Efficient Algorithms

Harald Räcke

Fakultät für Informatik
TU München
https://www.moodle.tum.de/course/view.php?id=90411
Winter Term 2023/24

Part I

Organizational Matters

- Modul: IN2003
- Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- ECTS: 8 Credit points
- Lectures:
- 4 SWS

Mon 10:00-12:00 (Room Interim2)
Fri 10:00-12:00 (Room Interim2)

- Webpage:
https://www.moodle.tum.de/course/view.php?id=90411

Part I

Organizational Matters

- Required knowledge:
- IN0001, IN0003
"Introduction to Informatics 1/2"
"Einführung in die Informatik 1/2"
- IN0007
"Fundamentals of Algorithms and Data Structures"
"Grundlagen: Algorithmen und Datenstrukturen" (GAD)
- INOO11
"Basic Theoretic Informatics"
"Einführung in die Theoretische Informatik" (THEO)
- IN0015
"Discrete Structures"
"Diskrete Strukturen" (DS)
- IN0018
"Discrete Probability Theory"
"Diskrete Wahrscheinlichkeitstheorie" (DWT)

2 Literatur

囯 Ronald L．Graham，Donald E．Knuth，Oren Patashnik：
Concrete Mathematics，
2．Auflage，Addison－Wesley， 1994
Volker Heun：
Grundlegende Algorithmen：Einführung in den Entwurf und die Analyse effizienter Algorithmen，
2．Auflage，Vieweg， 2003
围 Jon Kleinberg，Eva Tardos：
Algorithm Design，
Addison－Wesley， 2005
國 Donald E．Knuth：
The art of computer programming．Vol．1：Fundamental
Algorithms，
3．Auflage，Addison－Wesley， 1997

10 Harald Räcke	2 Literatur	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 9 / 579 \end{array}$

2 Literatur

國 Donald E．Knuth：
The art of computer programming．Vol．3：Sorting and Searching，
3．Auflage，Addison－Wesley， 1997
直 Christos H．Papadimitriou，Kenneth Steiglitz：
Combinatorial Optimization：Algorithms and Complexity， Prentice Hall， 1982
睩 Uwe Schöning：
Algorithmik，
Spektrum Akademischer Verlag， 2001
䍰 Steven S．Skiena：
The Algorithm Design Manual，
Springer， 1998

1701 Harald Räcke	2 Literatur	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 10 / 579 \end{array}$

3 Goals

－Gain knowledge about efficient algorithms for important problems，i．e．，learn how to solve certain types of problems efficiently．
－Learn how to analyze and judge the efficiency of algorithms．
－Learn how to design efficient algorithms．

4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- ...
$\boxed{\pi}$ Harald Räcke

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f: \mathbb{N} \rightarrow \mathbb{N}$
that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1
Suppose n numbers from the interval $\{1, \ldots, N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
- How do you choose your inputs?
- May be very time-consuming.
- Very reliable results if done correctly.
- Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
- Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}\left(n^{2}\right)$ ".
- Typically focuses on the worst case.
- Can give lower bounds like "any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case".

$\square\\|\\|$	Harald Räcke	4 Modelling Issues

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computabiliy, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form $x x$, where x is a string, have quadratic lower bound.
\Rightarrow Not a good model for developing efficient algorithms.

Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
- READ i
- output operations ($R[i] \rightarrow$ output tape)
- WRITE i
- register-register transfers
- $R[j]:=R[i]$
- $R[j]:=4$
- indirect addressing
- $R[j]:=R[R[i]]$
loads the content of the $R[i]$-th register into the j-th register
- $R[R[i]]:=R[j]$
loads the content of the j-th into the $R[i]$-th register

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$.
- Registers hold integers
- Indirect addressing.

Note that in the picture on the right
the tapes are one-directional, and that
a READ- or WRITE-operation always ad-'
vances its tape.

4 Modelling Issues
TW Harald Räck

Random Access Machine (RAM)

Operations

- branching (including loops) based on comparisons
- jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register $R[x]$
- jumpz $\times R$ [i]
jump to x if $R[i]=0$
if not the instruction counter is increased by 1 ;
- jumpi i
jump to $R[i]$ (indirect jump);
- arithmetic instructions:,,$+- \times, /$
- $R[i]:=R[j]+R[k] ;$ $R[i]:=-R[k] ; \quad$ The jump-directives are very close to the ' jump-instructions contained in the as-1, sembler language of real machines.

Model of Computation

- uniform cost model

Every operation takes time 1.

- logarithmic cost model

The cost depends on the content of memory cells:

- The time for a step is equal to the largest operand involved;
- The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^{w}, where usually $w=\log _{2} n$.

The-latter model is quite realistic as the word-size of i a standard computer that handles a problem of size n; ' must be at least $\log _{2} n$ as otherwise the computer could ' either not store the problem instance or not address all , its memory.

	4 Modelling Issues	6. Feb. 2024
Harald Räcke	$21 / 579$	

4 Modelling Issues

Example 2

```
Algorithm 1 RepeatedSquaring ( \(n\) )
    \(: r \leftarrow 2\);
    : for \(i=1 \rightarrow n\) do
        \(r \leftarrow r^{2}\)
    return \(r\)
```

- running time (for Line 3):
- uniform model: n steps
- logarithmic model:

$$
2+3+5+\cdots+\left(1+2^{n}\right)=2^{n+1}-1+n=\Theta\left(2^{n}\right)
$$

- space requirement:
- uniform model: $\mathcal{O}(1)$
- logarithmic model: $\mathcal{O}\left(2^{n}\right)$

) 01 Harald Räcke	4 Modelling Issues	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 22 / 579 \end{array}$

There are different types of complexity bounds:

- amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

- randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x.
Then take the worst-case over all x with $|x|=n$.
$C(x)$ cost of instance
$\frac{x}{|x|}$ input length of
$\bar{\mu}$ is a probability distribu-
tion over inputs of length n.'
$|x|$ instance x set of instances
I_{n} of length n

r--------------- $\bar{\mu}$ is a probability distribu-

, tion over inputs of length n.

$$
C_{\mathrm{avg}}(n):=\sum_{x \in I_{n}} \mu(x) \cdot C(x)
$$

$\boxed{\square 1}$ Harald Räcke

4 Modelling Issues

Bibliography
[MS08] Kurt Mehlhorn, Peter Sanders
Algorithms and Data Structures - The Basic Toolbox, Springer, 2008
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein Introduction to algorithms (3rd ed.)
McGr
Chapter 2.1 and 2.2 of [MSO8] and Chapter 2 of [CLRS90] are relevant for this section.

Asymptotic Notation

Formal Definition

Let f, g denote functions from \mathbb{N} to \mathbb{R}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not faster than f)
- $\Omega(f)=\left\{g \mid \exists c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f)=\Omega(f) \cap \mathcal{O}(f)$
(functions that asymptotically have the same growth as f)
- $o(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \leq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow slower than f)
- $\omega(f)=\left\{g \mid \forall c>0 \exists n_{0} \in \mathbb{N}_{0} \forall n \geq n_{0}:[g(n) \geq c \cdot f(n)]\right\}$ (set of functions that asymptotically grow faster than f)

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

¢ 50 Harald Räcke	5 Asymptotic Notation	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 24 / 579 \end{array}$

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_{0} to \mathbb{R}_{0}^{+}.

- $g \in \mathcal{O}(f): \quad 0 \leq \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in \Omega(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)} \leq \infty$
- $g \in \Theta(f): \quad 0<\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}<\infty$
- $g \in o(f): \quad \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0$
- $g \in \omega(f): \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=\infty$
- Note that for the version of the Landau notation defined here we assume tha f and g are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

Asymptotic Notation

Abuse of notation

1. People write $f=\mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is not an equality (how could a function be equal to a set of functions).
2. People write $f(n)=\mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto f(n)$, and $g: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto g(n)$.
3. People write e.g. $h(n)=f(n)+o(g(n))$ when they mean that there exists a function $z: \mathbb{N} \rightarrow \mathbb{R}^{+}, n \mapsto z(n), z \in o(g)$ such that $h(n)=f(n)+z(n)$.
4. In this context $f(n)$ does not mean the function f evaluated at n, but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule of correspondence of the function).
5. This is particularly useful if you do not want to ignore constant factors. For example the median of n elements can be determined using $\frac{3}{2} n+o(n)$ comparisons.

Asymptotic Notation

Abuse of notation

4. People write $\mathcal{O}(f(n))=\mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.
'1. In this context $f(n)$ does not mean the function f evaluated at n, but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule of correspondence of the function).
5. This is particularly useful if you do not want to ignore constant factors. For example the median of n elements can be determined using $\frac{3}{2} n+o(n)$ comparisons

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
2 n^{2}+\mathcal{O}(n)=\Theta\left(n^{2}\right)
$$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta\left(n^{2}\right)$ that makes the expression true.
Howdowe interpret an expression like:

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

Asymptotic Notation in Equations

 resents one anonymous function , $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$, and then $\sum_{i} f(i)$ is
How do we interpret an expression like: computed.

$$
\sum_{i=1}^{n} \Theta(i)=\Theta\left(n^{2}\right)
$$

Carefu!!
"It is understood" that every occurence of an \mathcal{O}-symbol (or $\Theta, \Omega, o, \omega)$ on the left represents one anonymous function.

Hence, the left side is not equal to

$$
\Theta(1)+\Theta(2)+\cdots+\Theta(n-1)+\Theta(n)
$$

$\Theta(1)+\Theta(2)+\cdots+\Theta(n-1)+\Theta(n) d o$ not really have a reasonable interpreta'tion.

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$
n^{2} \cdot \mathcal{O}(n)+\mathcal{O}(\log n)=\Theta\left(n^{2}\right)
$$

represents

$$
n^{2} \cdot \mathcal{O}(n)+\mathcal{O}(\log n) \subseteq \Theta\left(n^{2}\right)
$$

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as generating a set:

$$
n^{2} \cdot \mathcal{O}(n)+\mathcal{O}(\log n)
$$

represents

$$
\left\{f: \mathbb{N} \rightarrow \mathbb{R}^{+} \mid f(n)=n^{2} \cdot g(n)+h(n)\right.
$$

$$
\text { with } g(n) \in \mathcal{O}(n) \text { and } h(n) \in \mathcal{O}(\log n)
$$

Recall that according to the previous slide e.g. the expressions $\sum_{i=1}^{n} \mathcal{O}(i)$ and $\sum_{i=1}^{n / 2} \mathcal{O}(i)+\sum_{i=n / 2+1}^{n} \mathcal{O}(i)$ generate different sets.

5 Asymptotic Notation

Asymptotic Notation

Lemma 3
Let f, g be functions with the property
$\exists n_{0}>0 \forall n \geq n_{0}: f(n)>0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(f(n)+g(n))$
- $\mathcal{O}(f(n)) \cdot \mathcal{O}(g(n))=\mathcal{O}(f(n) \cdot g(n))$
- $\mathcal{O}(f(n))+\mathcal{O}(g(n))=\mathcal{O}(\max \{f(n), g(n)\})$

The expressions also hold for Ω. Note that this means that $f(n)+g(n) \in \Theta(\max \{f(n), g(n)\})$.

101 Harald Räcke	5 Asymptotic Notation	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 32 / 579 \end{array}$

Asymptotic Notation

Comments

- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log _{a} n=\Theta\left(\log _{b} n\right)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- In general $\log n=\log _{2} n$, i.e., we use 2 as the default base for the logarithm.

Funktionen

Funktionen

Funktionen

Laufzeiten

Funktion$f(n)$	Eingabelänge n							
	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
$\log n$	33 ns	66 ns	$0.1 \mu \mathrm{~s}$	$0.1 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	$0.2 \mu \mathrm{~s}$	$0.3 \mu \mathrm{~s}$
\sqrt{n}	32ns	$0.1 \mu \mathrm{~s}$	$0.3 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$3.1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$31 \mu \mathrm{~s}$	0.1 ms
n	100ns	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	0.1 ms	1 ms	10 ms	0.1 s	1 s
$n \log n$	$0.3 \mu \mathrm{~s}$	$6.6 \mu \mathrm{~s}$	0.1 ms	1.3 ms	16 ms	0.2 s	2.3s	27s
$n^{3 / 2}$	$0.3 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	0.3 ms	10 ms	0.3s	10s	5.2 min	2.7h
n^{2}	$1 \mu \mathrm{~s}$	0.1 ms	10 ms	1s	1.7 min	2.8 h	11d	3.2 y
n^{3}	$10 \mu \mathrm{~s}$	10 ms	10s	2.8 h	115d	317y	$3.2 \cdot 10^{5} \mathrm{y}$	
$1.1{ }^{n}$	26ns	0.1 ms	$7.8 \cdot 10^{25} \mathrm{y}$					
2^{n}	$10 \mu \mathrm{~s}$	$4 \cdot 10^{14} \mathrm{y}$						
n !	36 ms	$3 \cdot 10^{142} \mathrm{y}$						

Alter des Universums: ca. $13.8 \cdot 10^{9}$ y

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
- Algorithm A. Running time $f(n)=1000 \log n=\mathcal{O}(\log n)$.
- Algorithm B. Running time $g(n)=\log ^{2} n$.

Clearly $f=o(g)$. However, as long as $\log n \leq 1000$
Algorithm B will be more efficient.

Multiple Variables in Asymptotic Notation

Example 4

- $f: \mathbb{N} \rightarrow \mathbb{R}_{0}^{+}, f(n, m)=1$ und $g: \mathbb{N} \rightarrow \mathbb{R}_{0}^{+}, g(n, m)=n-1$ then $f=\mathcal{O}(g)$ does not hold
- $f: \mathbb{N} \rightarrow \mathbb{R}_{0}^{+}, f(n, m)=1$ und $g: \mathbb{N} \rightarrow \mathbb{R}_{0}^{+}, g(n, m)=n$ then: $f=\mathcal{O}(g)$
- $f: \mathbb{N}_{0} \rightarrow \mathbb{R}_{0}^{+}, f(n, m)=1$ und $g: \mathbb{N}_{0} \rightarrow \mathbb{R}_{0}^{+}, g(n, m)=n$ then $f=\mathcal{O}(g)$ does not hold

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for $n \rightarrow \infty$ and $m \rightarrow \infty$ we have to extend the definition to multiple variables.

Formal Definition

Let f, g denote functions from \mathbb{N}^{d} to \mathbb{R}_{0}^{+}.

- $\mathcal{O}(f)=\left\{g \mid \exists c>0 \exists N \in \mathbb{N}_{0} \forall \vec{n}\right.$ with $n_{i} \geq N$ for some i : $[g(\vec{n}) \leq c \cdot f(\vec{n})]\}$
(set of functions that asymptotically grow not faster than f)
$\square \boxed{\text { Harald Räcke }} 5$ Asymptotic Notation

5 Asymptotic Notation

Bibliography

MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures - The Basic Toolbox, Springer, 2008
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein Introduction to algorithms (3rd ed.)

Mainly Chapter 3 of [CLRS90]. [MS08] covers this topic in chapter 2.1 but not very detailed.

6 Recurrences

```
Algorithm 2 mergesort(list \(L\) )
    1: \(n \leftarrow \operatorname{size}(L)\)
    2: if \(n \leq 1\) return \(L\)
    3: \(L_{1} \leftarrow L\left[1 \cdots\left\lfloor\frac{n}{2}\right\rfloor\right]\)
    4: \(L_{2} \leftarrow L\left[\left\lfloor\frac{n}{2}\right\rfloor+1 \cdots n\right]\)
    5: mergesort \(\left(L_{1}\right)\)
    6: mergesort \(\left(L_{2}\right)\)
    7: \(L \leftarrow \operatorname{merge}\left(L_{1}, L_{2}\right)\)
    8: return \(L\)
```

This algorithm requires

$$
T(n)=T\left(\left\lceil\frac{n}{2}\right\rceil\right)+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+\mathcal{O}(n) \leq 2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+\mathcal{O}(n)
$$

comparisons when $n>1$ and 0 comparisons when $n \leq 1$.

$\boxed{17}$ Harald Räcke	6 Recurrences	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 45 / 579 \end{array}$

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.
2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.
3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Recurrences

How do we bring the expression for the number of comparisons
(\approx running time) into a closed form?
For this we need to solve the recurrence

H10 Harald Räcke	6 Recurrences	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 46 / 579 \end{array}$

Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.
5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

6.1 Guessing+Induction

First we need to get rid of the \mathcal{O}-notation in our recurrence:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Informal way:
Assume that instead we have

$$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

Suppose we guess $T(n) \leq d n \log n$ for a constant d. Then

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n \\
& =d n(\log n-1)+c n \\
& =d n \log n+(c-d) n \\
& \leq d n \log n
\end{aligned}
$$

if we choose $d \geq c$.

Formally, this is not correct if n is not a power of 2 . Also even in this case one would need to do an induction proof.

Harald Räcke	6.1 Guessing+Induction	6. Feb. 2024

6.1 Guessing+Induction

How do we get a result for all values of n ?
We consider the following recurrence instead of the original one:

$$
T(n) \leq \begin{cases}2 T\left(\left\lceil\frac{n}{2}\right\rceil\right)+c n & n \geq 16 \\ b & \text { otherwise }\end{cases}
$$

Note that we can do this as for constant-sized inputs the running time is always some constant (b in the above case).

Hence, statement is true if we choose $d \geq c$.

- Note that this proves the --------1
statement for $n=2^{k}, k \in \mathbb{N}>1$, as !
the statement is wrong for $n=1$.
- The base case is usually omitted, as it is the same for different
recurrences.
\qquad

6.1 Guessing+Induction
 $$
T(n) \leq \begin{cases}2 T\left(\frac{n}{2}\right)+c n & n \geq 16 \\ b & \text { otw }\end{cases}
$$
 Guess: $T(n) \leq d n \log n$.

Proof. (by induction)

- base case $(2 \leq n<16)$: true if we choose $d \geq b$.
- induction step $n / 2 \rightarrow n$:

Let $n=2^{k} \geq 16$. Suppose statem. is true for $n^{\prime}=n / 2$. We prove it for n :

$$
\begin{array}{rlr}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n & \\
& \leq 2\left(d \frac{n}{2} \log \frac{n}{2}\right)+c n & \begin{array}{c}
\text { Note that this } \\
\text { statement for } \\
\text { the statemen }
\end{array} \\
& =d n(\log n-1)+c n & \text { • The base cas } \\
& =d n \log n+(c-d) n & \text { as is is the sa } \\
& \leq d n \log n &
\end{array}
$$

\square
\square

6.1 Guessing+Induction

We also make a guess of $T(n) \leq d n \log n$ and get

for a suitable choice of d.

Harald Räcke	6.1 Guessing+Induction	6. Feb. 2024
$53 / 579$		

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form b^{ℓ}, and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

6.2 Master Theorem

Lemma 5
Let $a \geq 1, b>1$ and $\epsilon>0$ denote constants. Consider the
recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

Case 1.
If $f(n)=\mathcal{O}\left(n^{\log _{b}(a)-\epsilon}\right)$ then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
Case 2.
If $f(n)=\Theta\left(n^{\log _{b}(a)} \log ^{k} n\right)$ then $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$,
$k \geq 0$.
Case 3.
If $f(n)=\Omega\left(n^{\log _{b}(a)+\epsilon}\right)$ and for sufficiently large n
af $\left(\frac{n}{b}\right) \leq c f(n)$ for some constant $c<1$ then $T(n)=\Theta(f(n))$.
6.2 Master Theorem

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

This gives

$$
T(n)=n^{\log _{b} a}+\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) .
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}$

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\mathcal{O}\left(n^{\log _{b} a} \log _{b} n\right)
$$

$$
\Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a} \log n\right)
$$

Case 1. Now suppose that $f(n) \leq c n^{\log _{b} a-\epsilon}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a-\epsilon}
\end{aligned}
$$

$$
b^{-i\left(\log _{b} a-\epsilon\right)}=b^{\epsilon i}\left(b^{\log _{b} a}\right)^{-i}=b^{\epsilon i} a^{-i}=c n^{\log _{b} a-\epsilon} \sum_{i=0}^{\log _{b} n-1}\left(b^{\epsilon}\right)^{i}
$$

$$
\sum_{i=0}^{k} q^{i}=\frac{q^{k+1}-1}{q-1}=c n^{\log _{b} a-\epsilon}\left(b^{\epsilon \log _{b} n}-1\right) /\left(b^{\epsilon}-1\right)
$$

$$
=c n^{\log _{b} a-\epsilon}\left(n^{\epsilon}-1\right) /\left(b^{\epsilon}-1\right)
$$

$$
=\frac{c}{b^{\epsilon}-1} n^{\log _{b} a}\left(n^{\epsilon}-1\right) /\left(n^{\epsilon}\right)
$$

Hence,

$$
T(n) \leq\left(\frac{c}{b^{\epsilon}-1}+1\right) n^{\log _{b}(a)}
$$

$$
\Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a}\right)
$$

1 Harald Räck
6.2 Master Theorem

Case 2. Now suppose that $f(n) \geq c n^{\log _{b} a}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \geq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\log _{b} n-1} 1 \\
& =c n^{\log _{b} a} \log _{b} n
\end{aligned}
$$

Hence,

$$
T(n)=\Omega\left(n^{\log _{b} a} \log _{b} n\right)
$$

$$
\Rightarrow T(n)=\Omega\left(n^{\log _{b} a} \log n\right)
$$

Case 2. Now suppose that $f(n) \leq c n^{\log _{b} a}\left(\log _{b}(n)\right)^{k}$.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq c \sum_{i=0}^{\log _{b} n-1} a^{i}\left(\frac{n}{b^{i}}\right)^{\log _{b} a} \cdot\left(\log _{b}\left(\frac{n}{b^{i}}\right)\right)^{k} \\
n=b^{\ell} \Rightarrow \ell=\log _{b} n & =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}\left(\log _{b}\left(\frac{b^{\ell}}{b^{i}}\right)\right)^{k} \\
& =c n^{\log _{b} a} \sum_{i=0}^{\ell-1}(\ell-i)^{k} \\
& =c n^{\log _{b} a \sum_{i=1}^{\ell} i^{k} \approx \frac{1}{k} \ell^{k+1}} \\
& \approx \frac{c}{k} n^{\log _{b} a \ell^{k+1}} \Rightarrow T(n)=\mathcal{O}\left(n^{\log _{b} a} \log ^{k+1} n\right) .
\end{aligned}
$$

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B :

$$
\begin{array}{rlllllllll}
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & A \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

This gives that two n-bit integers can be added in time $\mathcal{O}(n)$.

Case 3 . Now suppose that $f(n) \geq d n^{\log _{b} a+\epsilon}$, and that for sufficiently large n : $a f(n / b) \leq c f(n)$, for $c<1$.

From this we get $a^{i} f\left(n / b^{i}\right) \leq c^{i} f(n)$, where we assume that $n / b^{i-1} \geq n_{0}$ is still sufficiently large.

$$
\begin{aligned}
T(n)-n^{\log _{b} a} & =\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right) \\
& \leq \sum_{i=0}^{\log _{b} n-1} c^{i} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right) \\
q<1: \sum_{i=0}^{n} q^{i}=\frac{1-q^{n+1}}{1-q} \leq \frac{1}{1-q} & \leq \frac{1}{1-c} f(n)+\mathcal{O}\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Hence,

$$
T(n) \leq \mathcal{O}(f(n))
$$

$$
\Rightarrow T(n)=\Theta(f(n))
$$

Where did we use $f(n) \geq \Omega\left(n^{\log _{b}} \overline{a+\epsilon}\right)$?
10 Harald Räck
6.2 Master Theorem

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit integer $\boldsymbol{B}(m \leq n)$.

$$
\begin{array}{rllllllll}
1 & 0 & 0 & 0 & 1 & \times & 1 & 0 & 1 \\
\hline
\end{array}
$$

- This is also nown as the "school

100010
method" for multiplying integers.
0000000
bers that the intermediate
hat are generated can have 00100 0111011

Time requirement:

- Computing intermediate results: $\mathcal{O}(\mathrm{nm})$.
- Adding m numbers of length $\leq 2 n: \mathcal{O}((m+n) m)=\mathcal{O}(n m)$.

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length $n=2^{k}$, for some k.

| B_{1} | B_{0} |
| :---: | :---: | :---: | | A_{1} | A_{0} |
| :---: | :---: |

Then it holds that

$$
A=A_{1} \cdot 2^{\frac{n}{2}}+A_{0} \text { and } B=B_{1} \cdot 2^{\frac{n}{2}}+B_{0}
$$

Hence,

$$
A \cdot B=A_{1} B_{1} \cdot 2^{n}+\left(A_{1} B_{0}+A_{0} B_{1}\right) \cdot 2^{\frac{n}{2}}+A_{0} B_{0}
$$

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

In our case $a=4, b=2$, and $f(n)=\Theta(n)$. Hence, we are in Case 1 , since $n=\mathcal{O}\left(n^{2-\epsilon}\right)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right)$.

We get a running time of $\mathcal{O}\left(n^{2}\right)$ for our algorithm.
\Rightarrow Not better then the "school method".

Example: Multiplying Two Integers

Algorithm 3 mult (A, B)	
1: if $\|A\|=\|B\|=1$ then	$\mathcal{O}(1)$
2: return $a_{0} \cdot b_{0}$	$\mathcal{O}(1)$
3: split A into A_{0} and A_{1}	$\mathcal{O}(n)$
4: split B into B_{0} and B_{1}	$\mathcal{O}(n)$
5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$	$T\left(\frac{n}{2}\right)$
6: $Z_{1} \leftarrow \operatorname{mult}\left(A_{1}, B_{0}\right)+\operatorname{mult}\left(A_{0}, B_{1}\right)$	$2 T\left(\frac{n}{2}\right)+\mathcal{O}(n)$
7: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$	$T\left(\frac{n}{2}\right)$
8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$	$\mathcal{O}(n)$

We get the following recurrence:

$$
T(n)=4 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

6.2 Master Theorem

Example: Multiplying Two Integers

We can use the following identity to compute Z_{1} :

$$
\begin{aligned}
Z_{1} & =A_{1} B_{0}+A_{0} B_{1} \\
& =\left(A_{0}+A_{1}\right) \cdot\left(B_{0}+B_{1}\right)-\overbrace{A_{1} B_{1}}^{=Z_{2}}-\overbrace{A_{0} B_{0}}^{=Z_{0}}
\end{aligned}
$$

Hence,

$$
T\left(\frac{n}{2}+1\right)+\mathcal{O}(n)
$$

Algorithm 4 mult (A, B)	
1: if $\|A\|=\|B\|=1$ then	$\mathcal{O}(1)$
2: return $a_{0} \cdot b_{0}$	$\mathcal{O}(1)$
3: split A into A_{0} and A_{1}	$\mathcal{O}(n)$
4: split B into B_{0} and B_{1}	$\mathcal{O}(n)$
5: $Z_{2} \leftarrow \operatorname{mult}\left(A_{1}, B_{1}\right)$	$T\left(\frac{n}{2}\right)$
6: $Z_{0} \leftarrow \operatorname{mult}\left(A_{0}, B_{0}\right)$	$T\left(\frac{n}{2}\right)$
7: $Z_{1} \leftarrow \operatorname{mult}\left(A_{0}+A_{1}, B_{0}+B_{1}\right)-Z_{2}-Z_{0}$	$T\left(\frac{n}{2}\right)+\mathcal{O}(n)$
8: return $Z_{2} \cdot 2^{n}+Z_{1} \cdot 2^{\frac{n}{2}}+Z_{0}$	$\mathcal{O}(n)$

Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n)=3 T\left(\frac{n}{2}\right)+\mathcal{O}(n)
$$

Master Theorem: Recurrence: $T[n]=a T\left(\frac{n}{b}\right)+f(n)$.

- Case 1: $f(n)=\mathcal{O}\left(n^{\log _{b} a-\epsilon}\right) \quad T(n)=\Theta\left(n^{\log _{b} a}\right)$
- Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right) \quad T(n)=\Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta\left(n^{\log _{2} 3}\right) \approx \Theta\left(n^{1.59}\right)$.

A huge improvement over the "school method".

, 51 Harald Räcke	6.2 Master Theorem	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 69 / 579 \end{array}$

6.3 The Characteristic Polynomial

Observations:

- The solution $T[1], T[2], T[3], \ldots$ is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k]$.
- In fact, any k consecutive values completely determine the solution.
- k non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- First determine all solutions that satisfy recurrence relation.
- Then pick the right one by analyzing boundary conditions.
- First consider the homogenous case.

