6.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.
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6.3 Fibonacci Heaps

Additional implementation details:
> Every node x stores its degree in a field x. degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x. marked that specifies
whether x is marked or not.
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6.3 Fibonacci Heaps

The potential function:
> £(S) denotes the number of trees in the heap.
> m(S) denotes the number of marked nodes.
> We use the potential function ®(S) = t(S) + 2m(S).

The potential is ®(S) =5+2-3=11.
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6.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.
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6.3 Fibonacci Heaps

S. minimum ()
> Access through the min-pointer.
> Actual cost O(1).
» No change in potential.
> Amortized cost O(1).
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6.3 Fibonacci Heaps

S. merge(S’)
> Merge the root lists.

» Adjust the min-pointer
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6.3 Fibonacci Heaps

S.merge(S’)
> Merge the root lists.

» Adjust the min-pointer

Running time:
> Actual cost O(1).
» No change in potential.

» Hence, amortized cost is O(1).
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6.3 Fibonacci Heaps

S.insert(x)
» Create a new tree containing x.

> Insert x into the root-list.
» Update min-pointer, if necessary.
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6.3 Fibonacci Heaps

S. insert(x)
» Create a new tree containing x.
> Insert x into the root-list.
» Update min-pointer, if necessary.

Running time:
> Actual cost O(1).
» Change in potential is +1.
> Amortized costis c + O(1) = O(1).
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6.3 Fibonacci Heaps

S. delete-min(x)
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6.3 Fibonacci Heaps

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).
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6.3 Fibonacci Heaps
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6.3 Fibonacci Heaps

S. delete-min(x)
» Delete minimum; add child-trees to heap;
time: D(min) - O(1).
» Update min-pointer; time: (t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree
Time t - O(1) (see next slide).

‘m 6.3 Fibonacci Heaps
Harald Racke

130/142



6.3 Fibonacci Heaps

Consolidate:
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Consolidate:

current
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6.3 Fibonacci Heaps
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6.3 Fibonacci Heaps
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6.3 Fibonacci Heaps
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6.3 Fibonacci Heaps

Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.
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6.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists c; s.t. actual cost is at most ¢y - (Dy, + t).
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6.3 Fibonacci Heaps
Actual cost for delete-min()
» At most D, + t elements in root-list before consolidate.
> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢ s.t. actual cost is at most ¢y - (D, + 1).
Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
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6.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.

» Therefore A® < D, +1 —t;
» We can pay c - (t — D,, — 1) from the potential decrease.

» The amortized cost is

c1-Dp+t)—c-(t-Dp-1)
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6.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.
» Therefore A® < D, +1 —t;
» We can pay c - (t — D,, — 1) from the potential decrease.
» The amortized cost is
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6.3 Fibonacci Heaps
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6.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).

Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()

» t' < Dy + 1 as degrees are different after consolidating.

» Therefore A® < D, +1 —t;

» We can pay c - (t — D,, — 1) from the potential decrease.

» The amortized cost is

c1-Dp+t)—c-(t-Dp-1)

<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)
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6.3 Fibonacci Heaps
Actual cost for delete-min()
> At most D, + t elements in root-list before consolidate.

> Actual cost for a delete-min is at most O(1) - (D, + t).
Hence, there exists ¢y s.t. actual cost is at most ¢y - (D4, + t).

Amortized cost for delete-min()
» t' < Dy + 1 as degrees are different after consolidating.

» Therefore A® < D, +1 —t;
» We can pay c - (t — D,, — 1) from the potential decrease.
» The amortized cost is
c1-Dp+t)—c-(t—Dy-1)
<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

forc>cy .
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6.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will be
a set of distinct binomial trees, and, hence, the Fibonacci heap
will be (more or less) a Binomial heap right after the consolidation.
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6.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will be
a set of distinct binomial trees, and, hence, the Fibonacci heap
will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then
D, <logn.

m 6.3 Fibonacci Heaps
Harald Racke 133/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.
Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
> Decrease key-value of element x reference by h.

> If the heap-property is violated, cut the parent edge of x, and
make x into a root.

» Adjust min-pointers, if necessary.
> Mark the (previous) parent of x (unless it’s a root).
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
> Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Continue cutting the parent until you arrive at an unmarked
node.

‘m 6.3 Fibonacci Heaps
Harald Racke 134/142



Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.

> Execute the following:
p — parent[x];
while (p is marked)
pp — parent[p];
cut of p; make it into a root; unmark it;
p — pp;
if p is unmarked and not a root mark it;

!
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:

> t' =t +{, as every cut creates one new root.
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.
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Actual cost:
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.
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unmarks a node; the last cut may mark a node.
>» Ad <l +2(—0+2)=4-7¢

» Amortized cost is at most

‘m 6.3 Fibonacci Heaps
Harald Racke 136/142



Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> A< +2(—€+2)=4-¢
» Amortized cost is at most

col+1)+c(4-"0) < (cop—c)l+4c+co
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢ - (£ + 1), for some constant ¢».

Amortized cost:
> t' =t +{, as every cut creates one new root.

> m ' <m-—-{-1)+1=m—"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

> Ab < +2(—¥+2)=4-1¢

» Amortized cost is at most
o+ +cd-1) < (co—c)l+4c+cr = O(1),
if c > co.
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Delete node

H. delete(x):
» decrease value of x to —co.

> delete-min.

Amortized cost: @ (D)
> O(1) for decrease-key.
> O(Dy) for delete-min.
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6.3 Fibonacci Heaps

Lemma 2

Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then
0 ifi=1

degree(yi) = { i-2 ifi>1

‘m 6.3 Fibonacci Heaps
Harald Racke 138/142



6.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.
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6.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.
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6.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., ;1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.
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6.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,..., ;1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

> Since, then y; has lost at most one child.
» Therefore, degree(y;) > i — 2.
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6.3 Fibonacci Heaps

> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.
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6.3 Fibonacci Heaps

> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1ands; = 2.
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6.3 Fibonacci Heaps
> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.
k
sk=2+ > size(y;)
i=2
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6.3 Fibonacci Heaps
> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1and sy = 2.

Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k

sk=2+ > size(y;)
i=2
k
>2+4 > Sio
i=2
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6.3 Fibonacci Heaps

> Let si be the minimum possible size of a sub-tree rooted at a
node of degree k that can occur in a Fibonacci heap.

> s, monotonically increases with k

> so=1ands; = 2.
Let x be a degree k node of size s, and let y1,..., Vi beits
children.

k
Sk =2+ > size(y;)
i=2
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i i ¢ = 21 + V5) denotes the golden ratio.!
6.3 Fibonacci Heaps e s |

Definition 3
Consider the following non-standard Fibonacci type sequence:

1 ifk=0

Fr=4 2 ifk=1
Fy_q1 +Fx_» if k=2

Facts:
1. Fk><i>k
2. Fork =2: F =2+ Y52 F.

The above facts can be easily proved by induction. From this it
follows that s > Fy > ¢X, which gives that the maximum degree
in a Fibonacci heap is logarithmic.
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k=0: l1=Fy=9"=1

_1. _ 1 - b2

k=1: 2=F >o! ~1.61

k-2,k-1— ki Fy = Fx_1 + Fx_p > ®K 1 + dk—2 = pk—2(p41) = ¢k

k=2: 3=F=2+1=2+F
k-1— k: Fr=F 1 +F =2+ F+F_,=2+>CF
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