6.3 The Characteristic Polynomial
Consider the recurrence relation:

coTm)+ciTm—1)+c2Tn—=2)+---+cxT(n—k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (cg, cx # 0).

» T(n) only depends on the k preceding values. This means
the recurrence relation is of order k.

» The recurrence is linear as there are no products of T[n]’s.

> If f(n) = 0 then the recurrence relation becomes a linear,
homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.
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6.3 The Characteristic Polynomial

Observations:

» The solution T[1],T[2],T[3],... is completely determined
by a set of boundary conditions that specify values for
T[1]1,...,T[k].

> In fact, any k consecutive values completely determine the
solution.

> k non-concecutive values might not be an appropriate set of
boundary conditions (depends on the problem).
Approach:
> First determine all solutions that satisfy recurrence relation.
» Then pick the right one by analyzing boundary conditions.

> First consider the homogenous case.
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The Homogenous Case

The solution space
S = {T =T[1],T[2],T[3],... | T fulfills recurrence relation}

is a vector space. This means that if 77,7, € S, then also
xT1 + BT, € S, for arbitrary constants «, 3.

How do we find a non-trivial solution?

We guess that the solution is of the form A", A = 0, and see what
happens. In order for this guess to fulfill the recurrence we need

CoA" + A" e A2 4. +ck-2\”‘k =0

for all n > k.
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The Homogenous Case

Dividing by A"~ ¥ gives that all these constraints are identical to

coAk +ciAf L p oo AR 2 4o p =0

characteristic polynomial P[A]

This means that if A; is a root (Nullstelle) of P[A] then T[n] = A
is a solution to the recurrence relation.

Let Aq,...,Ax be the k (complex) roots of P[A]. Then, because of
the vector space property

n n n
0(17\1 + O(QAZ + o+ O(kAk

is a solution for arbitrary values «;.
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The Homogenous Case

Lemma 1
Assume that the characteristic polynomial has k distinct roots
Al,...,Ak. Then all solutions to the recurrence relation are of the
form

AT + 0AY + -+ oA

Proof.
There is one solution for every possible choice of boundary
conditions for T[1],..., T[k].

We show that the above set of solutions contains one solution for
every choice of boundary conditions.

The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see

whether | can choose the «s such that these conditions are met:
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The Homogenous Case

Proof (cont.).
Suppose | am given boundary conditions T[i] and | want to see
whether | can choose the ags such that these conditions are met:

Al A e Ap o] T[1]
AT AS AR o0 T[2]
Af A% Ak ok T[k]

We show that the column vectors are linearly independent. Then
the above equation has a solution.

6.3 The Characteristic Polynomial

X1 A1+ o2-Ar + - 4+ XA = T[1]
oA+ A5+ e+ oA = TI[2]
o - AN+ oAk + o AN = T[K]
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Computing the Determinant
Al A o Axo Ag 1 1 1 1
XA AL, Ak MoA e A A
. . =TT : . . :
i=1 : :
AT A% N A% AT oabt AL AT
1 A Ak=2 k=l
k 1 A Ak=2 Akt
=[]Ai- i
i=1 :
1 A AR=2 Akt
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Computing the Determinant

1 A Ak=2 Akt

1Ay --- AkT2 Ak

1A --- o ARZ AR
1 Ap—Ap-1 AK=2 A A Akt Ak
1 Ap—2Ap-1 AK=2 A ab Akt oA Ak
I A=Al A2 -Ap A=A -AR?

Computing the Determinant

I A1—Ap-1 L VI Lt S Uk P s

I A2—2Ap-1 AK=2 A Ak AT oA Ak

1 A—=2Ap-1 LA PR LAt S Lat e P L
1 0 0 0
1 (A2-2Ap)-1 (A2 = A1) =257 (A2 —Ap)-A5?
I (Ag=2A1)-1 A=A - A3 (A= A) - A2
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Computing the Determinant

1 0 0 0
I Aa—2Ap)-1 (A2 = A1) - A5 (A —Ap) - A5
1 (Ax=2A7)-1 A=A - AF3 A =A1) AL~
. I A - AK3 O Ak2
[TAi=2ay) - : : :
= oA - AL
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Computing the Determinant
Repeating the above steps gives:
A1 A e A1 Ag
NN oAb, Ak
: ; l=TTA TT@i=2ap)
o h 9 i=1 i>0
AT A N Ay
Hence, if all A;’s are different, then the determinant is non-zero.
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root A; with multiplicity (Vielfachheit) at least
2. Then not only is A} a solution to the recurrence but also nAY.

