ). Then we use the discharge-operation:

Algorithm 2 discharge(u)
1: while u is active do

2: v ← u.current-neighbour

3: if v = null then

4: relabel(u)
5: u.current-neighbour ← u.neighbour-list-head

6: else

7: if (u,v) admissible then push(u,v)
8: else u.current-neighbour ← v.next-in-list

Note that u.current-neighbour is a global variable. It is only

changed within the discharge routine, but keeps its value between

consecutive calls to discharge.



Lemma 63

If v = null in Line 3, then there is no

outgoing admissible edge from u.

Proof.

ñ While pushing from u the current-neighbour pointer is only

advanced if the current edge is not admissible.

ñ The only thing that could make the edge admissible again

would be a relabel at u.

ñ If we reach the end of the list (v = null) all edges are not

admissible.

This shows that discharge(u) is correct, and that we can perform

a relabel in Line 4.
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9.2 Relabel to Front

Algorithm 1 relabel-to-front(G, s, t)
1: initialize preflow

2: initialize node list L containing V \ {s, t} in any order

3: foreach u ∈ V \ {s, t} do

4: u.current-neighbour ← u.neighbour-list-head

5: u← L.head

6: while u ≠ null do

7: old-height ← `(u)
8: discharge(u)
9: if `(u) > old-height then // relabel happened

10: move u to the front of L
11: u← u.next
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9.2 Relabel to Front

Lemma 64 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant

holds.

1. The sequence L is topologically sorted w.r.t. the set of

admissible edges; this means for an admissible edge (x,y)
the node x appears before y in sequence L.

2. No node before u in the list L is active.
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Proof:

ñ Initialization:

1. In the beginning s has label n ≥ 2, and all other nodes have
label 0. Hence, no edge is admissible, which means that any
ordering L is permitted.

2. We start with u being the head of the list; hence no node
before u can be active

ñ Maintenance:
1. ñ Pushes do no create any new admissible edges. Therefore, if

discharge() does not relabel u, L is still topologically sorted.
ñ After relabeling, u cannot have admissible incoming edges as

such an edge (x,u) would have had a difference
`(x)− `(u) ≥ 2 before the re-labeling (such edges do not
exist in the residual graph).
Hence, moving u to the front does not violate the sorting
property for any edge; however it fixes this property for all
admissible edges leaving u that were generated by the
relabeling.



9.2 Relabel to Front

Proof:

ñ Maintenance:

2. If we do a relabel there is nothing to prove because the only
node before u′ (u in the next iteration) will be the current u;
the discharge(u) operation only terminates when u is not
active anymore.

For the case that we do not relabel, observe that the only way
a predecessor could be active is that we push flow to it via an
admissible arc. However, all admissible arc point to
successors of u.

Note that the invariant means that for u = null we have a preflow

with a valid labelling that does not have active nodes. This means

we have a maximum flow.
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9.2 Relabel to Front

Lemma 65

There are at most O(n3) calls to discharge(u).

Every discharge operation without a relabel advances u (the

current node within list L). Hence, if we have n discharge

operations without a relabel we have u = null and the algorithm

terminates.

Therefore, the number of calls to discharge is at most

n(#relabels + 1) = O(n3).
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9.2 Relabel to Front

Lemma 66

The cost for all relabel-operations is only O(n2).

A relabel-operation at a node is constant time (increasing the

label and resetting u.current-neighbour). In total we have O(n2)
relabel-operations.
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9.2 Relabel to Front

Recall that a saturating push operation

(min{cf (e), f (u)} = cf (e)) can also be a deactivating push

operation (min{cf (e), f (u)} = f(u)).
Lemma 67

The cost for all saturating push-operations that are not

deactivating is only O(mn).

Note that such a push-operation leaves the node u active but

makes the edge e disappear from the residual graph. Therefore

the push-operation is immediately followed by an increase of the

pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most O(n) times

(upper bound on number of relabels) and the neighbour-list has

only degree(u)+ 1 many entries (+1 for null-entry).
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9.2 Relabel to Front

Lemma 68

The cost for all deactivating push-operations is only O(n3).

A deactivating push-operation takes constant time and ends the

current call to discharge(). Hence, there are only O(n3) such

operations.

Theorem 69

The push-relabel algorithm with the rule relabel-to-front takes

time O(n3).

9.2 Relabel to Front 15. Dec. 2022

Harald Räcke 366/372



9.3 Highest Label

Algorithm 1 highest-label(G, s, t)
1: initialize preflow

2: foreach u ∈ V \ {s, t} do

3: u.current-neighbour ← u.neighbour-list-head

4: while ∃ active node u do

5: select active node u with highest label

6: discharge(u)
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9.3 Highest Label

Lemma 70

When using highest label the number of deactivating pushes is

only O(n3).

A push from a node on level ` can only “activate” nodes on levels

strictly less than `.

This means, after a deactivating push from u a relabel is required

to make u active again.

Hence, after n deactivating pushes without an intermediate

relabel there are no active nodes left.

Therefore, the number of deactivating pushes is at most

n(#relabels + 1) = O(n3).



9.3 Highest Label

Since a discharge-operation is terminated by a deactivating push

this gives an upper bound of O(n3) on the number of

discharge-operations.

The cost for relabels and saturating pushes can be estimated in

exactly the same way as in the case of the generic push-relabel

algorithm.

Question:

How do we find the next node for a discharge operation?
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9.3 Highest Label

Maintain lists Li, i ∈ {0, . . . ,2n}, where list Li contains active

nodes with label i (maintaining these lists induces only constant

additional cost for every push-operation and for every

relabel-operation).

After a discharge operation terminated for a node u with label k,

traverse the lists Lk, Lk−1, . . . , L0, (in that order) until you find a

non-empty list.

Unless the last (deactivating) push was to s or t the list k− 1 must

be non-empty (i.e., the search takes constant time).
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9.3 Highest Label

Hence, the total time required for searching for active nodes is at

most

O(n3)+n(#deactivating-pushes-to-s-or-t)

Lemma 71

The number of deactivating pushes to s or t is at most O(n2).

With this lemma we get

Theorem 72

The push-relabel algorithm with the rule highest-label takes time

O(n3).
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9.3 Highest Label

Proof of the Lemma.

ñ We only show that the number of pushes to the source is at

most O(n2). A similar argument holds for the target.

ñ After a node v (which must have `(v) = n+ 1) made a

deactivating push to the source there needs to be another

node whose label is increased from ≤ n+ 1 to n+ 2 before v
can become active again.

ñ This happens for every push that v makes to the source.

Since, every node can pass the threshold n+ 2 at most once,

v can make at most n pushes to the source.

ñ As this holds for every node the total number of pushes to

the source is at most O(n2).
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