6.3 The Characteristic Polynomial

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

This is the general form of a linear recurrence relation of order k with constant coefficients ($c_{0}, c_{k} \neq 0$).

- $T(n)$ only depends on the k preceding values. This means the recurrence relation is of order k.
- The recurrence is linear as there are no products of $T[n]$'s.
- If $f(n)=0$ then the recurrence relation becomes a linear, homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.

¢ 0 Harald Räcke	6.3 The Characteristic Polynomial	6. Feb. 2024

The Homogenous Case

The solution space

$$
S=\{\mathcal{T}=T[1], T[2], T[3], \ldots \mid \mathcal{T} \text { fulfills recurrence relation }\}
$$

is a vector space. This means that if $\mathcal{T}_{1}, \mathcal{T}_{2} \in S$, then also $\alpha \mathcal{I}_{1}+\beta \mathcal{I}_{2} \in S$, for arbitrary constants α, β.

How do we find a non-trivial solution?

We guess that the solution is of the form $\lambda^{n}, \lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

$$
c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \cdot \lambda^{n-2}+\cdots+c_{k} \cdot \lambda^{n-k}=0
$$

for all $n \geq k$.
$\square \boxed{\square 1}$ Harald Räcke

The Homogenous Case

Dividing by λ^{n-k} gives that all these constraints are identical to

$$
\underbrace{c_{0} \lambda^{k}+c_{1} \lambda^{k-1}+c_{2} \cdot \lambda^{k-2}+\cdots+c_{k}}_{\text {characteristic polynomial } P[\lambda]}=0
$$

This means that if λ_{i} is a root (Nullstelle) of $P[\lambda]$ then $T[n]=\lambda_{i}^{n}$ is a solution to the recurrence relation.

Let $\lambda_{1}, \ldots, \lambda_{k}$ be the k (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n}
$$

is a solution for arbitrary values α_{i}.

)	6.3 The Characteristic Polynomial	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 73 / 579 \end{array}$

The Homogenous Case

Proof (cont.).
Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_{i}^{\prime} s$ such that these conditions are met:

$$
\begin{gathered}
\alpha_{1} \cdot \lambda_{1}+\alpha_{2} \cdot \lambda_{2}+\cdots+\alpha_{k} \cdot \lambda_{k}=T[1] \\
\alpha_{1} \cdot \lambda_{1}^{2}+\alpha_{2} \cdot \lambda_{2}^{2}+\cdots+\alpha_{k} \cdot \lambda_{k}^{2}=T[2] \\
\vdots \\
\alpha_{1} \cdot \lambda_{1}^{k}+\alpha_{2} \cdot \lambda_{2}^{k}+\cdots+\alpha_{k} \cdot \lambda_{k}^{k}=T[k]
\end{gathered}
$$

The Homogenous Case

Lemma 6

Assume that the characteristic polynomial has k distinct roots $\lambda_{1}, \ldots, \lambda_{k}$. Then all solutions to the recurrence relation are of the form

$$
\alpha_{1} \lambda_{1}^{n}+\alpha_{2} \lambda_{2}^{n}+\cdots+\alpha_{k} \lambda_{k}^{n}
$$

Proof.
There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.
We show that the above set of solutions contains one solution for every choice of boundary conditions.
Harald Räcke 6.3 The Characteristic Polynomial

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the α_{i}^{\prime} s such that these conditions are met:

$$
\left(\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k}^{2} \\
& & \vdots & \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k}^{k}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{k}
\end{array}\right)=\left(\begin{array}{c}
T[1] \\
T[2] \\
\vdots \\
T[k]
\end{array}\right)
$$

We show that the column vectors are linearly independent. Then the above equation has a solution.

Computing the Determinant

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_{k}^{k-1}
\end{array}\right|
$$

$$
=\prod_{i=1}^{k} \lambda_{i} \cdot\left|\begin{array}{ccccc}
1 & \lambda_{1} & \cdots & \lambda_{1}^{k-2} & \lambda_{1}^{k-1} \\
1 & \lambda_{2} & \cdots & \lambda_{2}^{k-2} & \lambda_{2}^{k-1} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k} & \cdots & \lambda_{k}^{k-2} & \lambda_{k}^{k-1}
\end{array}\right|
$$

Computing the Determinant

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
1 & \lambda_{1}-\lambda_{1} \cdot 1 & \cdots & \lambda_{1}^{k-2}-\lambda_{1} \cdot \lambda_{1}^{k-3} & \lambda_{1}^{k-1}-\lambda_{1} \cdot \lambda_{1}^{k-2} \\
1 & \lambda_{2}-\lambda_{1} \cdot 1 & \cdots & \lambda_{2}^{k-2}-\lambda_{1} \cdot \lambda_{2}^{k-3} & \lambda_{2}^{k-1}-\lambda_{1} \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \lambda_{k}-\lambda_{1} \cdot 1 & \cdots & \lambda_{k}^{k-2}-\lambda_{1} \cdot \lambda_{k}^{k-3} & \lambda_{k}^{k-1}-\lambda_{1} \cdot \lambda_{k}^{k-2}
\end{array}\right|= \\
& \\
&
\end{aligned} \quad\left|\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & \left(\lambda_{2}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-3} & \left(\lambda_{2}-\lambda_{1}\right) \cdot \lambda_{2}^{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
1 & \left(\lambda_{k}-\lambda_{1}\right) \cdot 1 & \cdots & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-3} & \left(\lambda_{k}-\lambda_{1}\right) \cdot \lambda_{k}^{k-2}
\end{array}\right|, ~ l
$$

Computing the Determinant

Repeating the above steps gives:

$$
\left|\begin{array}{ccccc}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{k-1} & \lambda_{k} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{k-1}^{2} & \lambda_{k}^{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_{1}^{k} & \lambda_{2}^{k} & \cdots & \lambda_{k-1}^{k} & \lambda_{k}^{k}
\end{array}\right|=\prod_{i=1}^{k} \lambda_{i} \cdot \prod_{i>\ell}\left(\lambda_{i}-\lambda_{\ell}\right)
$$

Hence, if all λ_{i} 's are different, then the determinant is non-zero.

This means

$$
c_{0} n \lambda_{i}^{n-1}+c_{1}(n-1) \lambda_{i}^{n-2}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k-1}=0
$$

Hence,

$$
c_{0} \underbrace{n \lambda_{i}^{n}}_{T[n]}+c_{1} \underbrace{(n-1) \lambda_{i}^{n-1}}_{T[n-1]}+\cdots+c_{k} \underbrace{(n-k) \lambda_{i}^{n-k}}_{T[n-k]}=0
$$

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_{i} with multiplicity (Vielfachheit) at least 2. Then not only is λ_{i}^{n} a solution to the recurrence but also $n \lambda_{i}^{n}$.

To see this consider the polynomial

$$
P[\lambda] \cdot \lambda^{n-k}=c_{0} \lambda^{n}+c_{1} \lambda^{n-1}+c_{2} \lambda^{n-2}+\cdots+c_{k} \lambda^{n-k}
$$

Since λ_{i} is a root we can write this as $Q[\lambda] \cdot\left(\lambda-\lambda_{i}\right)^{2}$. Calculating the derivative gives a polynomial that still has root λ_{i}.
6.3 The Characteristic Polynomial

The Homogeneous Case

Suppose λ_{i} has multiplicity j. We know that

$$
c_{0} n \lambda_{i}^{n}+c_{1}(n-1) \lambda_{i}^{n-1}+\cdots+c_{k}(n-k) \lambda_{i}^{n-k}=0
$$

(after taking the derivative; multiplying with λ; plugging in λ_{i})

Doing this again gives

$$
c_{0} n^{2} \lambda_{i}^{n}+c_{1}(n-1)^{2} \lambda_{i}^{n-1}+\cdots+c_{k}(n-k)^{2} \lambda_{i}^{n-k}=0
$$

We can continue $j-1$ times.
Hence, $n^{\ell} \lambda_{i}^{n}$ is a solution for $\ell \in 0, \ldots, j-1$.

The Homogeneous Case

Lemma 7

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

$$
c_{0} T[n]+c_{1} T[n-1]+\cdots+c_{k} T[n-k]=0
$$

Let $\lambda_{i}, i=1, \ldots, m$ be the (complex) roots of $P[\lambda]$ with multiplicities ℓ_{i}. Then the general solution to the recurrence is given by

$$
T[n]=\sum_{i=1}^{m} \sum_{j=0}^{\ell_{i}-1} \alpha_{i j} \cdot\left(n^{j} \lambda_{i}^{n}\right)
$$

The full proof is omitted. We have only shown that any choice of $\alpha_{i j}$'s is a solution to the recurrence.

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\beta\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$T[0]=0$ gives $\alpha+\beta=0$.
$T[1]=1$ gives

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1 \Longrightarrow \alpha-\beta=\frac{2}{\sqrt{5}}
$$

The Inhomogeneous Case

Consider the recurrence relation:

$$
c_{0} T(n)+c_{1} T(n-1)+c_{2} T(n-2)+\cdots+c_{k} T(n-k)=f(n)
$$

with $f(n) \neq 0$.

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

The Inhomogeneous Case

Example:

$$
T[n]=T[n-1]+1 \quad T[0]=1
$$

Then,

$$
T[n-1]=T[n-2]+1 \quad(n \geq 2)
$$

Subtracting the first from the second equation gives,

$$
T[n]-T[n-1]=T[n-1]-T[n-2] \quad(n \geq 2)
$$

or

$$
T[n]=2 T[n-1]-T[n-2] \quad(n \geq 2)
$$

I get a completely determined recurrence if I add $T[0]=1$ and $T[1]=2$.

The Inhomogeneous Case

The general solution of the recurrence relation is

$$
T(n)=T_{h}(n)+T_{p}(n)
$$

where T_{h} is any solution to the homogeneous equation, and T_{p} is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

$\boxed{150}$ Harald Räcke

6.3 The Characteristic Polynomial
6. Feb. 2024

The Inhomogeneous Case

Example: Characteristic polynomial:

$$
\underbrace{\lambda^{2}-2 \lambda+1}_{(\lambda-1)^{2}}=0
$$

Then the solution is of the form

$$
T[n]=\alpha 1^{n}+\beta n 1^{n}=\alpha+\beta n
$$

$$
\begin{aligned}
& T[0]=1 \text { gives } \alpha=1 \\
& T[1]=2 \text { gives } 1+\beta=2 \Longrightarrow \beta=1
\end{aligned}
$$

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied $r+1$ times to obtain a homogeneous equation:

$$
T[n]=T[n-1]+n^{2}
$$

Shift:

$$
T[n-1]=T[n-2]+(n-1)^{2}=T[n-2]+n^{2}-2 n+1
$$

Difference:

$$
T[n]-T[n-1]=T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

$$
T[n]=2 T[n-1]-T[n-2]+2 n-1
$$

Shift:

$$
\begin{aligned}
T[n-1] & =2 T[n-2]-T[n-3]+2(n-1)-1 \\
& =2 T[n-2]-T[n-3]+2 n-3
\end{aligned}
$$

Difference:

$$
\begin{aligned}
T[n]-T[n-1]= & 2 T[n-1]-T[n-2]+2 n-1 \\
& -2 T[n-2]+T[n-3]-2 n+3
\end{aligned}
$$

and so on...

6.4 Generating Functions

Example 9

1. The generating function of the sequence $(1,0,0, \ldots)$ is

$$
F(z)=1
$$

2. The generating function of the sequence $(1,1,1, \ldots)$ is

$$
F(z)=\frac{1}{1-z}
$$

6.4 Generating Functions

There are two different views:
A generating function is a formal power series (formale
Potenzreihe).

Then the generating function is an algebraic object.
Let $f=\sum_{n \geq 0} a_{n} z^{n}$ and $g=\sum_{n \geq 0} b_{n} z^{n}$.

- Equality: f and g are equal if $a_{n}=b_{n}$ for all n.
- Addition: $f+g:=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) z^{n}$.
- Multiplication: $f \cdot g:=\sum_{n \geq 0} c_{n} z^{n}$ with $c_{n}=\sum_{p=0}^{n} a_{p} b_{n-p}$.

There are no convergence issues here.

10 Harald Räck

6.4 Generating Functions

6.4 Generating Functions

What does $\sum_{n \geq 0} z^{n}=\frac{1}{1-z}$ mean in the algebraic view?
It means that the power series $1-z$ and the power series
$\sum_{n \geq 0} z^{n}$ are invers, i.e.,

$$
(1-z) \cdot\left(\sum_{n \geq 0}^{\infty} z^{n}\right)=1
$$

This is well-defined.

6.4 Generating Functions

The arithmetic view:
We view a power series as a function $f: \mathbb{C} \rightarrow \mathbb{C}$.
Then, it is important to think about convergence/convergence radius etc.

6.4 Generating Functions

Suppose we are given the generating function

> Formally the derivative of a formal
> power series $\sum_{n \geq 0} a_{n} z^{n}$ is defined as $\sum_{n \geq 0} n a_{n} z^{n-1}$.
> The known rules for differentiation work for this definition. In particular, e.g. the derivative of $\frac{1}{1-z}$ is

$$
\sum_{n \geq 0} z^{n}=\frac{1}{1-z}
$$

We can compute the derivative:

$$
\underbrace{\sum_{n \geq 1}}_{\left.\sum_{n \geq 0} \sum_{n \geq 1} n z^{n-1}\right) z^{n}} \frac{1}{(1-z)^{2}}
$$

Hence, the generating function of the sequence $a_{n}=n+1$
s $1 /(1-z)^{2}$.

6.4 Generating Functions

We can repeat this

$$
\sum_{n \geq 0}(n+1) z^{n}=\frac{1}{(1-z)^{2}} .
$$

Derivative:

$$
\underbrace{\sum_{n \geq 1} n(n+1) z^{n-1}}_{\sum_{n \geq 0}(n+1)(n+2) z^{n}}=\frac{2}{(1-z)^{3}}
$$

Hence, the generating function of the sequence $a_{n}=(n+1)(n+2)$ is $\frac{2}{(1-z)^{3}}$.

6.4 Generating Functions

Computing the k-th derivative of $\sum z^{n}$.

$$
\begin{aligned}
\sum_{n \geq k} n(n-1) \cdot \ldots \cdot(n-k+1) z^{n-k} & =\sum_{n \geq 0}(n+k) \cdot \ldots \cdot(n+1) z^{n} \\
& =\frac{k!}{(1-z)^{k+1}}
\end{aligned}
$$

Hence:

$$
\sum_{n \geq 0}\binom{n+k}{k} z^{n}=\frac{1}{(1-z)^{k+1}}
$$

The generating function of the sequence $a_{n}=\binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

6.4 Generating Functions

$$
\begin{aligned}
\sum_{n \geq 0} n z^{n} & =\sum_{n \geq 0}(n+1) z^{n}-\sum_{n \geq 0} z^{n} \\
& =\frac{1}{(1-z)^{2}}-\frac{1}{1-z} \\
& =\frac{z}{(1-z)^{2}}
\end{aligned}
$$

The generating function of the sequence $a_{n}=n$ is $\frac{z}{(1-z)^{2}}$.

Example: $a_{n}=a_{n-1}+1, a_{0}=1$
Suppose we have the recurrence $a_{n}=a_{n-1}+1$ for $n \geq 1$ and $a_{0}=1$.

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1}\left(a_{n-1}+1\right) z^{n} \\
& =1+z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} z^{n} \\
& =z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} z^{n} \\
& =z A(z)+\sum_{n \geq 0} z^{n} \\
& =z A(z)+\frac{1}{1-z}
\end{aligned}
$$

Some Generating Functions

n-th sequence element	generating function
1	$\frac{1}{1-z}$
$n+1$	$\frac{1}{(1-z)^{2}}$
$\binom{n+k}{k}$	$\frac{1}{(1-z)^{k+1}}$
n	$\frac{z}{(1-z)^{2}}$
a^{n}	$\frac{1}{1-a z}$
n^{2}	$\frac{z(1+z)}{(1-z)^{3}}$
$\frac{1}{n!}$	e^{z}

Example: $a_{n}=a_{n-1}+1, a_{0}=1$

Solving for $A(z)$ gives

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{(1-z)^{2}}=\sum_{n \geq 0}(n+1) z^{n}
$$

Hence, $a_{n}=n+1$.

Some Generating Functions

n-th sequence element	generating function
$c f_{n}$	$c F$
$f_{n}+g_{n}$	$F+G$
$\sum_{i=0}^{n} f_{i} g_{n-i}$	$F \cdot G$
$f_{n-k}(n \geq k) ; 0$ otw.	$z^{k} F$
$\sum_{i=0}^{n} f_{i}$	$\frac{F(z)}{1-z}$
$n f_{n}$	$z \frac{\mathrm{~d} F(z)}{\mathrm{d} z}$
$c^{n} f_{n}$	$F(c z)$

Solving Recursions with Generating Functions

1. Set $A(z)=\sum_{n \geq 0} a_{n} z^{n}$.
2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
3. Do further transformations so that the infinite sums on the right hand side can be replaced by $A(z)$.
4. Solving for $A(z)$ gives an equation of the form $A(z)=f(z)$, where hopefully $f(z)$ is a simple function.
5. Write $f(z)$ as a formal power series.

Techniques:

- partial fraction decomposition (Partialbruchzerlegung)
- lookup in tables

6. The coefficients of the resulting power series are the a_{n}.

Example: $a_{n}=2 a_{n-1}, a_{0}=1$
3. Transform right hand side so that infinite sums can be replaced by $A(z)$ or by simple function.

$$
\begin{aligned}
A(z) & =1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n} \\
& =1+2 z \sum_{n \geq 1} a_{n-1} z^{n-1} \\
& =1+2 z \sum_{n \geq 0} a_{n} z^{n} \\
& =1+2 z \cdot A(z)
\end{aligned}
$$

4. Solve for $A(z)$.

$$
A(z)=\frac{1}{1-2 z}
$$

Example: $a_{n}=2 a_{n-1}, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

2. Transform right hand side so that recurrence can be plugged in:

$$
A(z)=a_{0}+\sum_{n \geq 1} a_{n} z^{n}
$$

2. Plug in:

$$
A(z)=1+\sum_{n \geq 1}\left(2 a_{n-1}\right) z^{n}
$$

6.4 Generating Functions

Harald Räcke

Example: $a_{n}=2 a_{n-1}, a_{0}=1$
5. Rewrite $f(z)$ as a power series:

$$
\sum_{n \geq 0} a_{n} z^{n}=A(z)=\frac{1}{1-2 z}=\sum_{n \geq 0} 2^{n} z^{n}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$

1. Set up generating function:

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$
4. Solve for $A(z)$:

$$
A(z)=1+3 z A(z)+\frac{z}{(1-z)^{2}}
$$

gives

$$
A(z)=\frac{(1-z)^{2}+z}{(1-3 z)(1-z)^{2}}=\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$
2./3. Transform right hand side:

$$
\begin{aligned}
A(z) & =\sum_{n \geq 0} a_{n} z^{n} \\
& =a_{0}+\sum_{n \geq 1} a_{n} z^{n} \\
& =1+\sum_{n \geq 1}\left(3 a_{n-1}+n\right) z^{n} \\
& =1+3 z \sum_{n \geq 1} a_{n-1} z^{n-1}+\sum_{n \geq 1} n z^{n} \\
& =1+3 z \sum_{n \geq 0} a_{n} z^{n}+\sum_{n \geq 0} n z^{n} \\
& =1+3 z A(z)+\frac{z^{n}}{(1-z)^{2}}
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$
5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^{2}-z+1}{(1-3 z)(1-z)^{2}} \stackrel{!}{=} \frac{A}{1-3 z}+\frac{B}{1-z}+\frac{C}{(1-z)^{2}}
$$

This gives

$$
\begin{aligned}
z^{2}-z+1 & =A(1-z)^{2}+B(1-3 z)(1-z)+C(1-3 z) \\
& =A\left(1-2 z+z^{2}\right)+B\left(1-4 z+3 z^{2}\right)+C(1-3 z) \\
& =(A+3 B) z^{2}+(-2 A-4 B-3 C) z+(A+B+C)
\end{aligned}
$$

Example: $a_{n}=3 a_{n-1}+n, a_{0}=1$
5. Write $f(z)$ as a formal power series:

This leads to the following conditions:

$$
\begin{aligned}
A+B+C & =1 \\
2 A+4 B+3 C & =1 \\
A+3 B & =1
\end{aligned}
$$

which gives

$$
A=\frac{7}{4} \quad B=-\frac{1}{4} \quad C=-\frac{1}{2}
$$

6. This means $a_{n}=\frac{7}{4} 3^{n}-\frac{1}{2} n-\frac{3}{4}$.

6.5 Transformation of the Recurrence

Example 10

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=2 \\
& f_{n}=f_{n-1} \cdot f_{n-2} \text { for } n \geq 2 .
\end{aligned}
$$

Define

$$
g_{n}:=\log f_{n}
$$

Then

$$
\begin{aligned}
g_{n} & =g_{n-1}+g_{n-2} \text { for } n \geq 2 \\
g_{1} & =\log 2=1\left(\text { for } \log =\log _{2}\right), g_{0}=0 \\
g_{n} & =F_{n}(n \text {-th Fibonacci number }) \\
f_{n} & =2^{F_{n}}
\end{aligned}
$$

6.5 Transformation of the Recurrence

Example 11

$$
\begin{aligned}
& f_{1}=1 \\
& f_{n}=3 f_{\frac{n}{2}}+n ; \text { for } n=2^{k}, k \geq 1
\end{aligned}
$$

Define

$$
g_{k}:=f_{2^{k}}
$$

Then:

$$
\begin{aligned}
& g_{0}=1 \\
& g_{k}=3 g_{k-1}+2^{k}, k \geq 1
\end{aligned}
$$

6 Recurrences

We get

$$
\begin{aligned}
g_{k} & =3\left[g_{k-1}\right]+2^{k} \\
& =3\left[3 g_{k-2}+2^{k-1}\right]+2^{k} \\
& =3^{2}\left[g_{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{2}\left[3 g_{k-3}+2^{k-2}\right]+32^{k-1}+2^{k} \\
& =3^{3} g_{k-3}+3^{2} 2^{k-2}+32^{k-1}+2^{k} \\
& =2^{k} \cdot \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} \\
& =2^{k} \cdot \frac{\left(\frac{3}{2}\right)^{k+1}-1}{1 / 2}=3^{k+1}-2^{k+1}
\end{aligned}
$$

6 Recurrences

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders
Algorithms and Data Structures - The Basic Toolbox, Springer, 2008
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.) MIT Press and McGraw-Hill, 2009
[Liu85] Chung Laung Liu:
Elements of Discrete Mathematic
McGraw-Hill, 1985
The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the "Substitution method" which roughly corresponds to "Guessing+induction". Chapters 4.4, 4.5, 4.6 of this book be found in [Liu85] Chapter 10.

Abstract Data Type

An abstract data type (ADT) is defined by an interface of operations or methods that can be performed and that have a defined behavior.

The data types in this lecture all operate on objects that are represented by a [key, value] pair.

- The key comes from a totally ordered set, and we assume that there is an efficient comparison function.
- The value can be anything; it usually carries satellite information important for the application that uses the ADT.

410 Harald Räcke

Dynamic Set Operations

- S. union $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. The set S^{\prime} is destroyed.
- S. merge $\left(S^{\prime}\right)$: Sets $S:=S \cup S^{\prime}$. Requires $S \cap S^{\prime}=\varnothing$.
- S.split(k, $\left.S^{\prime}\right)$:
$S:=\{x \in S \mid \operatorname{key}[x] \leq k\}, S^{\prime}:=\{x \in S \mid \operatorname{key}[x]>k\}$.
- S. concatenate $\left(S^{\prime}\right): S:=S \cup S^{\prime}$.

Requires key[S.maximum()] $\operatorname{skey}\left[S^{\prime}\right.$. minimum ()].

- \boldsymbol{S}. decrease-key $(\boldsymbol{x}, \boldsymbol{k})$: Replace $\operatorname{key}[x]$ by $k \leq \operatorname{key}[x]$.

Dynamic Set Operations

- S. $\operatorname{search}(k)$: Returns pointer to object x from S with $\operatorname{key}[x]=k$ or null.
- S. insert(x): Inserts object x into set S. key $[x]$ must not currently exist in the data-structure.
- S. delete (x) : Given pointer to object x from S, delete x from the set.
- S. minimum(): Return pointer to object with smallest key-value in S.
- S. maximum(): Return pointer to object with largest key-value in S.
- S. successor (x) : Return pointer to the next larger element in S or null if x is maximum.
- S. predecessor (x) : Return pointer to the next smaller element in S or null if x is minimum.

15 Harald Räcke

Examples of ADTs

Stack:

- $S . \operatorname{push}(x)$: Insert an element.
- S. pop(): Return the element from S that was inserted most recently; delete it from S.
- S. empty(): Tell if S contains any object.

Queue:

- S. enqueue (x) : Insert an element.
- S. dequeue(): Return the element that is longest in the structure; delete it from S.
- S. empty(): Tell if S contains any object.

Priority-Queue:

- S. insert (x) : Insert an element.
- S. delete-min(): Return the element with lowest key-value; delete it from S.

7 Dictionary

Dictionary:

- S. insert (x) : Insert an element x.
- S. delete (x) : Delete the element pointed to by x.
- S. $\operatorname{search}(k)$: Return a pointer to an element e with key $[e]=k$ in S if it exists; otherwise return null.

7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- $T . \operatorname{insert}(x)$
-T. delete (x)
- T. search (k)
- T. successor (x)
-T. predecessor (x)
- T.minimum()
T.maximum()

7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than key[v] and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.
(External Search Trees store objects only at leaf-vertices)
Examples:

) 01 Harald Räcke	7.1 Binary Search Trees	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 129 / 579 \end{array}$

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

Binary Search Trees: Searching

Algorithm 1 TreeSearch (x, k)
1: if $x=$ null or $k=\operatorname{key}[x]$ return x
2: if $k<\operatorname{key}[x]$ return TreeSearch $(\operatorname{left}[x], k)$
3: else return TreeSearch $(\operatorname{right}[x], k)$

15 Harald Räcke
7.1 Binary Search Trees

Binary Search Trees: Minimum

Algorithm $2 \operatorname{TreeMin}(x)$
1: if $x=$ null or left $[x]=$ null return x
2: return TreeMin(left[x])

Binary Search Trees: Insert

Insert element not in the tree.

Binary Search Trees: Delete

Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.

Binary Search Trees: Delete

Case 1 :
Element does not have any children

- Simply go to the parent and set the corresponding pointer to null.

Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Binary Search Trees: Delete
1: if left $[z]=$ null or $\operatorname{right}[z]=$ null
then $y \leftarrow z$ else $y \leftarrow \operatorname{TreeSucc}(z) ; \quad$ select y to splice out
if left $[y] \neq$ null
then $x \leftarrow \operatorname{left}[y]$ else $x \leftarrow \operatorname{right}[y] ; x$ is child of y (or null)
if $x \neq$ null then parent $[x] \leftarrow \operatorname{parent}[y] ; \quad$ parent $[x]$ is correct
if parent $[y]=$ null then
$\operatorname{root}[T] \leftarrow x$
else
if $y=\operatorname{left}[$ parent $[y]]$ then \quad fix pointer to x
left[parent $[y]] \leftarrow x$
else
right[parent[y]] $\leftarrow x$
if $y \neq z$ then copy y-data to z

Binary Search Trees (BSTs)

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders
Algorithms and Data Structures - The Basic Toolbox,
Springer, 2008
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein
Introauction to Algorithms

Binary search trees can be found in every standard text book. For example Chapter 7.1 in [MS08] and Chapter 12 in [CLRS90].

Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps
similar: SPLAY trees.

1701 Harald Räcke	7.1 Binary Search Trees	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 138 / 579 \end{array}$

7.2 Red Black Trees

Definition 12
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Red Black Trees: Example

7.2 Red Black Trees

Proof of Lemma 15.

Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0 .
- The sub-tree rooted at v contains $0=2^{\mathrm{bh}(v)}-1$ inner vertices.