To see this consider the polynomial

PIA]- A" K = coA" + A L oA 2 oo Ak

Since A; is a root we can write this as Q[A] - (A — A;)2. Calculating
the derivative gives a polynomial that still has root A;.
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This means

ConA?fl +c1(n— 1))\17.1*2 4 Hop(n— k);\?—k—l -0

Hence,

COTLP\? +c1(n— 1)?\?‘1 +otop(n— k)/\?_k -0
—— -— —_—t
T[n] T[n-1] TIn—k]
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The Homogeneous Case
Suppose A; has multiplicity j. We know that
conA" +ci(n— DAL+ o+ g —k)ATF =0
(after taking the derivative; multiplying with A; plugging in A;)
Doing this again gives

con®A +c1(n— 1AM o p(n - k)2AT R =0

We can continue j — 1 times.

Hence, neAl” is a solution for £ €0,...,j — 1.
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The Homogeneous Case

Lemma 2
Let P[A] denote the characteristic polynomial to the recurrence

coTn]+caiTn—-1]1+---+cxT[n-k] =

LetA;,i=1,...,m be the (complex) roots of P[A] with
multiplicities ;. Then the general solution to the recurrence is
given by

HM§

Z - (mJAl)

The full proof is omitted. We have only shown that any choice of
«;;’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0]=0
T[1]=1
Tnl=Tn-11+T[n-2]forn =2

The characteristic polynomial is
|

Finding the roots, gives

?\1/2=%i,/%+1=%<1i\/§)

Example: Fibonacci Sequence

Hence, the solution is of the form

(7)o ()

2 2

T[0] =0 gives x+ = 0.

T[1] =1 gives

a<1+£>+[3<1_\/§>=1:>(x—[3:2

2 2
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Example: Fibonacci Sequence

Hence, the solution is

SRS

The Inhomogeneous Case

Consider the recurrence relation:

coTm)+c1Tn—1)+c2Tn=2)+---+cyT(n—-k) = f(n)

with f(n) = 0.

While we have a fairly general technique for solving homogeneous,
linear recurrence relations the inhomogeneous case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is
T(n) =Th(n) +Tp(n) ,

where T}, is any solution to the homogeneous equation, and T is
one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

m 6.3 The Characteristic Polynomial
Harald Ricke

35/39

The Inhomogeneous Case

Example:
Tnl=Tn-1]+1 T[0] =1

Then,
Tn-1]1=Tn-2]+1 (n=2)

Subtracting the first from the second equation gives,
Tnl-Tn-1]1=Tn-1]1-T[n - 2] (n=2)

or
Tn]=2Tn-1]1-T[n - 2] (n=2)

| get a completely determined recurrence if | add T[0] = 1 and
T[1] = 2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

A2-2A+1=0
—_—
(A=1)2

Then the solution is of the form

Tn]l=«ol™+ nl" = x+ Bn

T[0] =1 gives «x = 1.

T[1]=2gives 1+ =2= B =1.
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The Inhomogeneous Case

If f(n) is a polynomial of degree 7 this method can be applied
¥ + 1 times to obtain a homogeneous equation:

Tn]=T[n-1]+n?

Shift:

Tin-1]1=Tn-2+mn-1)2%2=Tn-2]1+n>-2n+1

Difference:

Tn]-Tn-1]1=Tn-1]1-TIn-2]+2n-1

Tin]=2Tn-1]-Tn-2]1+2n-1




Shift:

Tn-1]1=2Tn-2]-Tn-3]+2(n-1) -1
=2Tn-2]-T[n-3]+2n-3

Difference:

Tn]l-Tn-1]=2Tn-1]-Tn-2]+2n-1
-2Tn-21+Tn-3]1-2n+3

Tin]=3Tn—-1]-3Tn-2]1+T[n-3]+2

and so on...
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