7.2 Red Black Trees

Lemma 13
A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 14
The black height $\mathrm{bh}(v)$ of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:
Lemma 15
A sub-tree of black height bh (v) in a red black tree contains at least $2^{\mathrm{bh}(v)}-1$ internal vertices.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children $\left(c_{1}, c_{2}\right)$ either have $\operatorname{bh}\left(c_{i}\right)=\mathrm{bh}(v)$ or $\operatorname{bh}\left(c_{i}\right)=\mathrm{bh}(v)-1$.
- By induction hypothesis both sub-trees contain at least $2^{\mathrm{bh}(v)-1}-1$ internal vertices.
- Then T_{v} contains at least $2\left(2^{\mathrm{bh}(v)-1}-1\right)+1 \geq 2^{\mathrm{bh}(v)}-1$ vertices.

7.2 Red Black Trees

Proof of Lemma 13.
Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.
The tree contains at least $2^{h / 2}-1$ internal vertices. Hence, $2^{h / 2}-1 \leq n$.

Hence, $h \leq 2 \log (n+1)=\mathcal{O}(\log n)$.

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red black properties are maintained.

7.2 Red Black Trees

Definition 1
A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

$1 \boxed{71}$ Harald Räcke	7.2 Red Black Trees	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 145 / 579 \end{array}$

Rotations

The properties will be maintained through rotations:

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

17510 Harald Räcke

7.2 Red Black Trees

Red Black Trees: Insert

```
Algorithm 10 InsertFix (z)
    : while parent \([z] \neq\) null and \(\operatorname{col}[\operatorname{parent}[z]]=\) red do
        if parent \([z]=\operatorname{left}[\operatorname{gp}[z]]\) then \(z\) in left subtree of grandparent
            uncle \(\leftarrow \operatorname{right}[\) grandparent \([z]]\)
            if col[uncle] \(=\) red then
                Case 1: uncle red
                    \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
                    \(\operatorname{col}[\operatorname{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
            else Case 2: uncle black
                    if \(z=\operatorname{right}[\) parent \([z]]\) then \(\quad\) 2a: \(z\) right child
                    \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z)\);
                    \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow\) red; 2b: \(z\) left child
                    RightRotate(gp[z]);
            else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)
- or the parent does not exist (violation since root must be black)

If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Case 1: Red Uncle

1. recolour
2. move z to grand-parent
3. invariant is fulfilled for new z
4. you made progress

Case 2b: Black uncle and z is left child

1. rotate around grandparent
2. re-colour to ensure that black height property holds
3. you have a red black tree

$\boxed{11}$ Harald Räcke
7.2 Red Black Trees

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree
- Case $2 \mathrm{~b} \rightarrow$ red-black tree

Performing Case 1 at most $\mathcal{O}(\log n)$ times and every other case at most once, we get a red-black tree. Hence $\mathcal{O}(\log n)$ re-colorings and at most 2 rotations.

Case 2a: Black uncle and z is right child

1. rotate around parent
2. move z downwards
3. you have Case 2b.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

Case 3:
Element has two children

- do normal delete
when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Case 1 : Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c
3. the new sibling is black (and parent of z is red)
4. Case 2 (special),
or Case 3, or Case 4

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards
4. we made progress
5. if b is red we color it black and are done

Case 4: Sibling is black with red right child

1. left-rotate around b
2. remove the fake black unit
3. recolor nodes b, c, and e
4. you have a valid red black tree

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling
2. recolor c and d
3. new sibling is black with red right child (Case 4)

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree

Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $4 \rightarrow$ red black tree

Performing Case 2 at most $\mathcal{O}(\log n)$ times and every other step at most once, we get a red black tree. Hence, $\mathcal{O}(\log n)$ re-colorings and at most 3 rotations.

Splay Trees

delete (x)

- search for $x ; \operatorname{splay}(x)$; remove x
- search largest element \bar{x} in A
- $\operatorname{splay}(\bar{x})$ (on subtree A)
- connect root of B as right child of \bar{x}

10 Harald Räck
7.3 Splay Trees

Splay: Zig Case

better option $\operatorname{splay}(x)$:

- zig case: if x is child of root do left rotation or right rotation around parent

Move to Root

How to bring element to root?

- one (bad) option: moveToRoot(x)
- iteratively do rotation around parent of x until x is root
- if x is left child do right rotation otw. left rotation

Splay: Zigzag Case

better option $\operatorname{splay}(x)$:

- zigzag case: if x is right child and parent of x is left child (or x left child parent of x right child)
- do double right rotation around grand-parent (resp. double left rotation)

Splay vs. Move to Root

Splay: Zigzig Case

better option $\operatorname{splay}(x)$:

- zigzig case: if x is left child and parent of x is left child (or x right child, parent of x right child)
- do right roation around grand-parent followed by right rotation around parent (resp. left rotations)
7.3 Splay Trees

Harald Räcke
7.3 Splay Trees

Splay vs. Move to Root

Result after splay (x)

1 Harald Räcke

7.3 Splay Trees

Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:

- the cost for accessing element x is $1+\operatorname{depth}(x)$;
- after accessing x the tree may be re-arranged through rotations;

Conjecture:

A splay tree that only contains elements from S has cost $\mathcal{O}(\operatorname{cost}(A, S))$, for processing S.

Static Optimality

Suppose we have a sequence of m find-operations. find (x) appears h_{x} times in this sequence.

The cost of a static search tree T is:

$$
\operatorname{cost}(T)=m+\sum_{x} h_{x} \operatorname{depth}_{T}(x)
$$

The total cost for processing the sequence on a splay-tree is $\mathcal{O}\left(\operatorname{cost}\left(T_{\min }\right)\right)$, where $T_{\text {min }}$ is an optimal static search tree.
$-\overline{d e p t h}(x)$ is the number of edges on path from the root of T to x.
Theorem given without proof.
7.3 Splay Trees

TU Harald Räck
6. Feb. 202

Lemma 16
Splay Trees have an amortized running time of $\mathcal{O}(\log n)$ for all operations.

Amortized Analysis

Definition 17

A data structure with operations $\mathrm{op}_{1}(), \ldots, \mathrm{op}_{k}()$ has amortized running times t_{1}, \ldots, t_{k} for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most n elements, and let k_{i} denote the number of occurences of $\mathrm{op}_{i}()$ within this sequence. Then the actual running time must be at most $\sum_{i} k_{i} \cdot t_{i}(n)$.

Example: Stack

Stack

- S. push()
- S. pop()
- S. multipop (k) : removes k items from the stack. If the stack currently contains less than k items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:

- S. push(): cost 1 .
- S. pop(): cost 1.
- S. multipop $(k):$ cost $\min \{\operatorname{size}, k\}=k$.

Potential Method

Introduce a potential for the data structure.

- $\Phi\left(D_{i}\right)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is

$$
\hat{c}_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right) .
$$

- Show that $\Phi\left(D_{i}\right) \geq \Phi\left(D_{0}\right)$.

Then

$$
\sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} c_{i}+\Phi\left(D_{k}\right)-\Phi\left(D_{0}\right)=\sum_{i=1}^{k} \hat{c}_{i}
$$

This means the amortized costs can be used to derive a bound on the total cost.

T Harald Räcke	7.3 Splay Trees	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 179 / 579 \end{array}$

Example: Stack

Use potential function $\Phi(S)=$ number of elements on the stack.

Amortized cost:

- S. push() : cost

$$
\hat{C}_{\text {push }}=C_{\text {push }}+\Delta \Phi=1+1 \leq 2 .
$$

-S.pop(): cost

$$
\hat{C}_{\mathrm{pop}}=C_{\mathrm{pop}}+\Delta \Phi=1-1 \leq 0
$$

Note that the analysis becomes wrong if pop() or multipop() are called on an empty stack.
S. multipop (k) : cost

$$
\hat{C}_{\mathrm{mp}}=C_{\mathrm{mp}}+\Delta \Phi=\min \{\text { size }, k\}-\min \{\text { size }, k\} \leq 0 .
$$

Example: Binary Counter

Incrementing a binary counter:

Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1 : cost 1 .
- Changing bit from 1 to 0 : cost 1 .
- Increment: cost is $k+1$, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has $k=1$).

Splay Trees

potential function for splay trees:

- $\operatorname{size} \mathrm{s}(x)=\left|T_{x}\right|$
- $\operatorname{rank} \mathrm{r}(x)=\log _{2}(s(x))$
- $\Phi(T)=\sum_{v \in T} r(v)$
amortized cost $=$ real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1 plus the number of rotations.

Example: Binary Counter

Choose potential function $\Phi(x)=k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

- Changing bit from 0 to 1 :

$$
\hat{C}_{0 \rightarrow 1}=C_{0 \rightarrow 1}+\Delta \Phi=1+1 \leq 2 .
$$

- Changing bit from 1 to 0 :

$$
\hat{C}_{1 \rightarrow 0}=C_{1 \rightarrow 0}+\Delta \Phi=1-1 \leq 0 .
$$

- Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k ($1 \rightarrow 0$)-operations, and one $(0 \rightarrow 1)$-operation.

Hence, the amortized cost is $k \hat{C}_{1 \rightarrow 0}+\hat{C}_{0 \rightarrow 1} \leq 2$.

Splay: Zig Case

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)-r(x)-r(p) \\
& =r^{\prime}(p)-r(x) \\
& \leq r^{\prime}(x)-r(x) \\
& \operatorname{cost}_{\text {zig }} \leq 1+3\left(r^{\prime}(x)-r(x)\right)
\end{aligned}
$$

Splay: Zigzig Case from next slide.

$$
\begin{aligned}
\Delta \Phi & =r^{\prime}(x)+r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p)-r(g) \\
& =r^{\prime}(p)+r^{\prime}(g)-r(x)-r(p) \\
& \leq r^{\prime}(x)+r^{\prime}(g)-r(x)-r(x) \\
& =r^{\prime}(x)+r^{\prime}(g)+r(x)-3 r^{\prime}(x)+3 r^{\prime}(x)-r(x)-2 r(x) \\
& =-2 r^{\prime}(x)+r^{\prime}(g)+r(x)+3\left(r^{\prime}(x)-r(x)\right) \\
& \leq-2+3\left(r^{\prime}(x)-r(x)\right) \Rightarrow \operatorname{cost}_{\text {zigzig }} \leq 3\left(r^{\prime}(x)-r(x)\right)
\end{aligned}
$$

Splay: Zigzig Case The last inequality holds because log is a concave function. \qquad

$$
\begin{aligned}
\frac{1}{2}(r(x) & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log (s(x))+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right) \\
& =\frac{1}{2} \log \left(\frac{s(x)}{s^{\prime}(x)}\right)+\frac{1}{2} \log \left(\frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \\
& \leq \log \left(\frac{1}{2} \frac{s(x)}{s^{\prime}(x)}+\frac{1}{2} \frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \leq \log \left(\frac{1}{2}\right)=-1
\end{aligned}
$$

Splay: Zigzag Case

$$
\begin{aligned}
\frac{1}{2}\left(r^{\prime}(p)\right. & \left.+r^{\prime}(g)-2 r^{\prime}(x)\right) \\
& =\frac{1}{2}\left(\log \left(s^{\prime}(p)\right)+\log \left(s^{\prime}(g)\right)-2 \log \left(s^{\prime}(x)\right)\right) \\
& \leq \log \left(\frac{1}{2} \frac{s^{\prime}(p)}{s^{\prime}(x)}+\frac{1}{2} \frac{s^{\prime}(g)}{s^{\prime}(x)}\right) \leq \log \left(\frac{1}{2}\right)=-1
\end{aligned}
$$

Amortized cost of the whole splay operation:

$$
\begin{aligned}
& \leq 1+1+\sum_{\text {steps } t} 3\left(r_{t}(x)-r_{t-1}(x)\right) \\
& =2+3\left(r(\text { root })-r_{0}(x)\right) \\
& \leq \mathcal{O}(\log n)
\end{aligned}
$$

7.4 Augmenting Data Structures

Suppose you want to develop a data structure with:

- Insert (x) : insert element x.
- Search (k) : search for element with key k.
- Delete (x) : delete element referenced by pointer x.
- find-by-rank (ℓ) : return the ℓ-th element; return "error" if the data-structure contains less than ℓ elements.

Augment an existing data-structure instead of developing a new one.
The first one is added due to the fact that so far for each step of
a splay-operation we have only counted the number of rotations, but the cost is $1+\#$ rotations.
The second one comes from the zig-operation. Note that we have at most one zig-operation during a splay.

$\square \\| \square$	Harald Räcke	6. Feb. 2024	

Splay Trees

Bibliography ????????????????????????????????

7.4 Augmenting Data Structures

How to augment a data-structure

1. choose an underlying data-structure
2. determine additional information to be stored in the underlying structure
3. verify/show how the additional information can be maintained for the basic modifying operations on the underlying structure.
4. develop the new operations

- Of course, the above steps heavily depend on each other. For example it makes no sense to choose additional information to be stored (Step 2), and later realize that either the information cannot be maintained efficiently (Step 3) or is not sufficient to support the new operations (Step 4).
- However, the above outline is a good way to describe/document a new data-structure

$T \\|$ Harald Räcke	7.4 Augmenting Data Structures	6. Feb. 2024	
$190 / 579$			

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.

1. We choose a red-black tree as the underlying data-structure.
2. We store in each node v the size of the sub-tree rooted at v.
3. We need to be able to update the size-field in each node without asymptotically affecting the running time of insert, delete, and search. We come back to this step later...

$\boxed{17}$ Harald Räcke	7.4 Augmenting Data Structures	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 191 / 579 \end{array}$

Select (x, i)

Find-by-rank:

- decide whether you have to proceed into the left or right sub-tree
- adjust the rank that you are searching for if you go right

7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
4. How does find-by-rank work?

Find-by-rank(k) := Select(root, k) with

```
Algorithm 1 Select(x,i)
    if }x=\mathrm{ null then return error
    if left[x]\not= null then }r\leftarrow\operatorname{left}[x].\mathrm{ size +1 else }r\leftarrow
    if i=r then return x
    if i<r then
            return Select(left[x],i)
    else
            return Select(right[x],i-r)
```


7.4 Augmenting Data Structures

Goal: Design a data-structure that supports insert, delete, search, and find-by-rank in time $\mathcal{O}(\log n)$.
3. How do we maintain information?

Search(k): Nothing to do.
Insert (x) : When going down the search path increase the size field for each visited node. Maintain the size field during rotations.

Delete (x) : Directly after splicing out a node traverse the path from the spliced out node upwards, and decrease the size counter on every node on this path. Maintain the size field during rotations.

T 5 Harald Räcke	7.4 Augmenting Data Structures	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 194 / 579 \end{array}$

Rotations

The only operation during the fix-up procedure that alters the tree and requires an update of the size-field:

The nodes x and z are the only nodes changing their size-fields. The new size-fields can be computed locally from the size-fields of the children.

Harald Räcke	7.4 Augmenting Data Structures	6. Feb. 2024
195/579		

7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
$\stackrel{\downarrow}{-\infty} \rightarrow 5 \rightarrow 8 \rightarrow+10 \rightarrow[12 \rightarrow[14 \rightarrow+23 \rightarrow 26 \leftrightarrow 28 \leftrightarrow 35 \leftrightarrow 43 \leftrightarrow \infty$

Augmenting Data Structures

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein MIT Press and McGraw-Hill, 2009

See Chapter 14 of [CLRS90]

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let $\left|L_{1}\right|$ denote the number of elements in the "express lane", and $\left|L_{0}\right|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $\left|L_{1}\right|+\frac{\left|L_{0}\right|}{\left|L_{1}\right|}$ (ignoring additive constants)
Choose $\left|L_{1}\right|=\sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

7.5 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.
$\operatorname{Search}(x)\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-2}\right|}{\left|L_{k-1}\right|+1}\right\rceil+2$ steps.
- ...
- At most $\left|L_{k}\right|+\sum_{i=1}^{k} \frac{L_{i-1}}{L_{i}}+3(k+1)$ steps.

7.5 Skip Lists

How to do insert and delete?

- If we want that in L_{i} we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$.
Choose $r=n^{\frac{1}{k+1}}$. Then

$$
\begin{aligned}
r^{-k} n+k r & =\left(n^{\frac{1}{k+1}}\right)^{-k} n+k n^{\frac{1}{k+1}} \\
& =n^{1-\frac{k}{k+1}}+k n^{\frac{1}{k+1}} \\
& =(k+1) n^{\frac{1}{k+1}}
\end{aligned}
$$

Choosing $k=\Theta(\log n)$ gives a logarithmic running time.
7 Harald Räcke \quad 7.5 Skip Lists
6. Feb. 2024

7.5 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in\{1,2, \ldots\}$ of trials needed.
- Insert x into lists L_{0}, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.

High Probability

Suppose there are polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}, \ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n))$.

Then the probability that all E_{i} hold is at least

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right] & =1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right] \\
& \geq 1-n^{c} \cdot n^{-\alpha} \\
& =1-n^{c-\alpha}
\end{aligned}
$$

This means $\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right]$ holds with high probability

7.5 Skip Lists

Backward analysis:

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

7.5 Skip Lists

Let $E_{z, k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_{k}.

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

7.5 Skip Lists

Estimation for Binomial Coefficients

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

$$
\begin{aligned}
\binom{n}{k} & =\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1} \geq\left(\frac{n}{k}\right)^{k} \\
\binom{n}{k} & =\frac{n \cdot \ldots \cdot(n-k+1)}{k!} \leq \frac{n^{k}}{k!}=\frac{n^{k} \cdot k^{k}}{k^{k} \cdot k!} \\
& =\left(\frac{n}{k}\right)^{k} \cdot \frac{k^{k}}{k!} \leq\left(\frac{n}{k}\right)^{k} \cdot \sum_{i \geq 0} \frac{k^{i}}{i!}=\left(\frac{e n}{k}\right)^{k}
\end{aligned}
$$

7.5 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials $]$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\begin{aligned}
& \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq\left(\frac{2 e z}{2^{\beta} k}\right)^{k} \cdot n^{-\alpha} \\
& \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
\end{aligned}
$$

now choosing $\beta=6 \alpha$ gives

$$
\leq\left(\frac{42 \alpha}{64^{\alpha}}\right)^{k} n^{-\alpha} \leq n^{-\alpha}
$$

for $\alpha \geq 1$.

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.
This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)} .
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the event A_{k+1} must hold.
Hence,

$$
\operatorname{Pr}[\text { search requires } z \text { steps }] \leq \operatorname{Pr}\left[E_{z, k}\right]+\operatorname{Pr}\left[A_{k+1}\right]
$$

$$
\leq n^{-\alpha}+n^{-(\gamma-1)}
$$

This means, the search requires at most z steps, w.h.p.

7.6 van Emde Boas Trees

Dynamic Set Data Structure S :

- $S . \operatorname{insert}(x)$
- S. delete (x)
- S. search (x)
-S.min()
- $S . \max ()$
- $S . \operatorname{succ}(x)$
- $S . \operatorname{pred}(x)$

Skip Lists

Bibliography
[GT98] Michael T. Goodrich, Roberto Tamassia Data Structures and Algorithms in JAVA, John Wiley, 1998

Skip lists are covered in Chapter 7.5 of [CT98].
707.5 Skip Lists

7.6 van Emde Boas Trees

For this chapter we ignore the problem of storing satellite data:

- S. insert $(x):$ Inserts x into S.
- S. delete (\boldsymbol{x}) : Deletes x from S. Usually assumes that $x \in S$.
- S. member (x) : Returns 1 if $x \in S$ and 0 otw.
- $S . \min ():$ Returns the value of the minimum element in S.
- $S . \max ()$: Returns the value of the maximum element in S.
- $\boldsymbol{S} \boldsymbol{\operatorname { s u c c }}(\boldsymbol{x})$: Returns successor of x in S. Returns null if x is maximum or larger than any element in S. Note that x needs not to be in S.
- \boldsymbol{S}. pred (\boldsymbol{x}) : Returns the predecessor of x in S. Returns null if x is minimum or smaller than any element in S. Note that x needs not to be in S.

Implementation 1: Array

Algorithm 1 array.insert (x)

1: content $[x] \leftarrow 1$;

Algorithm 2 array.delete (x)
1: content $[x] \leftarrow 0$;

$$
\frac{\text { Algorithm } 3 \text { array.member }(x)}{1: \text { return content }[x] ;}
$$

- Note that we assume that x is valid, i.e., it falls within the array boundaries.
- Obviously(?) the running time is constant.

Implementation 1: Array

```
Algorithm 6 array.succ(x)
    : for (i=x+1;i< size; i++) do
            if content[i]=1 then return i;
    return null;
```

```
Algorithm 7 array.pred(x)
    : for (i=x-1;i\geq0;i--) do
            if content[i]=1 then return i;
    return null;
```

- Running time is $\mathcal{O}(u)$ in the worst case

\0] Harald Räcke	7.6 van Emde Boas Trees	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 217 / 579 \end{array}$

Implementation 2: Summary Array

The bit for a key x is contained in cluster number $\left\lfloor\frac{x}{\sqrt{u}}\right\rfloor$.
Within the cluster-array the bit is at position $x \bmod \sqrt{u}$.

For simplicity we assume that $u=2^{2 k}$ for some $k \geq 1$. Then we can compute the cluster-number for an entry x as $\operatorname{high}(x)$ (the upper half of the dual representation of x) and the position of x within its cluster as low (x) (the lower half of the dual representation).

Implementation 2: Summary Array

- \sqrt{u} cluster-arrays of \sqrt{u} bits.
- One summary-array of \sqrt{u} bits. The i-th bit in the summary array stores the bit-wise or of the bits in the i-th cluster.

H10 Harald Räcke	7.6 van Emde Boas Trees	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 218 / 579 \end{array}$

Implementation 2: Summary Array

```
Algorithm 8 member(x)
    1: return cluster[high(x)].member (low (x));
```

```
Algorithm 9 insert ( \(x\) )
    1: cluster[high \((x)\) ]. insert \((\operatorname{low}(x))\);
2: summary.insert \((\operatorname{high}(x))\);
```

- The running times are constant, because the corresponding array-functions have constant running times.

Implementation 2: Summary Array

Algorithm 10 delete (x)
1: cluster[high $(x)]$. delete $(\operatorname{low}(x))$;
2: if cluster $[\operatorname{high}(x)]$. min ()$=$ null then
3: $\quad \operatorname{summary} . \operatorname{delete}(\operatorname{high}(x)) ;$

- The running time is dominated by the cost of a minimum computation on an array of size \sqrt{u}. Hence, $\mathcal{O}(\sqrt{u})$.

Implementation 2: Summary Array

```
Algorithm 13 succ(x)
    :m}\leftarrow\textrm{cluster[high(x)]. succ(low(x))
    if }m\not=\mathrm{ null then return high }(x)\circm\mathrm{ ;
    succcluster }\leftarrow\mathrm{ summary. succ}(\operatorname{high}(x))\mathrm{ ;
    if succcluster = null then
        offs}\leftarrow\mathrm{ cluster[succcluster].min();
        return succcluster \circoffs;
    return null;
```

- Running time is roughly $3 \sqrt{u}=\mathcal{O}(\sqrt{u})$ in the worst case.
 for the concatenation of two bitstrings.

Running time is roughly $2 \sqrt{u}=\mathcal{O}(\sqrt{u})$ in the worst case
7.6 van Emde Boas Trees
7.6 van Emde Boas Trees $x=0111_{2}$ and $y=00012$ then $x \circ y=01$ $x \circ y=01110001_{2}$.

```
\begin{tabular}{|l|}
\hline Algorithm \(12 \min ()\) \\
\hline 1: mincluster \(\leftarrow\) summary \(\min () ;\) \\
3: if mincluster \(=\) null return null; \(\leftarrow\) cluster[mincluster]. min ()\(;\) \\
4: return mincluster \(\circ\) offs; \\
\hline
\end{tabular}
Algorithm 11 max()
    maxcluster }\leftarrow\mathrm{ summary.max();
    if maxcluster = null return null;
    offs \leftarrow cluster[maxcluster].max()
    return maxcluster o offs
```


Implementation 2: Summary Array

```
Algorithm 14 pred(x)
    m}\leftarrow\mathrm{ cluster[high(x)].pred(low(x))
    if }m\not=\mathrm{ null then return high (x) ○m;
    predcluster }\leftarrow\operatorname{summary.pred}(\operatorname{high}(x))
    if predcluster }\not=\mathrm{ null then
            offs }\leftarrow\mathrm{ cluster[predcluster]. max();
            return predcluster \circ offs;
    return null;
```

- Running time is roughly $3 \sqrt{u}=\mathcal{O}(\sqrt{u})$ in the worst case.

Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.
$S(u)$ is a dynamic set data-structure representing u bits:

Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an $S(4)$ will contain $S(2)$'s as sub-datastructures, which are arrays. Hence, a call like cluster[1]. min() from within the data-structure $S(4)$ is not a recursive call as it will call the function array. min().

This means that the non-recursive case is been dealt with while initializing the data-structure.

Implementation 3: Recursion

$T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{ } \bar{u})+1:$
Set $\ell:=\log u$ and $X(\ell):=T_{\text {mem }}\left(2^{\ell}\right)$.Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{mem}}\left(2^{\ell}\right) & =T_{\mathrm{mem}}(u)=T_{\mathrm{mem}}(\sqrt{u})+1 \\
& =T_{\mathrm{mem}}\left(2^{\frac{\ell}{2}}\right)+1=X\left(\frac{\ell}{2}\right)+1
\end{aligned}
$$

Using Master theorem gives $X(\ell)=\mathcal{O}(\log \ell)$, and hence
$T_{\text {mem }}(u)=\mathcal{O}(\log \log u)$.

1510 Harald Räcke

7.6 van Emde Boas Trees

Implementation 3: Recursion

$T_{\text {del }}(u)=2 T_{\text {del }}(\sqrt{u})+T_{\min }(\sqrt{u})+1 \leq 2 T_{\text {del }}(\sqrt{u})+c \log (u)$.
Set $\ell:=\log u$ and $X(\ell):=T_{\mathrm{del}}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{del}}\left(2^{\ell}\right) & =T_{\mathrm{del}}(u)=2 T_{\mathrm{del}}(\sqrt{u})+c \log u \\
& =2 T_{\mathrm{del}}\left(2^{\frac{\ell}{2}}\right)+c \ell=2 X\left(\frac{\ell}{2}\right)+c \ell .
\end{aligned}
$$

Using Master theorem gives $X(\ell)=\Theta(\ell \log \ell)$, and hence
$T_{\text {del }}(u)=\mathcal{O}(\log u \log \log u)$.
The same holds for $T_{\text {pred }}(u)$ and $T_{\text {succ }}(u)$.

Implementation 3: Recursion

$T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{\boldsymbol{u}})+1$.
Set $\ell:=\log u$ and $X(\ell):=T_{\text {ins }}\left(2^{\ell}\right)$. Then

$$
\begin{aligned}
X(\ell)=T_{\mathrm{ins}}\left(2^{\ell}\right) & =T_{\mathrm{ins}}(u)=2 T_{\mathrm{ins}}(\sqrt{u})+1 \\
& =2 T_{\mathrm{ins}}\left(2^{\frac{\ell}{2}}\right)+1=2 X\left(\frac{\ell}{2}\right)+1 .
\end{aligned}
$$

Using Master theorem gives $X(\ell)=\mathcal{O}(\ell)$, and hence $T_{\text {ins }}(u)=\mathcal{O}(\log u)$.

The same holds for $T_{\max }(u)$ and $T_{\min }(u)$.

$\pi \triangle \\|$ Harald Räcke	7.6 van Emde Boas Trees	6. Feb. 2024
$234 / 579$		

Implementation 4: van Emde Boas Trees

- The bit referenced by min is not set within sub-datastructures.
- The bit referenced by max is set within sub-datastructures (if $\max \neq \min$).

Implementation 4: van Emde Boas Trees

Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- min = null means that the data-structure is empty.
- $\min =\max \neq$ null means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting $\min =\max =x$.
- We can delete from a data-structure that just contains one element in constant time by setting $\min =\max =$ null.

Implementation 4: van Emde Boas Trees

```
Algorithm 22 member(x)
    : if }x=\mathrm{ min then return 1; // TRUE
    2: return cluster[high(x)].member (low (x));
```

- $T_{\text {mem }}(u)=T_{\text {mem }}(\sqrt{u})+1 \Longrightarrow T(u)=\mathcal{O}(\log \log u)$.

Implementation 4: van Emde Boas Trees

Algorithm 20 max()

1. return max;

Algorithm 21 min()

1: return min;

Constant time.

T 7 Harald Räcke	7.6 van Emde Boas Trees	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 238 / 579 \end{array}$

Implementation 4: van Emde Boas Trees

```
Algorithm \(23 \operatorname{succ}(x)\)
    if min \(\neq\) null \(\wedge x<\min\) then return min
    maxincluster \(\leftarrow \operatorname{cluster}[\operatorname{high}(x)]\). max () ;
    if maxincluster \(\neq\) null \(\wedge \operatorname{low}(x)<\) maxincluster then
        offs \(\leftarrow \operatorname{cluster}[\operatorname{high}(x)]\). \(\operatorname{succ}(\operatorname{low}(x))\);
        return \(\operatorname{high}(x) \circ\) offs;
    else
        succcluster \(\leftarrow \operatorname{summary}\). \(\operatorname{succ}(\operatorname{high}(x))\);
        if succcluster \(=\) null then return null;
        offs \(\leftarrow\) cluster[succcluster]. min();
        return succcluster \(\circ\) offs;
```

$-T_{\text {succ }}(u)=T_{\text {succ }}(\sqrt{u})+1 \Longrightarrow T_{\text {succ }}(u)=\mathcal{O}(\log \log u)$.

Implementation 4: van Emde Boas Trees

Algorithm 35 insert (x)

if $\min =$ null then
$\min =x ; \max =x ;$
else
if $x<\min$ then exchange x and min;
if $x>$ max then max $=x$;
if cluster[high $(x)]$. min = null; then
summary.insert $(\operatorname{high}(x))$;
cluster[high (x)].insert $(\operatorname{low}(x))$;
else
cluster[high (x)].insert $(\operatorname{low}(x))$;

- $T_{\mathrm{ins}}(u)=T_{\mathrm{ins}}(\sqrt{u})+1 \Longrightarrow T_{\mathrm{ins}}(u)=\mathcal{O}(\log \log u)$.

Implementation 4: van Emde Boas Trees

- Assumes that \boldsymbol{x} is contained in the structure.

Implementation 4: van Emde Boas Trees

Note that the recusive call in Line 8 takes constant time as the if-condition in Line 6 ensures that we are inserting in an empty sub-tree.

The only non-constant recursive calls are the call in Line 7 and in Line 10. These are mutually exclusive, i.e., only one of these calls will actually occur.

From this we get that $T_{\text {ins }}(u)=T_{\text {ins }}(\sqrt{u})+1$.

$\boxed{71}$ Harald Räcke	7.6 van Emde Boas Trees	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 242 / 579 \end{array}$

Implementation 4: van Emde Boas Trees

Implementation 4: van Emde Boas Trees

Note that only one of the possible recusive calls in Line 9 and Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the cluster where x was deleted is now empty. But this means that the call in Line 9 deleted the last element in cluster[high (x)]. Such a call only takes constant time.

Hence, we get a recurrence of the form

$$
T_{\text {del }}(u)=T_{\text {del }}(\sqrt{u})+c .
$$

This gives $T_{\text {del }}(u)=\mathcal{O}(\log \log u)$.

$\boxed{71}$ Harald Räcke

7.6 van Emde Boas Trees

- Let the "real" recurrence relation be

$$
S\left(k^{2}\right)=(k+1) S(k)+c_{1} \cdot k ; S(4)=c_{2}
$$

- Replacing $S(k)$ by $R(k):=S(k) / c_{2}$ gives the recurrence

$$
R\left(k^{2}\right)=(k+1) R(k)+c k ; R(4)=1
$$

where $c=c_{1} / c_{2}<1$.

- Now, we show $R\left(k^{2}\right) \leq k^{2}-2$ for $k^{2} \geq 4$.
- Obviously, this holds for $k^{2}=4$.
- For $k^{2}>4$ we have

$$
\begin{aligned}
R\left(k^{2}\right) & =(1+k) R(k)+c k \\
& \leq(1+k)(k-2)+k \leq k^{2}-2
\end{aligned}
$$

- This shows that $R(k)$ and, hence, $S(k)$ grows linearly.

7.6 van Emde Boas Trees

Space requirements:

- The space requirement fulfills the recurrence

$$
S(u)=(\sqrt{u}+1) S(\sqrt{u})+\mathcal{O}(\sqrt{u})
$$

- Note that we cannot solve this recurrence by the Master theorem as the branching factor is not constant.
- One can show by induction that the space requirement is $S(u)=\mathcal{O}(u)$. Exercise.
7.6 van Emde Boas Trees

van Emde Boas Trees

Bibliography
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein Introduction to Algorithms (3rd ed.)
MIT Press and McGraw-Hill, 2009

See Chapter 20 of [CLRS90].

7.7 Hashing

Dictionary:

- S. insert (x) : Insert an element x.
- S. delete (x) : Delete the element pointed to by x.
- $S . \operatorname{search}(k)$: Return a pointer to an element e with key[e] $=k$ in S if it exists; otherwise return null.

So far we have implemented the search for a key by carefully choosing split-elements.

Then the memory location of an object x with key k is determined by successively comparing k to split-elements.

Hashing tries to directly compute the memory location from the given key. The goal is to have constant search time.
$\boxed{71}$ Harald Räcke

> 7.7 Hashing
6. Feb. 2024

Direct Addressing

Ideally the hash function maps all keys to different memory locations.

This special case is known as Direct Addressing. It is usually very unrealistic as the universe of keys typically is quite large, and in particular larger than the available memory.

7.7 Hashing

Definitions:

- Universe U of keys, e.g., $U \subseteq \mathbb{N}_{0}$. U very large.
- Set $S \subseteq U$ of keys, $|S|=m \leq|U|$.
- Array $T[0, \ldots, n-1]$ hash-table.
- Hash function $h: U \rightarrow[0, \ldots, n-1]$.

The hash-function h should fulfill:

- Fast to evaluate.
- Small storage requirement.
- Good distribution of elements over the whole table.
$\boxed{\boxed{4}}$ Harald Räcke
7.7 Hashing

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.

Such a hash function h is called a perfect hash function for set S.

Collisions

If we do not know the keys in advance, the best we can hope for is that the hash function distributes keys evenly across the table.

Problem: Collisions

Usually the universe U is much larger than the table-size n.

Hence, there may be two elements k_{1}, k_{2} from the set S that map to the same memory location (i.e., $h\left(k_{1}\right)=h\left(k_{2}\right)$). This is called a collision.

Collisions

Proof.
Let $A_{m, n}$ denote the event that inserting m keys into a table of size n does not generate a collision. Then

$$
\begin{aligned}
\operatorname{Pr}\left[A_{m, n}\right] & =\prod_{\ell=1}^{m} \frac{n-\ell+1}{n}=\prod_{j=0}^{m-1}\left(1-\frac{j}{n}\right) \\
& \leq \prod_{j=0}^{m-1} e^{-j / n}=e^{-\sum_{j=0}^{m-1} \frac{j}{n}}=e^{-\frac{m(m-1)}{2 n}} .
\end{aligned}
$$

Here the first equality follows since the ℓ-th element that is hashed has a probability of $\frac{n-\ell+1}{n}$ to not generate a collision under the condition that the previous elements did not induce collisions.

Collisions

Typically, collisions do not appear once the size of the set S of actual keys gets close to n, but already when $|S| \geq \omega(\sqrt{n})$.

Lemma 20
The probability of having a collision when hashing m elements into a table of size n under uniform hashing is at least

$$
1-e^{-\frac{m(m-1)}{2 n}} \approx 1-e^{-\frac{m^{2}}{2 n}}
$$

Uniform hashing:
Choose a hash function uniformly at random from all functions $f: U \rightarrow[0, \ldots, n-1]$.

Harald Räcke	7.7 Hashing	6. Feb. 2024 $253 / 579$

Collisions

The inequality $1-x \leq e^{-x}$ is derived by stopping the Taylor-expansion of e^{-x} after the second term.

Harald Räcke	7.7 Hashing	6. Feb. 2024
$255 / 579$		

Resolving Collisions

The methods for dealing with collisions can be classified into the two main types

- open addressing, aka. closed hashing
- hashing with chaining, aka. closed addressing, open hashing.

There are applications e.g. computer chess where you do not resolve collisions at all.
7717.7 Hashing

Hashing with Chaining

Let A denote a strategy for resolving collisions. We use the following notation:

- A^{+}denotes the average time for a successful search when using A;
- A^{-}denotes the average time for an unsuccessful search when using A;
- We parameterize the complexity results in terms of $\alpha:=\frac{m}{n}$, the so-called fill factor of the hash-table.

We assume uniform hashing for the following analysis.

Hashing with Chaining

For a successful search observe that we do not choose a list at random, but we consider a random key k in the hash-table and ask for the search-time for k.

This is 1 plus the number of elements that lie before k in k 's list.
Let k_{ℓ} denote the ℓ-th key inserted into the table.
Let for two keys k_{i} and $k_{j}, X_{i j}$ denote the indicator variable for the event that k_{i} and k_{j} hash to the same position. Clearly, $\operatorname{Pr}\left[X_{i j}=1\right]=1 / n$ for uniform hashing.
The expected successful search cost is

$$
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right]_{\substack{\text { cost for key } k_{i}}}^{\text {keys before } k_{i}}
$$

> 7.7 Hashing

Hashing with Chaining

Disadvantages:

- pointers increase memory requirements
- pointers may lead to bad cache efficiency

Advantages:

- no à priori limit on the number of elements
- deletion can be implemented efficiently
- by using balanced trees instead of linked list one can also obtain worst-case guarantees.

Hashing with Chaining

$$
\begin{aligned}
\mathrm{E}\left[\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} X_{i j}\right)\right] & =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \mathrm{E}\left[X_{i j}\right]\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(1+\sum_{j=i+1}^{m} \frac{1}{n}\right) \\
& =1+\frac{1}{m n} \sum_{i=1}^{m}(m-i) \\
& =1+\frac{1}{m n}\left(m^{2}-\frac{m(m+1)}{2}\right) \\
& =1+\frac{m-1}{2 n}=1+\frac{\alpha}{2}-\frac{\alpha}{2 m}
\end{aligned}
$$

Hence, the expected cost for a successful search is $A^{+} \leq 1+\frac{\alpha}{2}$.

) 70 Harald Räcke	7.7 Hashing	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 261 / 579 \end{array}$

Open Addressing

All objects are stored in the table itself.
Define a function $h(k, j)$ that determines the table-position to be examined in the j-th step. The values $h(k, 0), \ldots, h(k, n-1)$ must form a permutation of $0, \ldots, n-1$.

Search (k) : Try position $h(k, 0)$; if it is empty your search fails; otw. continue with $h(k, 1), h(k, 2), \ldots$.

Insert(\boldsymbol{x}): Search until you find an empty slot; insert your element there. If your search reaches $h(k, n-1)$, and this slot is non-empty then your table is full.

Open Addressing

Choices for $h(k, j)$:

- Linear probing:
$h(k, i)=h(k)+i \bmod n$
(sometimes: $h(k, i)=h(k)+c i \bmod n$).
- Quadratic probing:
$h(k, i)=h(k)+c_{1} i+c_{2} i^{2} \bmod n$.
- Double hashing:
$h(k, i)=h_{1}(k)+i h_{2}(k) \bmod n$.

For quadratic probing and double hashing one has to ensure that the search covers all positions in the table (i.e., for double hashing $h_{2}(k)$ must be relatively prime to n (teilerfremd); for quadratic probing c_{1} and c_{2} have to be chosen carefully).
$\boxed{\boxed{T l}}$ Harald Räcke

> 7.7 Hashing

Quadratic Probing

- Not as cache-efficient as Linear Probing.
- Secondary clustering: caused by the fact that all keys mapped to the same position have the same probe sequence.

Lemma 22
Let Q be the method of quadratic probing for resolving collisions:

$$
\begin{aligned}
& Q^{+} \approx 1+\ln \left(\frac{1}{1-\alpha}\right)-\frac{\alpha}{2} \\
& Q^{-} \approx \frac{1}{1-\alpha}+\ln \left(\frac{1}{1-\alpha}\right)-\alpha
\end{aligned}
$$

Lemma 23
Let D be the method of double hashing for resolving collisions:

$$
\begin{aligned}
& D^{+} \approx \frac{1}{\alpha} \ln \left(\frac{1}{1-\alpha}\right) \\
& D^{-} \approx \frac{1}{1-\alpha}
\end{aligned}
$$

Double Hashing

- Any probe into the hash-table usually creates a cache-miss.

Linear Probing

- Advantage: Cache-efficiency. The new probe position is very likely to be in the cache.
- Disadvantage: Primary clustering. Long sequences of occupied table-positions get longer as they have a larger probability to be hit. Furthermore, they can merge forming larger sequences.

Lemma 21
Let L be the method of linear probing for resolving collisions:

$$
\begin{aligned}
& L^{+} \approx \frac{1}{2}\left(1+\frac{1}{1-\alpha}\right) \\
& L^{-} \approx \frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right)
\end{aligned}
$$

T 7π Harald Räck

Open Addressing

Some values:

$\boldsymbol{\alpha}$	Linear Probing		Quadratic Probing		Double Hashing	
	\boldsymbol{L}^{+}	\boldsymbol{L}^{-}	\boldsymbol{Q}^{+}	\boldsymbol{Q}^{-}	\boldsymbol{D}^{+}	\boldsymbol{D}^{-}
0.5	1.5	2.5	1.44	2.19	1.39	2
0.9	5.5	50.5	2.85	11.40	2.55	10
0.95	10.5	200.5	3.52	22.05	3.15	20

Analysis of Idealized Open Address Hashing

We analyze the time for a search in a very idealized Open Addressing scheme.

- The probe sequence $h(k, 0), h(k, 1), h(k, 2), \ldots$ is equally likely to be any permutation of $\langle 0,1, \ldots, n-1\rangle$.

Open Addressing

Analysis of Idealized Open Address Hashing

Let X denote a random variable describing the number of probes in an unsuccessful search.

Let A_{i} denote the event that the i-th probe occurs and is to a non-empty slot.

$$
\begin{aligned}
& \operatorname{Pr}\left[A_{1} \cap A_{2} \cap \cdots \cap A_{i-1}\right] \\
&= \operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2} \mid A_{1}\right] \cdot \operatorname{Pr}\left[A_{3} \mid A_{1} \cap A_{2}\right] . \\
& \ldots \cdot \operatorname{Pr}\left[A_{i-1} \mid A_{1} \cap \cdots \cap A_{i-2}\right] \\
& \operatorname{Pr}[X \geq i]= \frac{m}{n} \cdot \frac{m-1}{n-1} \cdot \frac{m-2}{n-2} \cdot \ldots \cdot \frac{m-i+2}{n-i+2} \\
& \leq\left(\frac{m}{n}\right)^{i-1}=\alpha^{i-1} .
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

$$
\mathrm{E}[X]=\sum_{i=1}^{\infty} \operatorname{Pr}[X \geq i] \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i}=\frac{1}{1-\alpha} .
$$

$$
\frac{1}{1-\alpha}=1+\alpha+\alpha^{2}+\alpha^{3}+\ldots
$$

Analysis of Idealized Open Address Hashing

$$
i=4
$$

The j-th rectangle ${ }^{2}$ appeảrs in ${ }^{3}$ both 5^{5} ums j^{6} times. (j times in the first due to multiplication with j; and j times in the second for summands $i=1,2, \ldots, j$)

Harald Räcke	7.7 Hashing	6. Feb. 2024 $273 / 579$

Analysis of Idealized Open Address Hashing

The j-th rectangle ${ }^{2}$ appeărs in ${ }^{4}$ oth sums j^{6} times. (j times in the first due to multiplication with j; and j times in the second for summands $i=1,2, \ldots, j$)

Harald Räcke	7.7 Hashing	6. Feb. 2024 $273 / 579$

Analysis of Idealized Open Address Hashing

The number of probes in a successful search for k is equal to the number of probes made in an unsuccessful search for k at the time that k is inserted.

Let k be the $i+1$-st element. The expected time for a search for k is at most $\frac{1}{1-i / n}=\frac{n}{n-i}$.

$$
\begin{aligned}
\frac{1}{m} \sum_{i=0}^{m-1} \frac{n}{n-i} & =\frac{n}{m} \sum_{i=0}^{m-1} \frac{1}{n-i}=\frac{1}{\alpha} \sum_{k=n-m+1}^{n} \frac{1}{k} \\
& \leq \frac{1}{\alpha} \int_{n-m}^{n} \frac{1}{x} \mathrm{~d} x=\frac{1}{\alpha} \ln \frac{n}{n-m}=\frac{1}{\alpha} \ln \frac{1}{1-\alpha}
\end{aligned}
$$

Analysis of Idealized Open Address Hashing

Deletions in Hashtables

- Simply removing a key might interrupt the probe sequence of other keys which then cannot be found anymore.
- One can delete an element by replacing it with a deleted-marker.
- During an insertion if a deleted-marker is encountered an element can be inserted there.
- During a search a deleted-marker must not be used to terminate the probe sequence.
- The table could fill up with deleted-markers leading to bad performance.
- If a table contains many deleted-markers (linear fraction of the keys) one can rehash the whole table and amortize the cost for this rehash against the cost for the deletions.
- For Linear Probing one can delete elements without using deletion-markers.
- Upon a deletion elements that are further down in the probe-sequence may be moved to guarantee that they are still found during a search.

Deletions for Linear Probing

$$
\begin{aligned}
& \text { Algorithm } 37 \text { delete }(p) \\
& \hline \text { 1:T[p] } T \text { null } \\
& \text { 2: } p \leftarrow \operatorname{succ}(p) \\
& \text { 3: while } T[p] \neq \text { null do } \\
& \text { 4: } \quad y \leftarrow T[p] \\
& \text { 5: } \\
& \text { 6: } \quad T[p] \leftarrow \operatorname{null} \\
& \text { 7: } \\
& \text { 7 } \\
& \text { insert }(y)
\end{aligned}
$$

p is the index into the table-cell that contains the object to be deleted.

Pointers into the hash-table become invalid.

15 Harald Räcke	7.7 Hashing	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 279 / 579 \end{array}$

Universal Hashing

Definition 24

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called universal if for all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=h\left(u_{2}\right)\right] \leq \frac{1}{n},
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

Note that this means that the probability of a collision between two arbitrary elements is at most $\frac{1}{n}$.

Universal Hashing

Regardless, of the choice of hash-function there is always an input (a set of keys) that has a very poor worst-case behaviour.

Therefore, so far we assumed that the hash-function is random so that regardless of the input the average case behaviour is good.

However, the assumption of uniform hashing that h is chosen randomly from all functions $f: U \rightarrow[0, \ldots, n-1]$ is clearly unrealistic as there are $n^{|U|}$ such functions. Even writing down such a function would take $|U| \log n$ bits.

Universal hashing tries to define a set \mathcal{H} of functions that is much smaller but still leads to good average case behaviour when selecting a hash-function uniformly at random from \mathcal{H}.

H Harald Räcke	7.7 Hashing	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 280 / 579 \end{array}$

Universal Hashing

Definition 25

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called 2 -independent (pairwise independent) if the following two conditions hold

- For any key $u \in U$, and $t \in\{0, \ldots, n-1\} \operatorname{Pr}[h(u)=t]=\frac{1}{n}$, i.e., a key is distributed uniformly within the hash-table.
- For all $u_{1}, u_{2} \in U$ with $u_{1} \neq u_{2}$, and for any two hash-positions t_{1}, t_{2} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge h\left(u_{2}\right)=t_{2}\right] \leq \frac{1}{n^{2}} .
$$

This requirement clearly implies a universal hash-function.

) 70 Harald Räcke	7.7 Hashing	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 282 / 579 \end{array}$

Universal Hashing

Definition 26

A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called k-independent if for any choice of $\ell \leq k$ distinct keys $u_{1}, \ldots, u_{\ell} \in U$, and for any set of ℓ not necessarily distinct hash-positions t_{1}, \ldots, t_{ℓ} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge \cdots \wedge h\left(u_{\ell}\right)=t_{\ell}\right] \leq \frac{1}{n^{\ell}},
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

Universal Hashing

Definition 27
A class \mathcal{H} of hash-functions from the universe U into the set $\{0, \ldots, n-1\}$ is called (μ, k)-independent if for any choice of $\ell \leq k$ distinct keys $u_{1}, \ldots, u_{\ell} \in U$, and for any set of ℓ not necessarily distinct hash-positions t_{1}, \ldots, t_{ℓ} :

$$
\operatorname{Pr}\left[h\left(u_{1}\right)=t_{1} \wedge \cdots \wedge h\left(u_{\ell}\right)=t_{\ell}\right] \leq \frac{\mu}{n^{\ell}}
$$

where the probability is w.r.t. the choice of a random hash-function from set \mathcal{H}.

Universal Hashing

Let $U:=\{0, \ldots, p-1\}$ for a prime p. Let $\mathbb{Z}_{p}:=\{0, \ldots, p-1\}$, and let $\mathbb{Z}_{p}^{*}:=\{1, \ldots, p-1\}$ denote the set of invertible elements in \mathbb{Z}_{p}.

Define

$$
h_{a, b}(x):=(a x+b \bmod p) \bmod n
$$

Lemma 28

The class

$$
\mathcal{H}=\left\{h_{a, b} \mid a \in \mathbb{Z}_{p}^{*}, b \in \mathbb{Z}_{p}\right\}
$$

is a universal class of hash-functions from U to $\{0, \ldots, n-1\}$.

Universal Hashing

Proof.
Let $x, y \in U$ be two distinct keys. We have to show that the probability of a collision is only $1 / n$.

- $a x+b \not \equiv a y+b(\bmod p)$

If $x \neq y$ then $(x-y) \not \equiv 0(\bmod p)$.
Multiplying with $a \not \equiv 0(\bmod p)$ gives

$$
a(x-y) \not \equiv 0 \quad(\bmod p)
$$

where we use that \mathbb{Z}_{p} is a field (Körper) and, hence, has no zero divisors (nullteilerfrei).

Universal Hashing

- The hash-function does not generate collisions before the $(\bmod n)$-operation. Furthermore, every choice (a, b) is mapped to a different pair $\left(t_{x}, t_{y}\right)$ with $t_{x}:=a x+b$ and $t_{y}:=a y+b$.

This holds because we can compute a and b when given t_{x} and t_{y} :

$$
\begin{aligned}
t_{x} & \equiv a x+b & & (\bmod p) \\
t_{y} & \equiv a y+b & & (\bmod p) \\
t_{x}-t_{y} & \equiv a(x-y) & & (\bmod p) \\
t_{y} & \equiv a y+b & & (\bmod p) \\
a & \equiv\left(t_{x}-t_{y}\right)(x-y)^{-1} & & (\bmod p) \\
b & \equiv t_{y}-a y & & (\bmod p)
\end{aligned}
$$

Universal Hashing

There is a one-to-one correspondence between hash-functions (pairs $(a, b), a \neq 0$) and pairs $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$.

Therefore, we can view the first step (before the $\bmod n$ operation) as choosing a pair $\left(t_{x}, t_{y}\right), t_{x} \neq t_{y}$ uniformly at random.

What happens when we do the $\bmod n$ operation?
Fix a value t_{x}. There are $p-1$ possible values for choosing t_{y}.

From the range $0, \ldots, p-1$ the values $t_{x}, t_{x}+n, t_{x}+2 n, \ldots$ map to t_{x} after the modulo-operation. These are at most $\lceil p / n\rceil$ values.

Universal Hashing

It is also possible to show that \mathcal{H} is an (almost) pairwise independent class of hash-functions.

$$
\frac{\left\lfloor\frac{p}{n}\right\rfloor^{2}}{p(p-1)} \leq \operatorname{Pr}_{t_{x} \neq t_{y} \in \mathbb{Z}_{p}^{2}}\left[\begin{array}{c}
t_{x} \bmod n=h_{1} \\
t_{y} \bmod n=h_{2}
\end{array}\right] \leq \frac{\left[\frac{p}{n}\right\rceil^{2}}{p(p-1)}
$$

Note that the middle is the probability that $h(x)=h_{1}$ and $h(y)=h_{2}$. The total number of choices for $\left(t_{x}, t_{y}\right)$ is $p(p-1)$.
The number of choices for $t_{x}\left(t_{y}\right)$ such that $t_{x} \bmod n=h_{1}$
$\left(t_{y} \bmod n=h_{2}\right)$ lies between $\left\lfloor\frac{p}{n}\right\rfloor$ and $\left\lceil\frac{p}{n}\right\rceil$.

Universal Hashing

Definition 29

Let $d \in \mathbb{N} ; q \geq(d+1) n$ be a prime; and let $\bar{a} \in\{0, \ldots, q-1\}^{d+1}$.
Define for $x \in\{0, \ldots, q-1\}$

$$
h_{\bar{a}}(x):=\left(\sum_{i=0}^{d} a_{i} x^{i} \bmod q\right) \bmod n .
$$

Let $\mathcal{H}_{n}^{d}:=\left\{h_{\bar{a}} \mid \bar{a} \in\{0, \ldots, q-1\}^{d+1}\right\}$. The class \mathcal{H}_{n}^{d} is
(e, $d+1$)-independent.

Note that in the previous case we had $d=1$ and chose $a_{d} \neq 0$.

Universal Hashing

Fix $\ell \leq d+1$; let $x_{1}, \ldots, x_{\ell} \in\{0, \ldots, q-1\}$ be keys, and let t_{1}, \ldots, t_{ℓ} denote the corresponding hash-function values.

Let $A^{\ell}=\left\{h_{\bar{a}} \in \mathcal{H} \mid h_{\bar{a}}\left(x_{i}\right)=t_{i}\right.$ for all $\left.i \in\{1, \ldots, \ell\}\right\}$
Then
$h_{\bar{a}} \in A^{\ell} \Leftrightarrow h_{\bar{a}}=f_{\bar{a}} \bmod n$ and

$$
f_{\bar{a}}\left(x_{i}\right) \in \underbrace{\left\{t_{i}+\alpha \cdot n \left\lvert\, \alpha \in\left\{0, \ldots,\left\lceil\frac{q}{n}\right\rceil-1\right\}\right.\right\}}_{=: B_{i}}
$$

In order to obtain the cardinality of A^{ℓ} we choose our polynomial by fixing $d+1$ points.

- A^{ℓ} denotes ------denotes the set of hash$\begin{array}{l:l}\text { We first fix the values for inputs } x_{1}, \ldots, x_{\ell} & \begin{array}{l}\text { functions such that every } x_{i} \\ \text { We have }\end{array} \\ \text { hits its pre-defined position }\end{array}$ We have

$$
\left|B_{1}\right| \cdot \ldots \cdot\left|B_{\ell}\right|
$$

$$
t_{i}
$$

- B_{i} is the set of positions that possibilities to do this (so that $h_{\bar{a}}\left(x_{i}\right)=t_{i}$). $\begin{aligned} & f_{\bar{a}} \text { can hit so that } h_{\bar{a}} \text { still hits } \\ & t_{i} .\end{aligned}$

Universal Hashing

For the coefficients $\bar{a} \in\{0, \ldots, q-1\}^{d+1}$ let $f_{\bar{a}}$ denote the polynomial

$$
f_{\bar{a}}(x)=\left(\sum_{i=0}^{d} a_{i} x^{i}\right) \bmod q
$$

The polynomial is defined by $d+1$ distinct points.
T 5 Harald Räck
7.7 Hashing

Universal Hashing

Now, we choose $d-\ell+1$ other inputs and choose their value arbitrarily. We have $q^{d-\ell+1}$ possibilities to do this.

Therefore we have

$$
\left|B_{1}\right| \cdot \ldots \cdot\left|B_{\ell}\right| \cdot q^{d-\ell+1} \leq\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}
$$

possibilities to choose \bar{a} such that $h_{\bar{a}} \in A_{\ell}$.

Universal Hashing

Therefore the probability of choosing $h_{\bar{a}}$ from A_{ℓ} is only

$$
\begin{aligned}
\frac{\left\lceil\frac{q}{n}\right\rceil^{\ell} \cdot q^{d-\ell+1}}{q^{d+1}} & \leq \frac{\left(\frac{q+n}{n}\right)^{\ell}}{q^{\ell}} \leq\left(\frac{q+n}{q}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \\
& \leq\left(1+\frac{1}{\ell}\right)^{\ell} \cdot \frac{1}{n^{\ell}} \leq \frac{e}{n^{\ell}} .
\end{aligned}
$$

This shows that the \mathcal{H} is $(e, d+1)$-universal.
The last step followed from $q \geq(d+1) n$, and $\ell \leq d+1$.

$\boxed{71}$ Harald Räck

7.7 Hashing

Perfect Hashing

Let $m=|S|$. We could simply choose the hash-table size very large so that we don't get any collisions.

Using a universal hash-function the expected number of collisions is

$$
\mathrm{E}[\# \text { Collisions }]=\binom{m}{2} \cdot \frac{1}{n} .
$$

If we choose $n=m^{2}$ the expected number of collisions is strictly less than $\frac{1}{2}$.

Can we get an upper bound on the probability of having
collisions?
The probability of having 1 or more collisions can be at most $\frac{1}{2}$ as otherwise the expectation would be larger than $\frac{1}{2}$.

Perfect Hashing

Suppose that we know the set S of actual keys (no insert/no delete). Then we may want to design a simple hash-function that maps all these keys to different memory locations.

7.7 Hashing

Perfect Hashing

We can find such a hash-function by a few trials.

However, a hash-table size of $n=m^{2}$ is very very high.

We construct a two-level scheme. We first use a hash-function that maps elements from S to m buckets.

Let m_{j} denote the number of items that are hashed to the j-th bucket. For each bucket we choose a second hash-function that maps the elements of the bucket into a table of size m_{j}^{2}. The second function can be chosen such that all elements are mapped to different locations.

Perfect Hashing

$\boxed{71}$ Harald Räck

7.7 Hashing
6. Feb. 2024

Perfect Hashing

We need only $\mathcal{O}(m)$ time to construct a hash-function h with $\sum_{j} m_{j}^{2}=\mathcal{O}(4 m)$, because with probability at least $1 / 2$ a random function from a universal family will have this property.

Then we construct a hash-table h_{j} for every bucket. This takes expected time $\mathcal{O}\left(m_{j}\right)$ for every bucket. A random function h_{j} is collision-free with probability at least $1 / 2$. We need $\mathcal{O}\left(m_{j}\right)$ to test this.

We only need that the hash-functions are chosen from a universal family!!!

Perfect Hashing

The total memory that is required by all hash-tables is $\mathcal{O}\left(\sum_{j} m_{j}^{2}\right)$. Note that m_{j} is a random variable.

$$
\begin{aligned}
\mathrm{E}\left[\sum_{j} m_{j}^{2}\right] & =\mathrm{E}\left[2 \sum_{j}\binom{m_{j}}{2}+\sum_{j} m_{j}\right] \\
& =2 \mathrm{E}\left[\sum_{j}\binom{m_{j}}{2}\right]+\mathrm{E}\left[\sum_{j} m_{j}\right]
\end{aligned}
$$

The first expectation is simply the expected number of collisions, for the first level. Since we use universal hashing we have

$$
=2\binom{m}{2} \frac{1}{m}+m=2 m-1
$$

7.7 Hashing
$1 \boxed{17}$ Harald Räcke

Cuckoo Hashing

Goal:

Try to generate a hash-table with constant worst-case search time in a dynamic scenario.

- Two hash-tables $T_{1}[0, \ldots, n-1]$ and $T_{2}[0, \ldots, n-1]$, with hash-functions h_{1}, and h_{2}.
- An object x is either stored at location $T_{1}\left[h_{1}(x)\right]$ or $T_{2}\left[h_{2}(x)\right]$.
- A search clearly takes constant time if the above constraint is met.

Cuckoo Hashing

- We call one iteration through the while-loop a step of the algorithm.
- We call a sequence of iterations through the while-loop without the termination condition becoming true a phase of the algorithm.
- We say a phase is successful if it is not terminated by the maxstep-condition, but the while loop is left because $x=$ null.

Cuckoo Hashing

A cycle-structure is active if for every key x_{ℓ} (linking a cell p_{i} from T_{1} and a cell p_{j} from T_{2}) we have

$$
h_{1}\left(x_{\ell}\right)=p_{i} \quad \text { and } \quad h_{2}\left(x_{\ell}\right)=p_{j}
$$

Observation:

If during a phase the insert-procedure runs into a cycle there must exist an active cycle structure of size $s \geq 3$.

Cuckoo Hashing

A cycle-structure of size s is defined by

- $s-1$ different cells (alternating btw. cells from T_{1} and T_{2}).
- s distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.
- The leftmost cell is "linked forward" to some cell on the right.
- The rightmost cell is "linked backward" to a cell on the left.
- One link represents key x; this is where the counting starts.
7.7 Hashing

Cuckoo Hashing

What is the probability that all keys in a cycle-structure of size s correctly map into their T_{1}-cell?
This probability is at most $\frac{\mu}{n^{s}}$ since h_{1} is a (μ, s)-independent hash-function.

What is the probability that all keys in the cycle-structure of size s correctly map into their T_{2}-cell?
This probability is at most $\frac{\mu}{n^{s}}$ since h_{2} is a (μ, s)-independent hash-function.

These events are independent.

Cuckoo Hashing

The probability that a given cycle-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 s}}$.

What is the probability that there exists an active cycle structure of size s ?

Cuckoo Hashing

The number of cycle-structures of size s is at most

$$
s^{3} \cdot n^{s-1} \cdot m^{s-1}
$$

- There are at most s^{2} possibilities where to attach the forward and backward links.
- There are at most s possibilities to choose where to place key x.
- There are m^{s-1} possibilities to choose the keys apart from x.
- There are n^{s-1} possibilities to choose the cells.

Cuckoo Hashing

Now, we analyze the probability that a phase is not successful without running into a closed cycle.

Here we used the fact that $(1+\epsilon) m \leq n$.

Hence,

$$
\operatorname{Pr}[\text { cycle }]=\mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Sequence of visited keys:

$x=x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{3}, x_{2}, x_{1}=x, x_{8}, x_{9}, \ldots$

Cuckoo Hashing
 Taking $x_{1} \rightarrow \cdots \rightarrow x_{i}$ twice, and $x_{1} \rightarrow x_{i+1} \rightarrow \ldots x_{j}$ once gives $2 i+(j-i+1)=i+j+1 \geq p+2$ keys. Hence, one of the sequences contains at least $(p+2) / 3$ keys.
 Proof.
 - - - - - - - - - - -

Let i be the number of keys (including x) that we see before the first repeated key. Let j denote the total number of distinct keys.

The sequence is of the form:
$x=x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{i} \rightarrow x_{r} \rightarrow x_{r-1} \rightarrow \cdots \rightarrow x_{1} \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_{j}$
As $r \leq i-1$ the length p of the sequence is

$$
p=i+r+(j-i) \leq i+j-1
$$

Either sub-sequence $x_{1} \rightarrow x_{2} \rightarrow \cdots \rightarrow x_{i}$ or sub-sequence $x_{1} \rightarrow x_{i+1} \rightarrow \cdots \rightarrow x_{j}$ has at least $\frac{p+2}{3}$ elements.

Cuckoo Hashing

Consider the sequence of not necessarily distinct keys starting with x in the order that they are visited during the phase.

Lemma 30
If the sequence is of length p then there exists a sub-sequence of at least $\frac{p+2}{3}$ keys starting with x of distinct keys.

Cuckoo Hashing

A path-structure of size s is defined by

- $s+1$ different cells (alternating btw. cells from T_{1} and T_{2}).
- s distinct keys $x=x_{1}, x_{2}, \ldots, x_{s}$, linking the cells.
- The leftmost cell is either from T_{1} or T_{2}.

Cuckoo Hashing

A path-structure is active if for every key x_{ℓ} (linking a cell p_{i} from T_{1} and a cell p_{j} from T_{2}) we have

$$
h_{1}\left(x_{\ell}\right)=p_{i} \quad \text { and } \quad h_{2}\left(x_{\ell}\right)=p_{j}
$$

Observation:

If a phase takes at least t steps without running into a cycle there must exist an active path-structure of size $(2 t+2) / 3$.

Note that we count complete steps. A search
that touches $2 t$ or $2 t+1$ keys takes t steps

T0 Harald Räcke	7.7 Hashing	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 319 / 579 \end{array}$

Cuckoo Hashing

We choose maxsteps $\geq 3 \ell / 2+1 / 2$. Then the probability that a phase terminates unsuccessfully without running into a cycle is at most
$\operatorname{Pr}[$ unsuccessful| no cycle]
$\leq \operatorname{Pr}\left[\exists\right.$ active path-structure of size at least $\left.\frac{2 \text { maxsteps }+2}{3}\right]$
$\leq \operatorname{Pr}[\exists$ active path-structure of size at least $\ell+1]$
$\leq \operatorname{Pr}[\exists$ active path-structure of size exactly $\ell+1]$
$\leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{\ell} \leq \frac{1}{m^{2}}$
by choosing $\ell \geq \log \left(\frac{1}{2 \mu^{2} m^{2}}\right) / \log \left(\frac{1}{1+\epsilon}\right)=\log \left(2 \mu^{2} m^{2}\right) / \log (1+\epsilon)$
This gives maxsteps $=\Theta(\log m) . \begin{aligned} & \text { Note that the existence of a path structure of } \\ & \text { size larger than } s \text { implies the existence of } a\end{aligned}$ size larger than s implies the existence of a path structure of size exactly s.

Cuckoo Hashing

The probability that a given path-structure of size s is active is at most $\frac{\mu^{2}}{n^{2 S}}$.

The probability that there exists an active path-structure of size s is at most

$$
\begin{aligned}
& 2 \cdot n^{s+1} \cdot m^{s-1} \cdot \frac{\mu^{2}}{n^{2 s}} \\
& \quad \leq 2 \mu^{2}\left(\frac{m}{n}\right)^{s-1} \leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{s-1}
\end{aligned}
$$

Plugging in $s=(2 t+2) / 3$ gives

$$
\leq 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t+2) / 3-1}=2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}
$$

Cuckoo Hashing

So far we estimated

$$
\operatorname{Pr}[\text { cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

and

$$
\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \leq \mathcal{O}\left(\frac{1}{m^{2}}\right)
$$

Observe that

$$
\begin{aligned}
\operatorname{Pr}[\text { successful }] & =\operatorname{Pr}[\text { no cycle }]-\operatorname{Pr}[\text { unsuccessful } \mid \text { no cycle }] \\
& \geq c \cdot \operatorname{Pr}[\text { no cycle }]
\end{aligned}
$$

for a suitable constant $c>0$.

- This is a very weak (and trivial) I statement but still sufficient for our asymptotic analysis.

Cuckoo Hashing

The expected number of complete steps in the successful phase of an insert operation is:

E[number of steps | phase successful]

$$
=\sum_{t \geq 1} \operatorname{Pr}[\text { search takes at least } t \text { steps } \mid \text { phase successful }]
$$

We have
$\operatorname{Pr}[$ search at least t steps | successful]
$=\operatorname{Pr}[$ search at least t steps \wedge successful] $/ \operatorname{Pr}[$ successful $]$
$\leq \frac{1}{c} \operatorname{Pr}[$ search at least t steps \wedge successful $] / \operatorname{Pr}[$ no cycle $]$
$\leq \frac{1}{c} \operatorname{Pr}[$ search at least t steps \wedge no cycle $] / \operatorname{Pr}[$ no cycle $]$
$=\frac{1}{c} \operatorname{Pr}[$ search at least t steps \mid no cycle $]$.

Cuckoo Hashing

A phase that is not successful induces cost for doing a complete rehash (this dominates the cost for the steps in the phase).

The probability that a phase is not successful is $q=\mathcal{O}\left(1 / m^{2}\right)$ (probability $\mathcal{O}\left(1 / m^{2}\right)$ of running into a cycle and probability $\mathcal{O}\left(1 / m^{2}\right)$ of reaching maxsteps without running into a cycle).

A rehash try requires m insertions and takes expected constant time per insertion. It fails with probability $p:=\mathcal{O}(1 / m)$.

The expected number of unsuccessful rehashes is
$\sum_{i \geq 1} p^{i}=\frac{1}{1-p}-1=\frac{p}{1-p}=\mathcal{O}(p)$.
Therefore the expected cost for re-hashes is $\mathcal{O}(m) \cdot \mathcal{O}(p)=\mathcal{O}(1)$.

Cuckoo Hashing

Hence,
E[number of steps | phase successful]

$$
\begin{aligned}
& \leq \frac{1}{c} \sum_{t \geq 1} \operatorname{Pr}[\text { search at least } t \text { steps | no cycle] } \\
& \leq \frac{1}{c} \sum_{t \geq 1} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2 t-1) / 3}=\frac{1}{c} \sum_{t \geq 0} 2 \mu^{2}\left(\frac{1}{1+\epsilon}\right)^{(2(t+1)-1) / 3} \\
& =\frac{2 \mu^{2}}{c(1+\epsilon)^{1 / 3}} \sum_{t \geq 0}\left(\frac{1}{(1+\epsilon)^{2 / 3}}\right)^{t}=\mathcal{O}(1) .
\end{aligned}
$$

This means the expected cost for a successful phase is constant (even after accounting for the cost of the incomplete step that finishes the phase).

Harald Räcke	7.7 Hashing

Formal Proof

Let Y_{i} denote the event that the i-th rehash occurs and does not
lead to a valid configuration (i.e., one of the $m+1$ insertions
fails):

$$
\operatorname{Pr}\left[Y_{i} \mid Z_{i}\right] \leq(m+1) \cdot \mathcal{O}\left(1 / m^{2}\right) \leq \mathcal{O}(1 / m)=: p
$$

Let Z_{i} denote the event that the i-th rehash occurs:
-The 0 -th (re)hash is the initial
configuration when doing the
insert insert.

$$
\operatorname{Pr}\left[Z_{i}\right] \leq \prod_{j=0}^{i-1} \operatorname{Pr}\left[Y_{h} \mid Z_{j}\right] \leq p^{i}
$$

Let $X_{i}^{s}, s \in\{1, \ldots, m+1\}$ denote the cost for inserting the s-th element during the i-th rehash (assuming i-th rehash occurs):

$$
\begin{aligned}
\mathrm{E}\left[X_{i}^{s}\right]= & \mathrm{E}[\text { steps } \mid \text { phase successful }] \cdot \operatorname{Pr}[\text { phase sucessful }] \\
& + \text { maxsteps } \cdot \operatorname{Pr}[\text { not sucessful }]=\mathcal{O}(1) .
\end{aligned}
$$

The expected cost for all rehashes is

$$
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{i}^{s}\right]
$$

Note that Z_{i} is independent of $X_{j}^{s}, j \geq i$ (however, it is not independent of $X_{j}^{s}, j<i$). Hence

$$
\begin{aligned}
\mathrm{E}\left[\sum_{i} \sum_{s} Z_{i} X_{s}^{i}\right] & =\sum_{i} \sum_{s} \mathrm{E}\left[Z_{i}\right] \cdot \mathrm{E}\left[X_{s}^{i}\right] \\
& \leq \mathcal{O}(m) \cdot \sum_{i} p^{i} \\
& \leq \mathcal{O}(m) \cdot \frac{p}{1-p} \\
& =\mathcal{O}(1) .
\end{aligned}
$$

Cuckoo Hashing

How do we make sure that $n \geq(1+\epsilon) m$?

- Let $\alpha:=1 /(1+\epsilon)$.
- Keep track of the number of elements in the table. When $m \geq \alpha n$ we double n and do a complete re-hash (table-expand).
- Whenever m drops below $\alpha n / 4$ we divide n by 2 and do a rehash (table-shrink).
- Note that right after a change in table-size we have $m=\alpha n / 2$. In order for a table-expand to occur at least $\alpha n / 2$ insertions are required. Similar, for a table-shrink at least $\alpha n / 4$ deletions must occur.
- Therefore we can amortize the rehash cost after a change in table-size against the cost for insertions and deletions.

Harald Räcke	7.7 Hashing
6. Feb. 2024	
$329 / 579$	

Cuckoo Hashing

What kind of hash-functions do we need?

Since maxsteps is $\Theta(\log m)$ the largest size of a path-structure or cycle-structure contains just Θ ($\log m$) different keys.
Therefore, it is sufficient to have $(\mu, \Theta(\log m))$-independent hash-functions.

Harald Räcke	7.7 Hashing	6. Feb. 2024 $328 / 579$

Cuckoo Hashing

Lemma 31

Cuckoo Hashing has an expected constant insert-time and a worst-case constant search-time.

Note that the above lemma only holds if the fill-factor (number of keys/total number of hash-table slots) is at most $\frac{1}{2(1+\epsilon)}$.
' of size $2 n$ (because we have two tables of size n); moreover $m \leq(1+\epsilon) n$.'

\square Harald Räcke	7.7 Hashing	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 330 / 579 \end{array}$

Hashing

Bibliography

[MS08] Kurt Mehlhorn, Peter Sanders:
Algorithms and Data Structures - The Basic Toolbox, Springer, 2008
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein Introduction to algorithms (3rd ed.)
MIT Press and McGraw-Hill, 2009

Chapter 4 of [MS08] contains a detailed description about Hashing with Linear Probing and Hashing with Chaining. Also the Perfect Hashing scheme can be found there.
The analysis of Hashing with Chaining under the assumption of uniform hashing can be found in Chapter 11.2 of [CLRS90]. Chapter 11.3.3 describes Universal Hashing. Collision resolution with Open Addressing is described in Chapter 11.4. Chapter 11.5 describes the Perfect Hashing scheme.
Reference for Cuckoo Hashing???

8 Priority Queues

A Priority Queue S is a dynamic set data structure that supports the following operations:

- S. build $\left(x_{1}, \ldots, x_{n}\right)$: Creates a data-structure that contains just the elements x_{1}, \ldots, x_{n}.
- S. insert (x) : Adds element x to the data-structure.
- element S. minimum(): Returns an element $x \in S$ with minimum key-value key $[x]$.
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- boolean S. is-empty(): Returns true if the data-structure is empty and false otherwise.
Sometimes we also have
- S. merge $\left(S^{\prime}\right): S:=S \cup S^{\prime} ; S^{\prime}:=\varnothing$.

T Harald Räcke	8 Priority Queues	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 331 / 579 \end{array}$

Dijkstra's Shortest Path Algorithm

```
Algorithm 39 Shortest-Path \((G=(V, E, d), s \in V)\)
    Input: weighted graph \(G=(V, E, d)\); start vertex \(s\);
    Output: key-field of every node contains distance from \(s\);
    S.build(); // build empty priority queue
    for all \(v \in V \backslash\{s\}\) do
        \(v\). key \(\leftarrow \infty\);
        \(h_{v} \leftarrow S\).insert \((v)\);
    \(s\). key \(\leftarrow 0\); \(S\).insert \((s)\);
    while \(S\).is-empty () = false do
        \(v \leftarrow S\).delete-min();
        for all \(x \in V\) s.t. \((v, x) \in E\) do
            if \(x\).key \(>v\). key \(+d(v, x)\) then
                    \(S\). decrease-key \(\left(h_{x}, v . \operatorname{key}+d(v, x)\right)\);
                    \(x\). key \(\leftarrow v\). key \(+d(v, x)\);
```

Algorithm 40 Prim-MST (G=(V,E,d),s\inV)
Algorithm 40 Prim-MST (G=(V,E,d),s\inV)
Input: weighted graph G=(V,E,d); start vertex s;
Input: weighted graph G=(V,E,d); start vertex s;
Output: pred-fields encode MST;
Output: pred-fields encode MST;
S.build(); // build empty priority queue
S.build(); // build empty priority queue
for all }v\inV\{s}\mathrm{ do
for all }v\inV\{s}\mathrm{ do
v.key }\leftarrow\infty\mathrm{ ;
v.key }\leftarrow\infty\mathrm{ ;
hv}\leftarrowS.insert(v)
hv}\leftarrowS.insert(v)
s. key \leftarrow0; S.insert(s);
s. key \leftarrow0; S.insert(s);
while S.is-empty() = false do
while S.is-empty() = false do
v}\leftarrowS.delete-min()
v}\leftarrowS.delete-min()
for all }x\inV\mathrm{ s.t. {v,x}}\inE\mathrm{ do
for all }x\inV\mathrm{ s.t. {v,x}}\inE\mathrm{ do
if x. key>d(v,x) then
if x. key>d(v,x) then
S.decrease-key(}\mp@subsup{h}{x}{},d(v,x))
S.decrease-key(}\mp@subsup{h}{x}{},d(v,x))
x.key }\leftarrowd(v,x)
x.key }\leftarrowd(v,x)
x.pred }\leftarrowv
x.pred }\leftarrowv

8 Priority Queues

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use build() only to create an empty heap which then costs time 1 .

Analysis of Dijkstra and Prim

Both algorithms require:

- 1 build() operation
- $|V|$ insert() operations
- $|V|$ delete-min() operations
- $|V|$ is-empty() operations
- $|E|$ decrease-key() operations

How good a running time can we obtain?

T Harald Räcke	8 Priority Queues	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 335 / 579 \end{array}$

8 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time $\mathcal{O}((|V|+|E|) \log |V|)$.

Using Fibonacci Heaps, Prim and Dijkstra run in time $\mathcal{O}(|V| \log |V|+|E|)$.

8.1 Binary Heaps

- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.
go up until the last edge used was a right edge.
go left; go right until you reach a leaf
if you hit the root on the way up, go to the rightmost element

Binary Heaps

Operations:

- minimum(): return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.

8.1 Binary Heaps

Maintain a pointer to the last element x.

- We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$.
go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.
if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;

Insert

1. Insert element at successor of x.
2. Exchange with parent until heap property is fulfilled.

Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.
$\boxed{71}$ Harald Räcke
8.1 Binary Heaps

Binary Heaps

Operations:

- minimum(): return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): check whether root-pointer is null. Time $\mathcal{O}(1)$.
- insert (k) : insert at successor of x and bubble up. Time $\mathcal{O}(\log n)$.
- delete(h): swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.

Delete

1. Exchange the element to be deleted with the element e pointed to by x.
2. Restore the heap-property for the element e.

At its new position e may either travel up or down in the tree (but not both directions).

) 70 Harald Räcke	8.1 Binary Heaps	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 343 / 579 \end{array}$

Binary Heaps

Operations:

- minimum (): Return the root-element. Time $\mathcal{O}(1)$.
- is-empty(): Check whether root-pointer is null. Time $\mathcal{O}(1)$.
- insert (k) : Insert at x and bubble up. Time $\mathcal{O}(\log n)$.
- delete(h): Swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.
- build $\left(x_{1}, \ldots, x_{n}\right)$: Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time $\mathcal{O}(n)$.

Binary Heaps

The standard implementation of binary heaps is via arrays. Let $A[0, \ldots, n-1]$ be an array

- The parent of i-th element is at position $\left\lfloor\frac{i-1}{2}\right\rfloor$.
- The left child of i-th element is at position $2 i+1$.
- The right child of i-th element is at position $2 i+2$.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

Harald Räcke	8.1 Binary Heaps	6. Feb. 2024
$346 / 579$		

Binomial Trees

$B_{0} \quad B_{1} \quad B_{2}$
B_{3}
B_{4}

B_{t}

Deleting the root of B_{5} leaves sub-trees $B_{4}, B_{3}, B_{2}, B_{1}$, and B_{0}.

101 Harald Räcke

8.2 Binomial Heaps

Binomial Trees

The number of nodes on level ℓ in tree B_{k} is therefore

$$
\binom{k-1}{\ell-1}+\binom{k-1}{\ell}=\binom{k}{\ell}
$$

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x. right point to the left and right sibling of x (if x does not have siblings then x. left $=x$. right $=x$).

$\boxed{71}$ Harald Räcke
8.2 Binomial Heaps

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property
There is at most one tree for every dimension/order. For example the above heap contains trees B_{0}, B_{1}, and B_{4}.

8.2 Binomial Heaps

- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.

)	8.2 Binomial Heaps	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 355 / 579 \end{array}$

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let $B_{k_{1}}, B_{k_{2}}, B_{k_{3}}, k_{i}<k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n=\sum_{i} 2^{k_{i}}$ must hold. But since the k_{i} are all distinct this means that the k_{i} define the non-zero bit-positions in the binary representation of n.

Binomial Heap

Properties of a heap with n keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor\log n\rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size

, 51 Harald Räcke	8.2 Binomial Heaps	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 358 / 579 \end{array}$

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.
A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Note that we do not just do a Notethat we I concatenation as we want to keep the trees in the list sorted according to size.
Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous

to binary addition.

)	8.2 Binomial Heaps	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 359 / 579 \end{array}$

8.2 Binomial Heaps

S_{1}. merge $\left(S_{2}\right)$:

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

All other operations can be reduced to merge().

S. insert (x) :

- Create a new heap S^{\prime} that contains just the element x.
- Execute S. merge $\left(S^{\prime}\right)$.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\min }$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- Compute S. merge $\left(S^{\prime}\right)$.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. delete(handle h):

- Execute S. decrease-key $(h,-\infty)$.
- Execute S. delete-min().
- Time: $\mathcal{O}(\log n)$.

8.3 Fibonacci Heaps

Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x.marked that specifies whether x is marked or not.

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

$1 \boxed{51}$ Harald Räcke
8.3 Fibonacci Heaps

8.3 Fibonacci Heaps

The potential function:

- $t(S)$ denotes the number of trees in the heap.
- $m(S)$ denotes the number of marked nodes.
- We use the potential function $\Phi(S)=t(S)+2 m(S)$.

The potential is $\Phi(S)=5+2 \cdot 3=11$.

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use c to denote the amount of work that a unit of potential can pay for.

8.3 Fibonacci Heaps

- In the figure below the dashed edges are replaced by red edges.

S. merge (S^{\prime})

- The minimum of the left heap becomes the new minimum of the merged heap.
- Merge the root lists.
- Adjust the min-pointer

Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Hence, amortized cost is $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. minimum()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Amortized cost $\mathcal{O}(1)$.

8.3 Fibonacci Heaps
 x is inserted next to the min-pointer as
 this is our entry point into the root-list.

S. insert (x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.

Running time:

- Actual cost $\mathcal{O}(1)$.
- Change in potential is +1 .
- Amortized cost is $c+\mathcal{O}(1)=\mathcal{O}(1)$.

8.3 Fibonacci Heaps
 $D(\mathrm{~min})$ is the number of ; children of the node that , stores the minimum.

S. delete-min (x)

- Delete minimum; add child-trees to heap; time: $D(\mathrm{~min}) \cdot \mathcal{O}(1)$.
- Update min-pointer; time: $(t+D(\min)) \cdot \mathcal{O}(1)$.

8.3 Fibonacci Heaps

Consolidate:

During the consolidation we traverse the root list. Whenever we discover two
trees that have the same degree we merge these trees. In order to efficiently , check whether two trees have the same degree, we use an array that contains for every degree value d a pointer to a tree left of the current pointer whose root has ' degree d (if such a tree exist).

8.3 Fibonacci Heaps
 $D(\min)$ is the number of children of the node that

 stores the minimum.
S. delete-min (x)

- Delete minimum; add child-trees to heap; time: $D(\mathrm{~min}) \cdot \mathcal{O}(1)$.
- Update min-pointer; time: $(t+D(\min)) \cdot \mathcal{O}(1)$.

- Consolidate root-list so that no roots have the same degree. Time $t \cdot \mathcal{O}(1)$ (see next slide).

8.3 Fibonacci Heaps

Consolidate:

8.3 Fibonacci Heaps

Consolidate:

8.3 Fibonacci Heaps
 Consolidate:

8.3 Fibonacci Heaps

Actual cost for delete-min()

t and t^{\prime} denote the number of trees before and after the delete-min() operation, respectively. D_{n} is an upper bound on the degree (i.e., number of children) of a tree node

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;

We can pay $c \cdot\left(t-D_{n}-1\right)$ from the potential decrease.

- The amortized cost is
$c_{1} \cdot\left(D_{n}+t\right)-c \cdot\left(t-D_{n}-1\right)$

$$
\leq\left(c_{1}+c\right) D_{n}+\left(c_{1}-c\right) t+c \leq 2 c\left(D_{n}+1\right) \leq \mathcal{O}\left(D_{n}\right)
$$

for $c \geq c_{1}$.

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_{n} \leq \log n$

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

- Just decrease the key-value of element referenced by h. Nothing else to do.
8.3 Fibonacci Heaps

Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Harald Räcke

$$
8.3 \text { Fibonacci Heaps }
$$

6. Feb. 2024

Fibonacci Heaps: decrease-key (handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary. $\quad \overline{\text { Marking a node can be viewed as a }}$
- Execute the following:
$p \leftarrow \operatorname{parent}[x]$;
while (p is marked)
first step towards becoming a root. Thirst step towards becoming a root. The first time x loses a child it is
marked; the second time it loses a i child it is made into a root.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

H Harald Räcke	8.3 Fibonacci Heaps	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 378 / 579 \end{array}$

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Amortized cost:

- $t^{\prime}=t+\ell$, as every cut creates one new root.
- $m^{\prime} \leq m-(\ell-1)+1=m-\ell+2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq \ell+2(-\ell+2)=4-\ell$
it and t^{\prime} : number of
- Amortized cost is at most
tres t inu

> operation.
$c_{2}(\ell+1)+c(4-\ell) \leq\left(c_{2}-c\right) \ell+4 c+c_{2}=\mathcal{O}(1)$
if $c \geq c_{2}$.
, m and m^{\prime} : number of marked nodes before , and after operation.

Delete node

H. delete (x) :

- decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}\left(\boldsymbol{D}_{\boldsymbol{n}}\right)$

- $\mathcal{O}(1)$ for decrease-key.
- $\mathcal{O}\left(D_{n}\right)$ for delete-min.

8.3 Fibonacci Heaps

Proof

- When y_{i} was linked to x, at least y_{1}, \ldots, y_{i-1} were already linked to x.
- Hence, at this time degree $(x) \geq i-1$, and therefore also degree $\left(y_{i}\right) \geq i-1$ as the algorithm links nodes of equal degree only.
- Since, then y_{i} has lost at most one child.
- Therefore, degree $\left(y_{i}\right) \geq i-2$.

8.3 Fibonacci Heaps

- Let s_{k} be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_{k} monotonically increases with k
- $s_{0}=1$ and $s_{1}=2$.

Let x be a degree k node of size s_{k} and let y_{1}, \ldots, y_{k} be its children.

$$
\begin{aligned}
s_{k} & =2+\sum_{i=2}^{k} \operatorname{size}\left(y_{i}\right) \\
& \geq 2+\sum_{i=2}^{k} s_{i-2} \\
& =2+\sum_{i=0}^{k-2} s_{i}
\end{aligned}
$$

Lemma 32
Let x be a node with degree k and let y_{1}, \ldots, y_{k} denote the children of x in the order that they were linked to x. Then

$$
\text { degree }\left(y_{i}\right) \geq \begin{cases}0 & \text { if } i=1 \\ i-2 & \text { if } i>1\end{cases}
$$

```
\(1 \boxed{~ H a r a l d ~ R a ̈ c k ~}\)
8.3 Fibonacci Heaps

\subsection*{8.3 Fibonacci Heaps}


\subsection*{8.3 Fibonacci Heaps} \(\phi=\frac{1}{2}(1+\sqrt{5})\) denotes the golden ratio. Note that \(\phi^{2}=1+\phi\).

Definition 33
Consider the following non-standard Fibonacci type sequence:
\[
F_{k}= \begin{cases}1 & \text { if } k=0 \\ 2 & \text { if } k=1 \\ F_{k-1}+F_{k-2} & \text { if } k \geq 2\end{cases}
\]

\section*{Facts:}
1. \(F_{k} \geq \phi^{k}\).
2. For \(k \geq 2\) : \(F_{k}=2+\sum_{i=0}^{k-2} F_{i}\).

The above facts can be easily proved by induction. From this it follows that \(s_{k} \geq F_{k} \geq \phi^{k}\), which gives that the maximum degree in a Fibonacci heap is logarithmic.
\begin{tabular}{|c|c|c|}
\hline , 51 Harald Räcke & 8.3 Fibonacci Heaps & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
385 / 579
\end{array}
\] \\
\hline
\end{tabular}

\section*{Priority Queues}

\section*{Bibliography}
[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein Introduction to algorithms (3rd ed.),
MT Press and McGraw
MS08] Kurt Mehlhorn, Peter Sanders
Algorithms and Data Structures - The Basic Toolbox, Springer, 2008

Binary heaps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fibonacci heaps are covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial heaps.

Chapter 6 in [MS08] covers Priority Queues. Chapter 6.2.2 discusses Fibonacci heaps. Binomial heaps re dealt with in Exercise 6.11.
\(\mathrm{k}=0: \quad 1=F_{0} \geq \Phi^{0}=1\)
\(\mathrm{k}=1: \quad 2=F_{1} \geq \Phi^{1} \approx 1.61\)
\(\mathrm{k}-2, \mathrm{k}-1 \rightarrow \mathrm{k}: \quad F_{k}=F_{k-1}+F_{k-2} \geq \Phi^{k-1}+\Phi^{k-2}=\Phi^{k-2} \overbrace{(\Phi+1)}^{\Phi^{2}}=\Phi^{k}\)
\(\mathrm{k}=2: \quad 3=F_{2}=2+1=2+F_{0}\)
\(\mathrm{k}-1 \rightarrow \mathrm{k}: \quad F_{k}=F_{k-1}+F_{k-2}=2+\sum_{i=0}^{k-3} F_{i}+F_{k-2}=2+\sum_{i=0}^{k-2} F_{i}\)

\section*{9 Union Find}

Union Find Data Structure \(\mathcal{P}\) : Maintains a partition of disjoint sets over elements.
- P. makeset \((\boldsymbol{x})\) : Given an element \(x\), adds \(x\) to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for \(x\) in the data-structure.
- \(\boldsymbol{P}\). find \((\boldsymbol{x})\) : Given a handle for an element \(x\); find the set that contains \(x\). Returns a representative/identifier for this set.
- \(\boldsymbol{P}\). union \((\boldsymbol{x}, \boldsymbol{y})\) : Given two elements \(x\), and \(y\) that are currently in sets \(S_{x}\) and \(S_{y}\), respectively, the function replaces \(S_{x}\) and \(S_{y}\) by \(S_{x} \cup S_{y}\) and returns an identifier for the new set.

\section*{9 Union Find}

\section*{Applications:}
- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

\section*{List Implementation}
- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.

- makeset \((x)\) can be performed in constant time.
- find \((x)\) can be performed in constant time.


The Accounting Method for Amortized Time Bounds
- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|l|}{ Harald Räcke } & 9 Union Find & \begin{tabular}{c} 
6. Feb. 2024 \\
\(395 / 579\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{List Implementation}
makeset \((\boldsymbol{x})\) : The actual cost is \(\mathcal{O}(1)\). Due to the cost inflation the amortized cost is \(\mathcal{O}(\log n)\).
find \((x)\) : For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: \(\mathcal{O}(1)\)
union \((x, y)\) :
- If \(S_{x}=S_{y}\) the cost is constant; no bank accounts change.
- Otw. the actual cost is \(\mathcal{O}\left(\min \left\{\left|S_{x}\right|,\left|S_{y}\right|\right\}\right)\).
- Assume wlog. that \(S_{x}\) is the smaller set; let \(c\) denote the hidden constant, i.e., the actual cost is at most \(c \cdot\left|S_{x}\right|\).
- Charge \(c\) to every element in set \(S_{x}\).

\section*{List Implementation}
- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most \(\mathcal{O}(\log n)\) to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to \(\Theta(\log n)\), i.e., at this point we fill the bank account of the element to \(\Theta(\log n)\).
- Later operations charge the account but the balance never drops below zero.
\begin{tabular}{|cr|}
\hline \multicolumn{1}{|c|}{ Harald Räcke } & 9 Union Find \\
\hline
\end{tabular}

\section*{List Implementation}

\section*{Lemma 35}

An element is charged at most \(\left\lfloor\log _{2} n\right\rfloor\) times, where \(n\) is the total number of elements in the set system.

Proof.
Whenever an element \(x\) is charged the number of elements in \(x\) 's set doubles. This can happen at most \(\lfloor\log n\rfloor\) times.

\section*{Implementation via Trees}
- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:


Set system \(\{2,5,10,12\},\{3,6,7,8,9,14,17\},\{16,19,23\}\).
\(\boxed{17}\) Harald Räcke

9 Union Find
6. Feb. 2024

\section*{Implementation via Trees}

To support union we store the size of a tree in its root.
union \((x, y)\)
- Perform \(a \leftarrow \operatorname{find}(x) ; b \leftarrow \operatorname{find}(y)\). Then: \(\operatorname{link}(a, b)\).
- \(\operatorname{link}(a, b)\) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

- Time: constant for \(\operatorname{link}(a, b)\) plus two find-operations.
\begin{tabular}{|c|c|c|}
\hline \[
\boxed{\square 1} \text { Harald Räcke }
\] & 9 Union Find & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
401 / 579
\end{array}
\] \\
\hline
\end{tabular}

\section*{Implementation via Trees}

\section*{\(\operatorname{makeset}(x)\)}
- Create a singleton tree. Return pointer to the root.
- Time: \(\mathcal{O}(1)\).

\section*{find \((x)\)}
- Start at element \(x\) in the tree. Go upwards until you reach the root.
- Time: \(\mathcal{O}(\operatorname{level}(x))\), where level \((x)\) is the distance of element \(x\) to the root in its tree. Not constant.

\section*{\(1 \boxed{51}\) Harald Räcke}

9 Union Find
6. Feb. 2024

\section*{Implementation via Trees}

\section*{Lemma 36}

The running time (non-amortized!!!) for \(\operatorname{find}(x)\) is \(\mathcal{O}(\log n)\).

Proof.
- When we attach a tree with root \(c\) to become a child of a tree with root \(p\), then \(\operatorname{size}(p) \geq 2 \operatorname{size}(c)\), where size denotes the value of the size-field right after the operation.
- After that the value of size (c) stays fixed, while the value of size ( \(p\) ) may still increase.
- Hence, at any point in time a tree fulfills size \((p) \geq 2 \operatorname{size}(c)\), for any pair of nodes \((p, c)\), where \(p\) is a parent of \(c\).

\section*{Path Compression}

\section*{find \((x)\) :}
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

- Note that the size-fields now only give an upper bound on the size of a sub-tree.
\begin{tabular}{|c|c|c|}
\hline ) & 9 Union Find & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
403 / 579
\end{array}
\] \\
\hline
\end{tabular}

\section*{Path Compression}

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time \(\mathcal{O}(\log n)\).

\section*{Path Compression}

\section*{find \((x)\) :}
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

'One could change the algorithm to update the size-fields. This could ' be done without asymptotically af- ; fecting the running time.
: However, the only size-field that is actually required is the field at the root, which is always correct.
, We will only use the other size-fields : for the proof of Theorem 39
- Note that the size-fields now only give an upper bound on the size of a sub-tree.
\begin{tabular}{|lr|}
\hline\(\square \| \square\) & 9 Union Find \\
Harald Räcke & 6. Feb. 2024 \\
\hline
\end{tabular}

\section*{Amortized Analysis}

\section*{Definitions:}
- \(\operatorname{size}(v):=\) the number of nodes that were in the sub-tree rooted at \(v\) when \(v\) became the child of another node (or the number of nodes if \(v\) is the root).

Note that this is the same as the size of \(v\) 's subtree in the case that there are no find-operations.
- \(\operatorname{rank}(v):=\lfloor\log (\operatorname{size}(v))\rfloor\).
\(\Rightarrow \Rightarrow \operatorname{size}(v) \geq 2^{\operatorname{rank}(v)}\).

\section*{Lemma 37}

The rank of a parent must be strictly larger than the rank of a child.

\section*{Amortized Analysis}

\section*{Lemma 38}

There are at most \(n / 2^{s}\) nodes of ranks.
Proof.
- Let's say a node \(v\) sees node \(x\) if \(v\) is in \(x\) 's sub-tree at the time that \(x\) becomes a child.
- A node \(v\) sees at most one node of rank \(s\) during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain \(v\) during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node sees at most one rank \(s\) node, but every rank \(s\) node is seen by at least \(2^{s}\) different nodes.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|l|}{ Harald Räcke } & 9 Union Find & 6. Feb. 2024 \\
\hline
\end{tabular}

\section*{Amortized Analysis}

In the following we assume \(n \geq 2\).

\section*{rank-group:}
- A node with rank \(\operatorname{rank}(v)\) is in rank group \(\log ^{*}(\operatorname{rank}(v))\).
- The rank-group \(g=0\) contains only nodes with rank 0 or rank 1.
- A rank group \(g \geq 1\) contains ranks \(\operatorname{tow}(g-1)+1, \ldots, \operatorname{tow}(g)\).
- The maximum non-empty rank group is \(\log ^{*}(\lfloor\log n\rfloor) \leq \log ^{*}(n)-1\) (which holds for \(n \geq 2\) ).
- Hence, the total number of rank-groups is at most \(\log ^{*} n\).

\section*{Amortized Analysis}

We define
\[
\operatorname{tow}(i):=\left\{\begin{array}{ll}
1 & \text { if } i=0 \\
2^{\operatorname{tow}(i-1)} & \text { otw. }
\end{array} \quad \text { tow }(i)=2^{2^{2^{2^{2^{2}}}}}\right\} i \text { times }
\]
and
\[
\log ^{*}(n):=\min \{i \mid \text { tow }(i) \geq n\}
\]

Theorem 39
Union find with path compression fulfills the following amortized running times:
- makeset \((x): \mathcal{O}\left(\log ^{*}(n)\right)\)
- \(\operatorname{find}(x): \mathcal{O}\left(\log ^{*}(n)\right)\)
- \(\operatorname{union}(x, y): \mathcal{O}\left(\log ^{*}(n)\right)\)
\begin{tabular}{|c|c|c|}
\hline T Harald Räcke & 9 Union Find & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
407 / 579
\end{array}
\] \\
\hline
\end{tabular}

\section*{Amortized Analysis}

\section*{Accounting Scheme:}
- create an account for every find-operation
- create an account for every node \(v\)

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from \(v\) to parent[ \(v\) ] as follows:
- If parent \([v]\) is the root we charge the cost to the find-account.
- If the group-number of \(\operatorname{rank}(v)\) is the same as that of rank(parent[ \(v]\) ) (before starting path compression) we charge the cost to the node-account of \(v\).
- Otherwise we charge the cost to the find-account.
\begin{tabular}{|c|c|c|}
\hline H Harald Räcke & 9 Union Find & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
409 / 579
\end{array}
\] \\
\hline
\end{tabular}

\section*{Amortized Analysis}

\section*{Observations:}
- A find-account is charged at most \(\log ^{*}(n)\) times (once for the root and at most \(\log ^{*}(n)-1\) times when increasing the rank-group).
- After a node \(v\) is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to \(v\) the parent will be in a larger rank-group. \(\Rightarrow v\) will never be charged again.
- The total charge made to a node in rank-group \(g\) is at most \(\operatorname{tow}(g)-\operatorname{tow}(g-1)-1 \leq \operatorname{tow}(g)\).

\section*{\(17 \boxed{71}\) Harald Räck}

9 Union Find

\section*{Amortized Analysis}

For \(g \geq 1\) we have
\[
\begin{aligned}
n(g) & \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\operatorname{tow}(g)} \frac{n}{2^{s}} \leq \sum_{s=\operatorname{tow}(g-1)+1}^{\infty} \frac{n}{2^{s}} \\
& =\frac{n}{2^{\operatorname{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^{s}}=\frac{n}{2^{\operatorname{tow}(g-1)+1}} \cdot 2 \\
& =\frac{n}{2^{\operatorname{tow}(g-1)}}=\frac{n}{\operatorname{tow}(g)}
\end{aligned}
\]

\section*{Hence,}
\[
\sum_{g} n(g) \operatorname{tow}(g) \leq n(0) \operatorname{tow}(0)+\sum_{g \geq 1} n(g) \operatorname{tow}(g) \leq n \log ^{*}(n)
\]

\section*{Amortized Analysis}

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is \(\mathcal{O}(\alpha(m, n))\), where \(\alpha(m, n)\) is the inverse Ackermann function which grows a lot lot slower than \(\log ^{*} n\). (Here, we consider the average running time of \(m\) operations on at most \(n\) elements).

There is also a lower bound of \(\Omega(\alpha(m, n))\).

\section*{Union Find}

\section*{Bibliography}
[CLRS90a] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest: Introduction to Algorithms (1 st ed.)
MIT Press and McGraw-Hill, 1990
[CLRS90b] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein Introduction to Algorithms (2nd ed.), MIT Press and McGraw-Hill, 2001
[CLRS90c] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to Algorithms (3rd ed.)
MIT Press and McGraw-Hill, 2009
[AHU74] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman: Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ulman:
The Design and Analy sis of Computer Algorithms, Addison-Wesley, 1974

Union find data structures are discussed in Chapter 21 of [CLRS90b] and [CLRS90c] and in Chapter 22 of [CLRS90a]. The analysis of union by rank with path compression can be found in [CLRS90a] but neither in [CLRS90b] in nor in [CLRS90c]. The latter books contains a more involved analysis that gives a better bound than \(\mathcal{O}\left(\log ^{*} n\right)\).
A description of the \(\mathcal{O}\left(\log ^{*}\right)\)-bound can also be found in Chapter 4.8 of [AHU74].

The following slides are partially based on slides by Kevin Wayne.

\section*{Cuts}

\section*{Definition 40}

An \((s, t)\)-cut in the graph \(G\) is given by a set \(A \subset V\) with \(s \in A\) and \(t \in V \backslash A\).

Definition 4
The capacity of a cut \(A\) is defined as
\[
\operatorname{cap}(A, V \backslash A):=\sum_{e \in \operatorname{out}(A)} c(e),
\]
where \(\operatorname{out}(A)\) denotes the set of edges of the form \(A \times V \backslash A\) (i.e. edges leaving \(A\) ).

Minimum Cut Problem: Find an \((s, t)\)-cut with minimum capacity.

\section*{10 Introduction}

\section*{Flow Network}
- directed graph \(G=(V, E)\); edge capacities \(c(e)\)
- two special nodes: source \(s\); target \(t\);
- no edges entering \(s\) or leaving \(t\);
at least for now: no parallel edges;

\begin{tabular}{|rr|r|}
\hline Harald Räcke & 10 Introduction & 6. Feb. 2024 \\
\hline \(18 / 579\) \\
\hline
\end{tabular}

\section*{Cuts}

Example 42


The capacity of the cut is \(\operatorname{cap}(A, V \backslash A)=28\).
Definition 43
An \((s, t)\)-flow is a function \(f: E \mapsto \mathbb{R}^{+}\)that satisfies
1. For each edge \(e\)
\[
0 \leq f(e) \leq c(e)
\]

\section*{(capacity constraints)}
2. For each \(v \in V \backslash\{s, t\}\)
\[
\sum_{e \in \operatorname{out}(v)} f(e)=\sum_{e \in \operatorname{into}(v)} f(e)
\]
(flow conservation constraints)

\section*{Flows}

Example 45


The value of the flow is \(\operatorname{val}(f)=24\).

\section*{Flows}

Definition 44
The value of an \((s, t)\)-flow \(f\) is defined as
\[
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(s)} f(e)
\]

Maximum Flow Problem: Find an \((s, t)\)-flow with maximum value.

\section*{Flows}

Lemma 46 (Flow value lemma)
Let \(f\) be a flow, and let \(A \subseteq V\) be an \((s, t)\)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,
\[
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) .
\]

\section*{Proof.}
\[
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(s)} f(e) \\
& =\sum_{e \in \operatorname{out}(s)} f(e)+\sum_{v \in A \backslash\{s\}}\left(\sum_{e \in \operatorname{out}(v)} f(e)-\sum_{e \in \operatorname{in}(v)} f(e)\right) \\
& =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e)
\end{aligned}
\]

The last equality holds since every edge with both end-points in \(A\) contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering \(A\).

\section*{Corollary 48}

Let \(f\) be an \((s, t)\)-flow and let \(A\) be an \((s, t)\)-cut, such that
\[
\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)
\]

Then \(f\) is a maximum flow.
Proof.
Suppose that there is a flow \(f^{\prime}\) with larger value. Then
\[
\begin{aligned}
\operatorname{cap}(A, V \backslash A) & <\operatorname{val}\left(f^{\prime}\right) \\
& =\sum_{e \in \operatorname{out}(A)} f^{\prime}(e)-\sum_{e \in \operatorname{into}(A)} f^{\prime}(e) \\
& \leq \sum_{e \in \operatorname{out}(A)} f^{\prime}(e) \\
& \leq \operatorname{cap}(A, V \backslash A)
\end{aligned}
\]

Example 47


The net-flow across the cut is \(\operatorname{val}(f)=24\).

Harald Räcke
10 Introduction

\section*{11 Augmenting Path Algorithms}

\section*{Greedy-algorithm:}
- start with \(f(e)=0\) everywhere
- find an \(s\) - \(t\) path with \(f(e)<c(e)\) on every edge
- augment flow along the path
- repeat as long as possible

fftownedue: : 200

\section*{The Residual Graph}

From the graph \(G=(V, E, c)\) and the current flow \(f\) we construct an auxiliary graph \(G_{f}=\left(V, E_{f}, c_{f}\right)\) (the residual graph):
- Suppose the original graph has edges \(e_{1}=(u, v)\), and \(e_{2}=(v, u)\) between \(u\) and \(v\).
- \(G_{f}\) has edge \(e_{1}^{\prime}\) with capacity \(\max \left\{0, c\left(e_{1}\right)-f\left(e_{1}\right)+f\left(e_{2}\right)\right\}\) and \(e_{2}^{\prime}\) with with capacity \(\max \left\{0, c\left(e_{2}\right)-f\left(e_{2}\right)+f\left(e_{1}\right)\right\}\).

G (1) \(\rightleftarrows 6|10-5| 20 \longrightarrow\) ( )
\(G_{f}(\mathrm{U} \rightleftarrows 9 \longrightarrow\) 21 \(\rightleftharpoons\)
11.1 The Generic Augmenting Path Algorithm

\section*{Augmenting Paths}

flow value: 0


\section*{Augmenting Path Algorithm}

\section*{Definition 49}

An augmenting path with respect to flow \(f\), is a path from \(s\) to \(t\) in the auxiliary graph \(G_{f}\) that contains only edges with non-zero capacity.
```

Algorithm 1 FordFulkerson $(G=(V, E, c))$
: Initialize $f(e) \leftarrow 0$ for all edges.
: while \exists augmenting path p in G_{f} do
augment as much flow along p as possible.

```
11.1 The Generic Augmenting Path Algorithm

\section*{Augmenting Path Algorithm}

Theorem 50
A flow \(f\) is a maximum flow iff there are no augmenting paths.
Theorem 51
The value of a maximum flow is equal to the value of a minimum cut.

Proof.
Let \(f\) be a flow. The following are equivalent:
1. There exists a cut \(A\) such that \(\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)\).
2. Flow \(f\) is a maximum flow.
3. There is no augmenting path w.r.t. \(f\).

\section*{Augmenting Path Algorithm}
1. \(\Rightarrow 2\).

This we already showed.
2. \(\Rightarrow 3\).

If there were an augmenting path, we could improve the flow. Contradiction.
3. \(\Rightarrow 1\).
- Let \(f\) be a flow with no augmenting paths.
- Let \(A\) be the set of vertices reachable from \(s\) in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have \(s \in A\) and \(t \notin A\).
11.1 The Generic Augmenting Path Algorithm

\section*{Analysis}

\section*{Assumption:}

All capacities are integers between 1 and \(C\).

\section*{Invariant:}

Every flow value \(f(e)\) and every residual capacity \(c_{f}(e)\) remains integral troughout the algorithm.

\section*{Augmenting Path Algorithm}
\[
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) \\
& =\sum_{e \in \operatorname{out}(A)} c(e) \\
& =\operatorname{cap}(A, V \backslash A)
\end{aligned}
\]

This finishes the proof.
Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving \(A\).
Harald Räcke 11.1 The Generic Augmenting Path Algorithm

\section*{Lemma 52}

The algorithm terminates in at most \(\operatorname{val}\left(f^{*}\right) \leq n C\) iterations, where \(f^{*}\) denotes the maximum flow. Each iteration can be implemented in time \(\mathcal{O}(m)\). This gives a total running time of \(\mathcal{O}(\mathrm{nmC})\).

Theorem 53
If all capacities are integers, then there exists a maximum flow for which every flow value \(f(e)\) is integral.

\section*{A Bad Input}

Problem: The running time may not be polynomial

flow value:

\section*{Question:}

Can we tweak the algorithm so that the running time is polynomial in the input length?

> 11.1 The Generic Augmenting Path Algorithm


\section*{A Pathological Input}

Let \(r=\frac{1}{2}(\sqrt{5}-1)\). Then \(r^{n+2}=r^{n}-r^{n+1}\).


Running time may be infinite!!!
\begin{tabular}{|l|l|l|}
\hline Harald Räcke & 11.1 The Generic Augmenting Path Algorithm & 6. Feb. 2024 \\
\hline \(438 / 579\) \\
\hline
\end{tabular}

\section*{Overview: Shortest Augmenting Paths}

Lemma 54
The length of the shortest augmenting path never decreases.

Lemma 55
After at most \(\mathcal{O}(m)\) augmentations, the length of the shortest augmenting path strictly increases.

\section*{Overview: Shortest Augmenting Paths}

These two lemmas give the following theorem:

Theorem 56
The shortest augmenting path algorithm performs at most \(\mathcal{O}(\mathrm{mn})\) augmentations. This gives a running time of \(\mathcal{O}\left(m^{2} n\right)\).

Proof.
- We can find the shortest augmenting paths in time \(\mathcal{O}(m)\) via BFS.
- \(\mathcal{O}(m)\) augmentations for paths of exactly \(k<n\) edges.


\section*{Shortest Augmenting Paths}

Define the level \(\ell(v)\) of a node as the length of the shortest \(s-v\) path in \(G_{f}\) (along non-zero edges).

Let \(L_{G}\) denote the subgraph of the residual graph \(G_{f}\) that contains only those edges \((u, v)\) with \(\ell(v)=\ell(u)+1\).

A path \(P\) is a shortest \(s\) - \(u\) path in \(G_{f}\) iff it is an \(s-u\) path in \(L_{G}\).

1111.2 Shortest Augmenting Paths
11.2 Shortest Augmenting Paths
OMh

\section*{Shortest Augmenting Path}

\section*{First Lemma:}

The length of the shortest augmenting path never decreases.
After an augmentation \(G_{f}\) changes as follows:
- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don't have back edges so far.
These changes cannot decrease the distance between \(s\) and \(t\).
\(\overrightarrow{\text { edge of } G_{f}} \quad \overrightarrow{\text { edge of } L_{G}}\)

\section*{Shortest Augmenting Path}

Second Lemma: After at most \(m\) augmentations the length of the shortest augmenting path strictly increases.

Let \(M\) denote the set of edges in graph \(L_{G}\) at the beginning of a round when the distance between \(s\) and \(t\) is \(k\)

An \(s\) - \(t\) path in \(G_{f}\) that uses edges not in \(M\) has length larger than \(k\), even when using edges added to \(G_{f}\) during the round.
In each augmentation an edge is deleted from \(M\).

Note that an edge cannot enter \(M\) again during the round as this would require an augmentation along a non-shortest path

\section*{Shortest Augmenting Paths}

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to \(\mathcal{O}\left(m n^{2}\right)\) by improving the running time for finding an augmenting path (currently we assume \(\mathcal{O}(m)\) per augmentation for this).

\section*{Shortest Augmenting Paths}

Theorem 57
The shortest augmenting path algorithm performs at most \(\mathcal{O}(\mathrm{mn})\) augmentations. Each augmentation can be performed in time \(\mathcal{O}(m)\).

Theorem 58 (without proof)
There exist networks with \(m=\Theta\left(n^{2}\right)\) that require \(\Omega\) (mn) augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

\section*{Note:}

There always exists a set of \(m\) augmentations that gives a maximum flow (why?).
\begin{tabular}{|c|c|c|}
\hline ) & 11.2 Shortest Augmenting Paths & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
446 / 579
\end{array}
\] \\
\hline
\end{tabular}

\section*{Shortest Augmenting Paths}

We maintain a subset \(M\) of the edges of \(G_{f}\) with the guarantee that a shortest \(s-t\) path using only edges from \(M\) is a shortest augmenting path.

With each augmentation some edges are deleted from \(M\).
When \(M\) does not contain an \(s-t\) path anymore the distance between \(s\) and \(t\) strictly increases.

Note that \(M\) is not the set of edges of the level graph but a subset of level-graph edges.

Suppose that the initial distance between \(s\) and \(t\) in \(G_{f}\) is \(k\).
\(M\) is initialized as the level graph \(L_{G}\).
Perform a DFS search to find a path from \(s\) to \(t\) using edges from M.

Either you find \(t\) after at most \(n\) steps, or you end at a node \(v\) that does not have any outgoing edges.

You can delete incoming edges of \(v\) from \(M\).


\section*{How to choose augmenting paths?}
- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

\section*{Several possibilities:}
- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

\section*{Analysis}

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between \(s\) and \(t\) strictly increases.

Initializing \(M\) for the phase takes time \(\mathcal{O}(m)\).

The total cost for searching for augmenting paths during a phase is at most \(\mathcal{O}(\mathrm{mn})\), since every search (successful (i.e., reaching \(t\) ) or unsuccessful) decreases the number of edges in \(M\) and takes time \(\mathcal{O}(n)\).

The total cost for performing an augmentation during a phase is only \(\mathcal{O}(n)\). For every edge in the augmenting path one has to update the residual graph \(G_{f}\) and has to check whether the edge is still in \(M\) for the next search.

There are at most \(n\) phases. Hence, total cost is \(\mathcal{O}\left(m n^{2}\right)\).

\section*{Capacity Scaling}

Intuition:
- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter \(\Delta\).
- \(G_{f}(\Delta)\) is a sub-graph of the residual graph \(G_{f}\) that contains only edges with capacity at least \(\Delta\).


\section*{Capacity Scaling}
```

Algorithm 1 maxflow(G,s,t,c)
foreach }e\inE\mathrm{ do }\mp@subsup{f}{e}{}\leftarrow0\mathrm{ ;
\Delta\leftarrow2 [
mp@subsup{\operatorname{log}}{2}{}Cl
while }\Delta\geq1\mathrm{ do
Gf(\Delta)\leftarrow\Delta-residual graph
while there is augmenting path P in G}\mp@subsup{G}{f}{}(\Delta)\mathrm{ do
f\leftarrow\operatorname{augment}(f,c,P)
update(Gf(\Delta))
\Delta\leftarrow\Delta/2
return f

```

\section*{Capacity Scaling}

Lemma 59
There are \(\lceil\log C\rceil+1\) iterations over \(\Delta\).
Proof: obvious.

Lemma 60
Let \(f\) be the flow at the end of a \(\Delta\)-phase. Then the maximum flow is smaller than val \((f)+m \Delta\).
Proof: less obvious, but simple:
- There must exist an \(s\) - \(t\) cut in \(G_{f}(\Delta)\) of zero capacity.
- In \(G_{f}\) this cut can have capacity at most \(m \Delta\).
- This gives me an upper bound on the flow that I can still add.

\section*{Capacity Scaling}

\section*{Assumption}

All capacities are integers between 1 and \(C\).

\section*{Invariant:}

All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:
- because of integrality we have \(G_{f}(1)=G_{f}\)
therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.
HTU Harald Räcke 11.3 Capacity Scaling

\section*{Capacity Scaling}

Lemma 61
There are at most \(2 m\) augmentations per scaling-phase.
Proof:
- Let \(f\) be the flow at the end of the previous phase.
- \(\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+2 m \Delta\)
- Each augmentation increases flow by \(\Delta\).

Theorem 62
We need \(\mathcal{O}(m \log C)\) augmentations. The algorithm can be implemented in time \(\mathcal{O}\left(m^{2} \log C\right)\).

\section*{Matching}
- Input: undirected graph \(G=(V, E)\).
- \(M \subseteq E\) is a matching if each node appears in at most one edge in \(M\).
- Maximum Matching: find a matching of maximum cardinality


\section*{Bipartite Matching}
- Input: undirected, bipartite graph \(G=(L \uplus R, E)\).
- \(M \subseteq E\) is a matching if each node appears in at most one edge in \(M\).
- Maximum Matching: find a matching of maximum cardinality
L


\section*{Maxflow Formulation}
- Input: undirected, bipartite graph \(G=\left(L \uplus R \uplus\{s, t\}, E^{\prime}\right)\).
- Direct all edges from \(L\) to \(R\).
- Add source \(s\) and connect it to all nodes on the left.
- Add \(t\) and connect all nodes on the right to \(t\).
- All edges have unit capacity.


\section*{Proof}

\section*{Max cardinality matching in \(G \leq\) value of maxflow in \(G^{\prime}\)}
- Given a maximum matching \(M\) of cardinality \(k\).
- Consider flow \(f\) that sends one unit along each of \(k\) paths.
- \(f\) is a flow and has cardinality \(k\).
L
\(R\)
G


\section*{Proof}

Max cardinality matching in \(G \geq\) value of maxflow in \(G^{\prime}\)
- Let \(f\) be a maxflow in \(G^{\prime}\) of value \(k\)
- Integrality theorem \(\Rightarrow k\) integral; we can assume \(f\) is \(0 / 1\).
- Consider \(M=\) set of edges from \(L\) to \(R\) with \(f(e)=1\).
- Each node in \(L\) and \(R\) participates in at most one edge in \(M\).
- \(|M|=k\), as the flow must use at least \(k\) middle edges.

12.1 Matching

\subsection*{12.1 Matching}

\section*{Which flow algorithm to use?}
- Generic augmenting path: \(\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)\).
- Capacity scaling: \(\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)\).
- Shortest augmenting path: \(\mathcal{O}\left(m n^{2}\right)\).

For unit capacity simple graphs shortest augmenting path can be implemented in time \(\mathcal{O}(m \sqrt{n})\).
A graph is a unit capacity simple graph if
( every edge has capacity 1
\begin{tabular}{|c|l|l|l|}
\hline Harald Räcke & 12.1 Matching & 6. Feb. 2024 \\
\hline
\end{tabular}

\section*{Baseball Elimination}
\begin{tabular}{|l|cc|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ team } & wins & losses & \multicolumn{4}{|c|}{ remaining games } \\
\multicolumn{1}{|c|}{\(\boldsymbol{i}\)} & \(\boldsymbol{w}_{\boldsymbol{i}}\) & \(\boldsymbol{\ell}_{\boldsymbol{i}}\) & \(\boldsymbol{A t l}\) & \(\boldsymbol{P h i}\) & \(\boldsymbol{N Y}\) & Mon \\
\hline Atlanta & 83 & 71 & - & 1 & 6 & 1 \\
Philadelphia & 80 & 79 & 1 & - & 0 & 2 \\
New York & 78 & 78 & 6 & 0 & - & 0 \\
Montreal & 77 & 82 & 1 & 2 & 0 & - \\
\hline
\end{tabular}

\section*{Which team can end the season with most wins?}
- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

\section*{Baseball Elimination}

\section*{Formal definition of the problem:}
- Given a set \(S\) of teams, and one specific team \(z \in S\).
- Team \(x\) has already won \(w_{x}\) games.
- Team \(x\) still has to play team \(y, r_{x y}\) times.
- Does team \(z\) still have a chance to finish with the most number of wins.

\section*{10 Harald Räck}

\section*{Certificate of Elimination}

Let \(T \subseteq S\) be a subset of teams. Define


If \(\frac{w(T)+r(T)}{|T|}>M\) then one of the teams in \(T\) will have more than \(M\) wins in the end. A team that can win at most \(M\) games is therefore eliminated.

\section*{Baseball Elimination}

Flow network for \(z=3\). \(M\) is number of wins Team 3 can still obtain.


Idea. Distribute the results of remaining games in such a way that no team gets too many wins.
\(\boxed{T 1} \quad 12.2\) Baseball Elimination

> 12.2 Baseball Elimination

\section*{Theorem 63}

A team \(z\) is eliminated if and only if the flow network for \(z\) does not allow a flow of value \(\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}\).

\section*{Proof ( \(\Leftarrow\) )}
- Consider the mincut \(A\) in the flow network. Let \(T\) be the set of team-nodes in \(A\).
- If for node \(x-y\) not both team-nodes \(x\) and \(y\) are in \(T\), then \(x-y \notin A\) as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:
\[
\begin{aligned}
r(S \backslash\{z\}) & >\operatorname{cap}(A, V \backslash A) \\
& \geq \sum_{i<j: i \notin T \vee j \notin T} r_{i j}+\sum_{i \in T}\left(M-w_{i}\right) \\
& \geq r(S \backslash\{z\})-r(T)+|T| M-w(T)
\end{aligned}
\]
- This gives \(M<(w(T)+r(T)) /|T|\), i.e., \(z\) is eliminated.

\section*{Baseball Elimination}

\section*{Proof ( \(\Rightarrow\) )}
- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing \(x-y\) it defines how many games team \(x\) and team \(y\) should win.
- The flow leaving the team-node \(x\) can be interpreted as the additional number of wins that team \(x\) will obtain.
- This is less than \(M-w_{\chi}\) because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than \(M\) wins in total.
- Hence, team \(z\) is not eliminated.

\section*{Project Selection}

\section*{The prerequisite graph:}
- \(\{x, a, z\}\) is a feasible subset.
- \(\{x, a\}\) is infeasible.


\section*{Theorem 64}
\(A\) is a mincut if \(A \backslash\{s\}\) is the optimal set of projects.

\section*{Proof.}
- \(A\) is feasible because of capacity infinity edges.
- \(\operatorname{cap}(A, V \backslash A)=\sum_{v \in \bar{A} \cdot p_{v}>0} p_{v}+\sum_{v \in A: p_{v}<0}\left(-p_{v}\right)\)


\section*{Preflows}

Example 66


A node that has \(\sum_{e \in \operatorname{out}(v)} f(e)<\sum_{e \in \operatorname{into}(v)} f(e)\) is called an active node.

\section*{Preflows}

\section*{Definition 65}

An \((s, t)\)-preflow is a function \(f: E \mapsto \mathbb{R}^{+}\)that satisfies
1. For each edge \(e\)
\[
0 \leq f(e) \leq c(e)
\]
(capacity constraints)
2. For each \(v \in V \backslash\{s, t\}\)
\[
\sum_{e \in \operatorname{out}(v)} f(e) \leq \sum_{e \in \operatorname{into}(v)} f(e)
\]
13.1 Generic Push Relabel

\section*{Preflows}

\section*{Definition:}

A labelling is a function \(\ell: V \rightarrow \mathbb{N}\). It is valid for preflow \(f\) if
- \(\ell(u) \leq \ell(v)+1\) for all edges \((u, v)\) in the residual graph \(G_{f}\) (only non-zero capacity edges!!!)
- \(\ell(s)=n\)
- \(\ell(t)=0\)

\section*{Intuition:}

The labelling can be viewed as a height function. Whenever the height from node \(u\) to node \(v\) decreases by more than 1 (i.e., it goes very steep downhill from \(u\) to \(v\) ), the corresponding edge must be saturated.

\section*{Preflows}

Harald Räcke 13.1 Generic Push Relabel
6. Feb. 2024

\section*{Push Relabel Algorithms}

\section*{Idea:}
- start with some preflow and some valid labelling
- successively change the preflow while maintaining a valid labelling
- stop when you have a flow (i.e., no more active nodes)


\section*{Preflows}

Lemma 67
A preflow that has a valid labelling saturates a cut.

\section*{Proof:}
- There are \(n\) nodes but \(n+1\) different labels from \(0, \ldots, n\).
- There must exist a label \(d \in\{0, \ldots, n\}\) such that none of the nodes carries this label.
- Let \(A=\{v \in V \mid \ell(v)>d\}\) and \(B=\{v \in V \mid \ell(v)<d\}\).
- We have \(s \in A\) and \(t \in B\) and there is no edge from \(A\) to \(B\) in the residual graph \(G_{f}\); this means that \((A, B)\) is a saturated cut.

Lemma 68
A flow that has a valid labelling is a maximum flow.
\begin{tabular}{|c|c|c|}
\hline \(\boxed{71}\) Harald Räcke & 13.1 Generic Push Relabel & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
478 / 579
\end{array}
\] \\
\hline
\end{tabular}

\section*{Changing a Preflow}

An arc \((u, v)\) with \(c_{f}(u, v)>0\) in the residual graph is admissible if \(\ell(u)=\ell(v)+1\) (i.e., it goes downwards w.r.t. labelling \(\ell\) ).

\section*{The push operation}

Consider an active node \(u\) with excess flow
\(f(u)=\sum_{e \in \operatorname{into}(u)} f(e)-\sum_{e \in \operatorname{out}(u)} f(e)\) and suppose \(e=(u, v)\)
is an admissible arc with residual capacity \(c_{f}(e)\).
We can send flow \(\min \left\{c_{f}(e), f(u)\right\}\) along \(e\) and obtain a new preflow. The old labelling is still valid (!!!!).
- saturating push: \(\min \left\{f(u), c_{f}(e)\right\}=c_{f}(e)\)
the \(\operatorname{arc} e\) is deleted from the residual graph
- deactivating push: \(\min \left\{f(u), c_{f}(e)\right\}=f(u)\)
the node \(u\) becomes inactive

\footnotetext{
Note that a push-operation may be saturating and deactivating at the ' same time.
}

\section*{Push Relabel Algorithms}

\section*{The relabel operation}

Consider an active node \(u\) that does not have an outgoing admissible arc.

Increasing the label of \(u\) by 1 results in a valid labelling.
- Edges \((w, u)\) incoming to \(u\) still fulfill their constraint \(\ell(w) \leq \ell(u)+1\).
- An outgoing edge \((u, w)\) had \(\ell(u)<\ell(w)+1\) before since it was not admissible. Now: \(\ell(u) \leq \ell(w)+1\).
\begin{tabular}{|r|r|l|}
\hline \multicolumn{1}{|c|}{ Harald Räcke } & 13.1 Generic Push Relabel & 6. Feb. 2024 \\
\hline
\end{tabular}

\section*{Reminder}
- In a preflow nodes may not fulfill conservation constraints; a node may have more incoming flow than outgoing flow.
- Such a node is called active.
- A labelling is valid if for every edge \((u, v)\) in the residual graph \(\ell(u) \leq \ell(v)+1\).
- An arc \((u, v)\) in residual graph is admissible if \(\ell(u)=\ell(v)+1\).
- A saturating push along \(e\) pushes an amount of \(c(e)\) flow along the edge, thereby saturating the edge (and making it dissappear from the residual graph).
- A deactivating push along \(e=(u, v)\) pushes a flow of \(f(u)\), where \(f(u)\) is the excess flow of \(u\). This makes \(u\) inactive.

\section*{Push Relabel Algorithms}

\section*{Intuition:}

We want to send flow downwards, since the source has a height/label of \(n\) and the target a height/label of 0 . If we see an active node \(u\) with an admissible arc we push the flow at \(u\)
towards the other end-point that has a lower height/label. If we do not have an admissible arc but excess flow into \(u\) it should roughly mean that the level/height/label of \(u\) should rise. (If we consider the flow to be water then this would be natural.)

Note that the above intuition is very incorrect as the labels are integral, i.e., they cannot really be seen as the height of a node.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|l|}{ Harald Räcke } & 13.1 Generic Push Relabel & 6. Feb. 2024 \\
\hline
\end{tabular}

\section*{Push Relabel Algorithms}
```

Algorithm 1 maxflow $(G, s, t, c$)
find initial preflow f
while there is active node u do
if there is admiss. arc e out of u then
$\operatorname{push}(G, e, f, c)$
else
relabel(u)
return f

```

In the following example we always stick to the same active node \(u\) until it becomes inactive but this is not required.


\section*{Analysis}

Note that the lemma is almost trivial. A node \(v\) having excess Note that the lemma is almost trivial. A node \(v\) having excess ' flow means that the current preflow ships something to \(v\). The residual graph allows to undo flow. Therefore, there must exist a path that can undo the shipment and move it back to \(s\). However, a formal proof is required
Lemma 69
An active node has a path to \(s\) in the residual graph.

\section*{Proof.}
- Let \(A\) denote the set of nodes that can reach \(s\), and let \(B\) denote the remaining nodes. Note that \(s \in A\).
- In the following we show that a node \(b \in B\) has excess flow \(f(b)=0\) which gives the lemma.
- In the residual graph there are no edges into \(A\), and, hence, no edges leaving \(A\) /entering \(B\) can carry any flow.
- Let \(f(B)=\sum_{v \in B} f(v)\) be the excess flow of all nodes in \(B\).
\begin{tabular}{|c|c|c|}
\hline H10 Harald Räcke & 13.1 Generic Push Relabel & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
486 / 579
\end{array}
\] \\
\hline
\end{tabular}

\section*{Analysis}

Lemma 70
The label of a node cannot become larger than \(2 n-1\).

\section*{Proof.}
- When increasing the label at a node \(u\) there exists a path from \(u\) to \(s\) of length at most \(n-1\). Along each edge of the path the height/label can at most drop by 1 , and the label of the source is \(n\).

\section*{Lemma 71}

There are only \(\mathcal{O}\left(n^{2}\right)\) relabel operations.

Hence, the excess flow \(f(b)\) must be 0 for every node \(b \in B\).

\section*{Analysis}

\section*{Lemma 72}

The number of saturating pushes performed is at most \(\mathcal{O}(\mathrm{mn})\).

\section*{Proof.}
- Suppose that we just made a saturating push along \((u, v)\).
- Hence, the edge \((u, v)\) is deleted from the residual graph.
- For the edge to appear again, a push from \(v\) to \(u\) is required.
- Currently, \(\ell(u)=\ell(v)+1\), as we only make pushes along admissible edges.
- For a push from \(v\) to \(u\) the edge \((v, u)\) must become admissible. The label of \(v\) must increase by at least 2 .
- Since the label of \(v\) is at most \(2 n-1\), there are at most \(n\) pushes along ( \(u, v\) ).

\section*{Lemma 73}

The number of deactivating pushes performed is at most \(\mathcal{O}\left(n^{2} m\right)\).

\section*{Proof.}
- Define a potential function \(\Phi(f)=\sum\) active nodes \(v \ell(v)\)
- A saturating push increases \(\Phi\) by \(\leq 2 n\) (when the target node becomes active it may contribute at most \(2 n\) to the sum).
- A relabel increases \(\Phi\) by at most 1 .
- A deactivating push decreases \(\Phi\) by at least 1 as the node that is pushed from becomes inactive and has a label that is strictly larger than the target.
- Hence,
\#deactivating_pushes \(\leq\) \#relabels \(+2 n \cdot \#\) saturating_pushes
\[
\leq \mathcal{O}\left(n^{2} m\right)
\]

\section*{Analysis}

\section*{Proof:}

For every node maintain a list of admissible edges starting at that node. Further maintain a list of active nodes.

A push along an edge \((u, v)\) can be performed in constant time
- check whether edge \((v, u)\) needs to be added to \(G_{f}\)
- check whether ( \(u, v\) ) needs to be deleted (saturating push)
- check whether \(u\) becomes inactive and has to be deleted from the set of active nodes

A relabel at a node \(u\) can be performed in time \(\mathcal{O}(n)\)
- check for all outgoing edges if they become admissible
- check for all incoming edges if they become non-admissible
\begin{tabular}{|cr|}
\hline\(T \|\) Harald Räcke & 13.1 Generic Push Relabel
\end{tabular} \begin{tabular}{c} 
6. Feb. 2024 \\
\(492 / 579\) \\
\hline
\end{tabular}

\section*{Analysis}

For special variants of push relabel algorithms we organize the neighbours of a node into a linked list (possible neighbours in the residual graph \(G_{f}\) ). Then we use the discharge-operation:
```

Algorithm 2 discharge (u)
while u is active do
$v \leftarrow u$.current-neighbour
if $v=$ null then
relabel(u)
u.current-neighbour $\leftarrow u$.neighbour-list-head
else
if (u, v) admissible then $\operatorname{push}(u, v)$
else u.current-neighbour $\leftarrow v$.next-in-list

```

Note that u.current-neighbour is a global variable. It is only changed within the discharge routine, but keeps its value between consecutive calls to discharge.

\subsection*{13.2 Relabel to Front}
```

Algorithm 1 relabel-to-front(G,s,t)
initialize preflow
initialize node list L containing }V\backslash{s,t}\mathrm{ in any order
foreach}u\inV\{s,t}\mathrm{ do
u.current-neighbour }\leftarrowu.neighbour-list-head
u\leftarrowL.head
while }u\not=\mathrm{ null do
old-height }\leftarrow\ell(u
discharge(u)
if }\ell(u)>\mathrm{ old-height then // relabel happened
move }u\mathrm{ to the front of L
u\leftarrowu.next

```

\section*{Proof:}
- Initialization:
1. In the beginning \(s\) has label \(n \geq 2\), and all other nodes have label 0 . Hence, no edge is admissible, which means that any ordering \(L\) is permitted.
2. We start with \(u\) being the head of the list; hence no node before \(u\) can be active
- Maintenance:
1. Pushes do no create any new admissible edges. Therefore, if discharge() does not relabel \(u, L\) is still topologically sorted.
- After relabeling, \(u\) cannot have admissible incoming edges as such an edge \((x, u)\) would have had a difference \(\ell(x)-\ell(u) \geq 2\) before the re-labeling (such edges do not exist in the residual graph).
Hence, moving \(u\) to the front does not violate the sorting property for any edge; however it fixes this property for all admissible edges leaving \(u\) that were generated by the relabeling.

\subsection*{13.2 Relabel to Front}

\section*{Lemma 77}

There are at most \(\mathcal{O}\left(n^{3}\right)\) calls to discharge(u).

Every discharge operation without a relabel advances \(u\) (the current node within list \(L\) ). Hence, if we have \(n\) discharge operations without a relabel we have \(u=\) null and the algorithm terminates.

Therefore, the number of calls to discharge is at most \(n(\#\) relabels +1\()=\mathcal{O}\left(n^{3}\right)\).

\subsection*{13.2 Relabel to Front}

\section*{Proof:}
- Maintenance:
2. If we do a relabel there is nothing to prove because the only node before \(u^{\prime}\) ( \(u\) in the next iteration) will be the current \(u\); the discharge \((u)\) operation only terminates when \(u\) is not active anymore.

For the case that we do not relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissible arc. However, all admissible arc point to successors of \(u\).

Note that the invariant means that for \(u=\) null we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{1}{|l|}{ Harald Räcke } & 13.2 Relabel to Front & 6. Feb. 2024 \\
\hline
\end{tabular}

\subsection*{13.2 Relabel to Front}

\section*{Lemma 78}

The cost for all relabel-operations is only \(\mathcal{O}\left(n^{2}\right)\).

A relabel-operation at a node is constant time (increasing the label and resetting \(u\).current-neighbour). In total we have \(\mathcal{O}\left(n^{2}\right)\) relabel-operations.

\subsection*{13.2 Relabel to Front}

Recall that a saturating push operation
( \(\left.\min \left\{c_{f}(e), f(u)\right\}=c_{f}(e)\right)\) can also be a deactivating push operation \(\left(\min \left\{c_{f}(e), f(u)\right\}=f(u)\right)\).

Lemma 79
The cost for all saturating push-operations that are not deactivating is only \(\mathcal{O}(m n)\).

Note that such a push-operation leaves the node \(u\) active but makes the edge \(e\) disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer u.current-neighbour.
This pointer can traverse the neighbour-list at most \(\mathcal{O}(n)\) times (upper bound on number of relabels) and the neighbour-list has only degree ( \(u\) ) +1 many entries ( +1 for null-entry).
\begin{tabular}{|r|r|r|}
\hline \multicolumn{1}{|c|}{13.2 Relabel to Front } & 6. Feb. 2024 \\
Harald Räcke & \(501 / 579\) \\
\hline
\end{tabular}

\subsection*{13.3 Highest Label}
```

Algorithm 1 highest-label(}G,s,t
initialize preflow
foreach}u\inV\{s,t} d
u.current-neighbour }\leftarrowu.neighbour-list-head
while }\exists\mathrm{ active node }u\mathrm{ do
select active node }u\mathrm{ with highest label
discharge(u)

```

\subsection*{13.2 Relabel to Front}

\section*{Lemma 80}

The cost for all deactivating push-operations is only \(\mathcal{O}\left(n^{3}\right)\).
A deactivating push-operation takes constant time and ends the current call to discharge(). Hence, there are only \(\mathcal{O}\left(n^{3}\right)\) such operations.

Theorem 81
The push-relabel algorithm with the rule relabel-to-front takes time \(\mathcal{O}\left(n^{3}\right)\).
THU Harald Räcke 13.2 Relabel to Front
13.2 Relabel to Front
6. Feb. 2024

\subsection*{13.3 Highest Label}

Lemma 82
When using highest label the number of deactivating pushes is only \(\mathcal{O}\left(n^{3}\right)\).

A push from a node on level \(\ell\) can only "activate" nodes on levels strictly less than \(\ell\).

This means, after a deactivating push from \(u\) a relabel is required to make \(u\) active again.

Hence, after \(n\) deactivating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of deactivating pushes is at most \(n(\#\) relabels +1\()=\mathcal{O}\left(n^{3}\right)\).

\subsection*{13.3 Highest Label}

Since a discharge-operation is terminated by a deactivating push this gives an upper bound of \(\mathcal{O}\left(n^{3}\right)\) on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

\section*{Question:}

How do we find the next node for a discharge operation?

\section*{\(\boxed{71}\) Harald Räck}
13.3 Highest Label

\subsection*{13.3 Highest Label}

Hence, the total time required for searching for active nodes is at most
\[
\mathcal{O}\left(n^{3}\right)+n(\# \text { deactivating-pushes-to-s-or-t })
\]

\section*{Lemma 83}

The number of deactivating pushes to \(s\) or \(t\) is at most \(\mathcal{O}\left(n^{2}\right)\).

With this lemma we get
Theorem 84
The push-relabel algorithm with the rule highest-label takes time \(\mathcal{O}\left(n^{3}\right)\).

\subsection*{13.3 Highest Label}

Maintain lists \(L_{i}, i \in\{0, \ldots, 2 n\}\), where list \(L_{i}\) contains active nodes with label \(i\) (maintaining these lists induces only constant additional cost for every push-operation and for every
relabel-operation).

After a discharge operation terminated for a node \(u\) with label \(k\), traverse the lists \(L_{k}, L_{k-1}, \ldots, L_{0}\), (in that order) until you find a non-empty list.

Unless the last (deactivating) push was to \(s\) or \(t\) the list \(k-1\) must be non-empty (i.e., the search takes constant time).
\begin{tabular}{|r|r|r|}
\hline & 13.3 Highest Label & 6. Feb. 2024 \\
Harald Räcke & \(506 / 579\) \\
\hline
\end{tabular}

\subsection*{13.3 Highest Label}

\section*{Proof of the Lemma.}
- We only show that the number of pushes to the source is at most \(\mathcal{O}\left(n^{2}\right)\). A similar argument holds for the target.
- After a node \(v\) (which must have \(\ell(v)=n+1\) ) made a deactivating push to the source there needs to be another node whose label is increased from \(\leq n+1\) to \(n+2\) before \(v\) can become active again.
- This happens for every push that \(v\) makes to the source. Since, every node can pass the threshold \(n+2\) at most once, \(v\) can make at most \(n\) pushes to the source.
- As this holds for every node the total number of pushes to the source is at most \(\mathcal{O}\left(n^{2}\right)\).

\section*{Mincost Flow}

\section*{Problem Definition:}
\[
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: 0 \leq f(e) \leq u(e) \\
& \forall v \in V: f(v)=b(v)
\end{array}
\]
- \(G=(V, E)\) is a directed graph.
- \(u: E \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}\) is the capacity function.
- \(c: E \rightarrow \mathbb{R}\) is the cost function (note that \(c(e)\) may be negative).
- \(b: V \rightarrow \mathbb{R}, \sum_{v \in V} b(v)=0\) is a demand function.

\section*{Solve Maxflow Using Mincost Flow}

\section*{Solve decision version of maxflow:}
- Given a flow network for a standard maxflow problem, and a value \(k\).
- Set \(b(v)=0\) for every node apart from \(s\) or \(t\). Set \(b(s)=-k\) and \(b(t)=k\).
- Set edge-costs to zero, and keep the capacities.
- There exists a maxflow of value at least \(k\) if and only if the mincost-flow problem is feasible.

\section*{Solve Maxflow Using Mincost Flow}

- Given a flow network for a standard maxflow problem.
- Set \(b(v)=0\) for every node. Keep the capacity function \(u\) for all edges. Set the cost \(c(e)\) for every edge to 0 .
- Add an edge from \(t\) to \(s\) with infinite capacity and cost -1 .
- Then, \(\operatorname{val}\left(f^{*}\right)=-\operatorname{cost}\left(f_{\text {min }}\right)\), where \(f^{*}\) is a maxflow, and \(f_{\text {min }}\) is a mincost-flow.

\section*{Generalization}

\section*{Our model:}
\(\min \quad \sum_{e} c(e) f(e)\)
s.t. \(\forall e \in E: 0 \leq f(e) \leq u(e)\) \(\forall v \in V: \quad f(v)=b(v)\)
where \(b: V \rightarrow \mathbb{R}, \sum_{v} b(v)=0 ; u: E \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\} ; c: E \rightarrow \mathbb{R} ;\)

\section*{A more general model?}
\[
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
\]
where \(a: V \rightarrow \mathbb{R}, b: V \rightarrow \mathbb{R} ; \ell: E \rightarrow \mathbb{R} \cup\{-\infty\}, u: E \rightarrow \mathbb{R} \cup\{\infty\}\) \(c: E \rightarrow \mathbb{R}\);

\section*{Generalization}

\section*{Differences}
- Flow along an edge \(e\) may have non-zero lower bound \(\ell(e)\).
- Flow along \(e\) may have negative upper bound \(u(e)\).
- The demand at a node \(v\) may have lower bound \(a(v)\) and upper bound \(b(v)\) instead of just lower bound = upper bound \(=b(v)\).

\section*{Reduction II}
\[
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
\]

We can assume that either \(\boldsymbol{\ell}(\boldsymbol{e}) \neq-\infty\) or \(\boldsymbol{u}(\boldsymbol{e}) \neq \infty\) :


If \(c(e)=0\) we can contract the edge/identify nodes \(u\) and \(v\).
If \(c(e) \neq 0\) we can transform the graph so that \(c(e)=0\).

\section*{Reduction II}

We can transform any network so that a particular edge has \(\operatorname{cost} c(e)=0\) :


Additionally we set \(b(u)=0\).

\section*{Reduction III}
```

min }\mp@subsup{\sum}{e}{}c(e)f(e
s.t. }\foralle\inE:\quad\ell(e)\leqf(e)\lequ(e
\forallv\inV: f(v)=b(v)

```

We can assume that \(\ell(e) \neq-\infty\) :


Replace the edge by an edge in opposite direction.
\begin{tabular}{|cr|}
\hline \multicolumn{1}{|l|}{ Harald Räcke } & 14 Mincost Flow \\
\hline
\end{tabular}

\section*{Applications}

\section*{Caterer Problem}
- She needs to supply \(r_{i}\) napkins on \(N\) successive days.
- She can buy new napkins at \(p\) cents each.
- She can launder them at a fast laundry that takes \(m\) days and cost \(f\) cents a napkin.
- She can use a slow laundry that takes \(k>m\) days and costs \(s\) cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

\section*{Reduction IV}
\[
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
\]

We can assume that \(\boldsymbol{\ell}(\boldsymbol{e})=0\) :


The added edges have infinite capacity and cost \(c(e) / 2\).
\begin{tabular}{|c|c|c|}
\hline \(1 \boxed{10}\) Harald Räcke & 14 Mincost Flow & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
518 / 579
\end{array}
\] \\
\hline
\end{tabular}

d: \(u\left(e_{i}\right)=\infty\)
buy edges: lower bound: \(\ell\left(e_{i}\right)=0\); cost: \(c(e)=p\)


upper bound: \(u\left(e_{i}\right)=\infty\); lower bound: \(\ell\left(e_{i}\right)=0\); cost: \(c(e)=0\)

fast edges:
upper bound: \(u\left(e_{i}\right)=\infty\)
lower bound: \(\ell\left(e_{i}\right)=0\);
cost: \(c(e)=f\)


\section*{Residual Graph}

\section*{Version A:}

The residual graph \(G^{\prime}\) for a mincost flow is just a copy of the graph \(G\).

If we send \(f(e)\) along an edge, the corresponding edge \(e^{\prime}\) in the residual graph has its lower and upper bound changed to
\(\ell\left(e^{\prime}\right)=\ell(e)-f(e)\) and \(u\left(e^{\prime}\right)=u(e)-f(e)\).

\section*{Version B:}

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of \(z\) from \(u\) to \(v\) the residual edge \((v, u)\) has capacity \(z\) and a cost of \(-c((u, v))\).

Lemma 85
A given flow is a mincost-flow if and only if the corresponding residual graph \(G_{f}\) does not have a feasible circulation of negative cost.
\(\Rightarrow\) Suppose that \(g\) is a feasible circulation of negative cost in the residual graph.

Then \(f+g\) is a feasible flow with cost
\(\operatorname{cost}(f)+\operatorname{cost}(g)<\operatorname{cost}(f)\). Hence, \(f\) is not minimum cost.
\(\Leftarrow\) Let \(f\) be a non-mincost flow, and let \(f^{*}\) be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

Clearly \(f^{*}-f\) is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending \(-f\) in the residual graph (pushing all flow back) we arrive at the original graph; for this \(f^{*}\) is clearly feasible)


14 Mincost Flow

\section*{14 Mincost Flow}
```

Algorithm 48 CycleCanceling(G=(V,E),c,u,b)
establish a feasible flow }f\mathrm{ in }
while }\mp@subsup{G}{f}{}\mathrm{ contains negative cycle do
use Bellman-Ford to find a negative circuit }
\delta\leftarrow\operatorname{min}{\mp@subsup{u}{f}{\prime}(e)|e\inZ}
augment }\delta\mathrm{ units along Z and update G}\mp@subsup{G}{f}{

```

\section*{14 Mincost Flow}

Lemma 86
A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t.
edge-weights \(c: E \rightarrow \mathbb{R}\).

\section*{Proof.}
- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.
\begin{tabular}{|c|c|c|}
\hline ) & 14 Mincost Flow & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
524 / 579
\end{array}
\] \\
\hline
\end{tabular}

\section*{How do we find the initial feasible flow?}

- Connect new node \(s\) to all nodes with negative \(b(v)\)-value.
- Connect nodes with positive \(b(v)\)-value to a new node \(t\).
- There exist a feasible flow in the original graph iff in the resulting graph there exists an \(s\) - \(t\) flow of value
\[
\sum_{v: b(v)<0}(-b(v))=\sum_{v: b(v)>0} b(v) .
\]


\section*{14 Mincost Flow}

\(1 \boxed{51}\) Harald Räcke
14 Mincost Flow

\section*{14 Mincost Flow}



\section*{14 Mincost Flow}

Lemma 87
The improving cycle algorithm runs in time \(\mathcal{O}\left(\mathrm{nm}^{2} \mathrm{CU}\right)\), for integer capacities and costs, when for all edges \(e,|c(e)| \leq C\) and \(|u(e)| \leq U\).
- Running time of Bellman-Ford is \(\mathcal{O}(m n)\).
- Pushing flow along the cycle can be done in time \(\mathcal{O}(n)\).
- Each iteration decreases the total cost by at least 1.
- The true optimum cost must lie in the interval \([-m C U, \ldots,+m C U]\).

Note that this lemma is weak since it does not allow for edges with infinite capacity.

\section*{14 Mincost Flow}


1751 Harald Räcke
14 Mincost Flow

\section*{14 Mincost Flow}

A general mincost flow problem is of the following form:
\[
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
\]
where \(a: V \rightarrow \mathbb{R}, b: V \rightarrow \mathbb{R} ; \ell: E \rightarrow \mathbb{R} \cup\{-\infty\}, u: E \rightarrow \mathbb{R} \cup\{\infty\}\)
\(c: E \rightarrow \mathbb{R}\);

Lemma 88 (without proof)
A general mincost flow problem can be solved in polynomial time.

\section*{Part V}

\section*{Matching}
- Input: undirected graph \(G=(V, E)\).
- \(M \subseteq E\) is a matching if each node appears in at most one edge in \(M\).
- Maximum Matching: find a matching of maximum cardinality


\section*{16 Bipartite Matching via Flows}

Which flow algorithm to use?
- Generic augmenting path: \(\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)\).
- Capacity scaling: \(\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)\).
- Shortest augmenting path: \(\mathcal{O}\left(m n^{2}\right)\).

For unit capacity simple graphs shortest augmenting path can be implemented in time \(\mathcal{O}(m \sqrt{n})\).

\section*{17 Augmenting Paths for Matchings}

\section*{Definitions.}
- Given a matching \(M\) in a graph \(G\), a vertex that is not incident to any edge of \(M\) is called a free vertex w.r. .t. \(M\).
- For a matching \(M\) a path \(P\) in \(G\) is called an alternating path if edges in \(M\) alternate with edges not in \(M\).
- An alternating path is called an augmenting path for matching \(M\) if it ends at distinct free vertices.

Theorem 89
A matching \(M\) is a maximum matching if and only if there is no augmenting path w.r.t. M.

\section*{Augmenting Paths in Action}


T Harald Räcke
17 Augmenting Paths for Matchings

\section*{17 Augmenting Paths for Matchings}

\section*{Proof.}
\(\Rightarrow\) If \(M\) is maximum there is no augmenting path \(P\), because we could switch matching and non-matching edges along \(P\). This gives matching \(M^{\prime}=M \oplus P\) with larger cardinality.
\(\Leftarrow\) Suppose there is a matching \(M^{\prime}\) with larger cardinality. Consider the graph \(H\) with edge-set \(M^{\prime} \oplus M\) (i.e., only edges that are in either \(M\) or \(M^{\prime}\) but not in both).

Each vertex can be incident to at most two edges (one from \(M\) and one from \(M^{\prime}\) ). Hence, the connected components are alternating cycles or alternating path.

As \(\left|M^{\prime}\right|>|M|\) there is one connected component that is a path \(P\) for which both endpoints are incident to edges from \(M^{\prime} . P\) is an alternating path.

\section*{Augmenting Paths in Action}


17 Augmenting Paths for Matchings

\section*{17 Augmenting Paths for Matchings}

\section*{Algorithmic idea:}

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

\section*{Theorem 90}

Let \(G\) be a graph, \(M\) a matching in \(G\), and let \(u\) be a free vertex w.r.t. M. Further let \(P\) denote an augmenting path w.r.t. \(M\) and let \(M^{\prime}=M \oplus P\) denote the matching resulting from augmenting \(M\) with \(P\). If there was no augmenting path starting at \(u\) in \(M\) then there is no augmenting path starting at \(u\) in \(M^{\prime}\).
'The above theorem allows for an easier implementation of an augmenting ' path algorithm. Once we checked for augmenting paths starting from \(u_{\text {, }}\) 'we don't have to check for such paths in future rounds.

\section*{17 Augmenting Paths for Matchings}

\section*{Proof}
- Assume there is an augmenting path \(P^{\prime}\) w.r.t. \(M^{\prime}\) starting at \(u\).
- If \(P^{\prime}\) and \(P\) are node-disjoint, \(P^{\prime}\) is also augmenting path w.r.t. \(M\) ( ( ) .
- Let \(u^{\prime}\) be the first node on \(P^{\prime}\) that is in \(P\), and let \(e\) be the matching edge from \(M^{\prime}\) incident to \(u^{\prime}\).
- \(u^{\prime}\) splits \(P\) into two parts one of which does not contain \(e\). Call this part \(P_{1}\). Denote the sub-path of \(P^{\prime}\) from \(u\) to \(u^{\prime}\) with \(P_{1}^{\prime}\).
- \(P_{1} \circ P_{1}^{\prime}\) is augmenting path in \(M\) (隹).


\section*{How to find an augmenting path?}

\section*{Construct an alternating tree.}

even nodes odd nodes

\section*{Case 2:}
\(y\) is matched vertex
not in \(T\); then mate \([y] \notin T\) grow the tree

\section*{How to find an augmenting path?}

\section*{Construct an alternating tree.}

even nodes
odd nodes

\section*{Case 4:}
\(y\) is already contained in \(T\) as an even vertex
can't ignore \(y\)
does not happen in bipartite graphs

\section*{18 Weighted Bipartite Matching}

\section*{Weighted Bipartite Matching/Assignment}
- Input: undirected, bipartite graph \(G=L \cup R, E\).
- an edge \(e=(\ell, r)\) has weight \(w_{e} \geq 0\)
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

\section*{Simplifying Assumptions (wlog [why?]):}
- assume that \(|L|=|R|=n\)
- assume that there is an edge between every pair of nodes \((\ell, r) \in V \times V\)
- can assume goal is to construct maximum weight perfect matching
\begin{tabular}{|c|c|}
\hline & gorithm \(49 \mathrm{BiMatch}(G\), match \()\) \\
\hline \multicolumn{2}{|l|}{\[
\text { 1: for } x \in V \text { do mate }[x] \leftarrow 0 \text {; }
\]} \\
\hline \multicolumn{2}{|l|}{\[
\text { 2: } r \leftarrow 0 \text {; free } \leftarrow n \text {; }
\]} \\
\hline & while free \(\geq 1\) and \(r<n\) do \\
\hline 4: & \(r \leftarrow r+1\) \\
\hline 5: & if mate \([r]=0\) then \\
\hline 6: & for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\) \\
\hline 7: & \(Q \leftarrow \varnothing\); \(Q\).append \((r)\); aug \(\leftarrow\) false; \\
\hline 8: & while \(a u g=\) false and \(Q \neq \varnothing\) do \\
\hline 9: & \(x \leftarrow Q\). dequeue(); \\
\hline 10: & for \(y \in A_{x}\) do \\
\hline 11: & if mate \([y]=0\) then \\
\hline 12: & augm (mate, parent, \(y\) ); \\
\hline 13 & aug ヶtrue; \\
\hline 14: & free \(\leftarrow\) free - 1; \\
\hline 15 & else \\
\hline 16: & if parent \([y]=0\) then \\
\hline 17: & parent \([y] \leftarrow x\); \\
\hline 18 & \(Q\). enqueue (mate \([y]\) ); \\
\hline
\end{tabular}

I The lecture slides ' contain a step by ' ' step explanation. '
\[
\text { graph } G=\left(S \cup S^{\prime}, E\right)
\]
\[
S=\{1, \ldots, n\}
\]
\[
S^{\prime}=\left\{1^{\prime}, \ldots, n^{\prime}\right\}
\]
            aug \(=\) false and \(Q \neq \varnothing\) do
                    \(x \leftarrow Q\). dequeue()
                    if mate \([y]=0\) then
                                    augm (mate, parent, \(y\) );
                                    aug \(\leftarrow\) true;
                                    free \(\leftarrow\) free -1 ;
                                    if parent \([y]=0\) then
                                    \(Q\). enqueue (mate \([y]\) );

\section*{Weighted Bipartite Matching}

\section*{Theorem 91 (Halls Theorem)}

A bipartite graph \(G=(L \cup R, E)\) has a perfect matching if and only if for all sets \(S \subseteq L,|\Gamma(S)| \geq|S|\), where \(\Gamma(S)\) denotes the set of nodes in \(R\) that have a neighbour in \(S\).

\section*{18 Weighted Bipartite Matching}


\section*{Halls Theorem}

\section*{Proof:}
\(\Leftarrow\) Of course, the condition is necessary as otherwise not all nodes in \(S\) could be matched to different neigbhours.
\(\Rightarrow\) For the other direction we need to argue that the minimum cut in the graph \(G^{\prime}\) is at least \(|L|\).
- Let \(S\) denote a minimum cut and let \(L_{S} \stackrel{\text { def }}{=} L \cap S\) and \(R_{S} \stackrel{\text { odf }}{=} R \cap S\) denote the portion of \(S\) inside \(L\) and \(R\), respectively.
- Clearly, all neighbours of nodes in \(L_{S}\) have to be in \(S\), as otherwise we would cut an edge of infinite capacity.
- This gives \(R_{S} \geq\left|\Gamma\left(L_{S}\right)\right|\).
- The size of the cut is \(|L|-\left|L_{S}\right|+\left|R_{S}\right|\).
- Using the fact that \(\left|\Gamma\left(L_{S}\right)\right| \geq L_{S}\) gives that this is at least \(|L|\).

\section*{Algorithm Outline}

\section*{Reason:}
- The weight of your matching \(M^{*}\) is
\[
\sum_{(u, v) \in M^{*}} w_{(u, v)}=\sum_{(u, v) \in M^{*}}\left(x_{u}+x_{v}\right)=\sum_{v} x_{v}
\]
- Any other perfect matching \(M\) (in \(G\), not necessarily in \(H(\vec{x})\) ) has
\[
\sum_{(u, v) \in M} w_{(u, v)} \leq \sum_{(u, v) \in M}\left(x_{u}+x_{v}\right)=\sum_{v} x_{v}
\]

Let \(H(\vec{x})\) denote the subgraph of \(G\) that only contains edges that are tight w.r.t. the node weighting \(\vec{x}\), i.e. edges \(e=(u, v)\) for which \(w_{e}=x_{u}+x_{v}\).
- Try to compute a perfect matching in the subgraph \(H(\vec{x})\). If you are successful you found an optimal matching.

\section*{Algorithm Outline}

\section*{What if you don't find a perfect matching?}

Then, Halls theorem guarantees you that there is a set \(S \subseteq L\), with \(|\Gamma(S)|<|S|\), where \(\Gamma\) denotes the neighbourhood w.r.t. the subgraph \(H(\vec{x})\).

Idea: reweight such that:
- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

\section*{Changing Node Weights}

Increase node-weights in \(\Gamma(S)\) by \(+\delta\), and decrease the node-weights in \(S\) by \(-\delta\).
- Total node-weight decreases.
- Only edges from \(S\) to \(R-\Gamma(S)\) decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in \(H(\vec{x})\), and hence would go between \(S\) and \(\Gamma(S)\) ) we can do this decrement for small enough \(\delta>0\) until a new edge gets tight.


\section*{\(1 \square .1 /\) Harald Räck}

18 Weighted Bipartite Matching

\section*{Weighted Bipartite Matching}

Edges not drawn have weight 0
\[
\delta=1 \delta=1
\]


\section*{Analysis}

\section*{How many iterations do we need?}
- One reweighting step increases the number of edges out of \(S\) by at least one.
- Assume that we have a maximum matching that saturates the set \(\Gamma(S)\), in the sense that every node in \(\Gamma(S)\) is matched to a node in \(S\) (we will show that we can always find \(S\) and a matching such that this holds).
- This matching is still contained in the new graph, because all its edges either go between \(\Gamma(S)\) and \(S\) or between \(L-S\) and \(R-\Gamma(S)\).
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

\section*{Analysis}
- We will show that after at most \(n\) reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

\section*{\(\boxed{71}\) Harald Räck}

\section*{Analysis}

\section*{How do we find \(S\) ?}
- Start on the left and compute an alternating tree, starting at any free node \(u\).
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at \(u\) ).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex \(u\). Hence, \(\left|V_{\text {odd }}\right|=\left|\Gamma\left(V_{\text {even }}\right)\right|<\left|V_{\text {even }}\right|\), and all odd vertices are saturated in the current matching.

\section*{How to find an augmenting path?}

\section*{Construct an alternating tree.}

18 Weighted Bipartite Matching

18 Weighted Bipartite Matching

\section*{Analysis}
- The current matching does not have any edges from \(V_{\text {odd }}\) to \(L \backslash V_{\text {even }}\) (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting \(V_{\text {even }}\) to a node outside of \(V_{\text {odd }}\). After at most \(n\) reweights we can do an augmentation.
- A reweighting can be trivially performed in time \(\mathcal{O}\left(n^{2}\right)\) (keeping track of the tight edges).
- An augmentation takes at most \(\mathcal{O}(n)\) time.
- In total we obtain a running time of \(\mathcal{O}\left(n^{4}\right)\).
- A more careful implementation of the algorithm obtains a running time of \(\mathcal{O}\left(n^{3}\right)\).
\begin{tabular}{|c|c|c|}
\hline\(T \|\) Harald Räcke & 18 Weighted Bipartite Matching & 6. Feb. 2024 \\
\(557 / 579\) \\
\hline
\end{tabular}

How to find an augmenting path?

\section*{Construct an alternating tree.}

even nodes
odd nodes

\section*{Case 4:}
\(y\) is already contained in \(T\) as an even vertex

\section*{can't ignore \(y\)}

The cycle \(w \leftrightarrow y-x \leftrightarrow w\) is called a blossom. \(w\) is called the base of the blossom (even node!!!). The path \(u-w\) is called the stem of the blossom.

\section*{Flowers and Blossoms}



\section*{Flowers and Blossoms}

\section*{Properties:}
4. Every node \(x\) in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
5. The even alternating path to \(x\) terminates with a matched edge and the odd path with an unmatched edge.

\section*{Shrinking Blossoms}

When during the alternating tree construction we discover a
blossom \(B\) we replace the graph \(G\) by \(G^{\prime}=G / B\), which is
obtained from \(G\) by contracting the blossom \(B\).
- Delete all vertices in \(B\) (and its incident edges) from \(G\).
- Add a new (pseudo-)vertex \(b\). The new vertex \(b\) is connected to all vertices in \(V \backslash B\) that had at least one edge to a vertex from \(B\).

\section*{Flowers and Blossoms}

\(\boxed{\boxed{5}}\) Harald Räcke

19 Maximum Matching in General Graphs

\section*{Shrinking Blossoms}
- Edges of \(T\) that connect a node \(u\) not in \(B\) to a node in \(B\) become tree edges in \(T^{\prime}\) connecting \(u\) to \(b\).
- Matching edges (there is at most one) that connect a node \(u\) not in \(B\) to a node in \(B\) become matching edges in \(M^{\prime}\).
- Nodes that are connected in \(G\) to at least one node in \(B\) become connected to \(b\) in \(G^{\prime}\).


\section*{Shrinking Blossoms}
- Edges of \(T\) that connect a node \(u\) not in \(B\) to a node in \(B\) become tree edges in \(T^{\prime}\) connecting \(u\) to \(b\).
- Matching edges (there is at most one) that connect a node \(u\) not in \(B\) to a node in \(B\) become matching edges in \(M^{\prime}\).
- Nodes that are connected in \(G\) to at least one node in \(B\) become connected to \(b\) in \(G^{\prime}\).

\section*{\(\boxed{71}\) Harald Räck}

19 Maximum Matching in General Graphs

\section*{Correctness}

Assume that in \(G\) we have a flower w.r.t. matching \(M\). Let \(r\) be the root, \(B\) the blossom, and \(w\) the base. Let graph \(G^{\prime}=G / B\) with pseudonode \(b\). Let \(M^{\prime}\) be the matching in the contracted graph.

Lemma 93
If \(G^{\prime}\) contains an augmenting path \(P^{\prime}\) starting at \(r\) (or the pseudo-node containing \(r\) ) w.r.t. the matching \(M^{\prime}\) then \(G\) contains an augmenting path starting at \(r\) w.r.t. matching \(M\).

\section*{Correctness}

\section*{Proof.}

If \(P^{\prime}\) does not contain \(b\) it is also an augmenting path in \(G\).

\section*{Case 1: non-empty stem}
- Next suppose that the stem is non-empty.


\section*{Correctness}
- After the expansion \(\ell\) must be incident to some node in the blossom. Let this node be \(k\).
- If \(k \neq w\) there is an alternating path \(P_{2}\) from \(w\) to \(k\) that ends in a matching edge
- \(P_{1} \circ(i, w) \circ P_{2} \circ(k, \ell) \circ P_{3}\) is an alternating path.
- If \(k=w\) then \(P_{1} \circ(i, w) \circ(w, \ell) \circ P_{3}\) is an alternating path.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Correctness} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Lemma 94 \\
If \(G\) contains an augmenting path \(P\) from \(r\) to \(q\) w.r.t. matching \(M\) then \(G^{\prime}\) contains an augmenting path from \(r\) (or the pseudo-node containing \(r\) ) to \(q\) w.r.t. \(M^{\prime}\).
\end{tabular}} \\
\hline
\end{tabular}

\section*{Correctness}

\section*{Proof.}

\section*{Case 2: empty stem}
- If the stem is empty then after expanding the blossom, \(w=r\).

- The path \(r \circ P_{2} \circ(k, \ell) \circ P_{3}\) is an alternating path.
\begin{tabular}{|cr|}
\hline \multicolumn{3}{c|}{19 Maximum Matching in General Graphs } & 6. Feb. 2024 \\
Harald Räcke & \(570 / 579\) \\
\hline
\end{tabular}

\section*{Correctness}

\section*{Proof.}
- If \(P\) does not contain a node from \(B\) there is nothing to prove.
- We can assume that \(r\) and \(q\) are the only free nodes in \(G\).

\section*{Case 1: empty stem}

Let \(i\) be the last node on the path \(P\) that is part of the blossom.
\(P\) is of the form \(P_{1} \circ(i, j) \circ P_{2}\), for some node \(j\) and \((i, j)\) is unmatched.
\((b, j) \circ P_{2}\) is an augmenting path in the contracted network.

\section*{Correctness}

Illustration for Case 1:


\section*{Correctness}

\section*{Case 2: non-empty stem}

Let \(P_{3}\) be alternating path from \(r\) to \(w\); this exists because \(r\) and \(w\) are root and base of a blossom. Define \(M_{+}=M \oplus P_{3}\).
\(\ln M_{+}, r\) is matched and \(w\) is unmatched.
\(G\) must contain an augmenting path w.r.t. matching \(M_{+}\), since \(M\) and \(M_{+}\)have same cardinality.

This path must go between \(w\) and \(q\) as these are the only unmatched vertices w.r.t. \(M_{+}\).

For \(M_{+}^{\prime}\) the blossom has an empty stem. Case 1 applies.
\(G^{\prime}\) has an augmenting path w.r.t. \(M_{+}^{\prime}\). It must also have an augmenting path w.r.t. \(M^{\prime}\), as both matchings have the same cardinality.

This path must go between \(r\) and \(q\). contain a step by step explanation. '
Algorithm 50 search ( \(r\), found)
Algorithm 50 search ( \(r\), found)
    set \(\bar{A}(i) \leftarrow A(i)\) for all nodes \(i\)
    set \(\bar{A}(i) \leftarrow A(i)\) for all nodes \(i\)
    found \(\leftarrow\) false
    found \(\leftarrow\) false
    unlabel all nodes;
    unlabel all nodes;
    give an even label to \(r\) and initialize list \(\leftarrow\{r\}\)
    give an even label to \(r\) and initialize list \(\leftarrow\{r\}\)
    while list \(\neq \varnothing\) do
    while list \(\neq \varnothing\) do
        delete a node \(i\) from list
        delete a node \(i\) from list
        examine( \(i\), found \()\)
        examine( \(i\), found \()\)
            if found \(=\) true then return
            if found \(=\) true then return

Search for an augmenting path starting at \(r\).


Contract blossom identified by nodes \(i\) and \(j\)

\section*{Algorithm 52 contract \((i, j)\)}

1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
3: label \(b\) even and add to list
4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
5: form a circular double linked list of nodes in \(B\)
6: delete nodes in \(B\) from the graph

Get all nodes of the blossom.
Time: \(\mathcal{O}(m)\)

1719 Maximum Matching in General Graphs



\section*{Algorithm 52 contract \((i, j)\)}

1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
3: label \(b\) even and add to list
4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
5: form a circular double linked list of nodes in \(B\)
6: delete nodes in \(B\) from the graph


Every node that was adjacent to a node
in \(B\) is now adjacent to \(b\)


\section*{Algorithm 52 contract \((i, j)\)}

1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
3: label \(b\) even and add to list
4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
5: form a circular double linked list of nodes in \(B\)
6: delete nodes in \(B\) from the graph

Only for making a blossom expansion easier.

19 Maximum Matching in General Graph

\section*{Analysis}
- A contraction operation can be performed in time \(\mathcal{O}(m)\). Note, that any graph created will have at most \(m\) edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time \(\mathcal{O}(m)\).
- There are at most \(n\) contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time \(\mathcal{O}(n)\). There are at most \(n\) of them.
- In total the running time is at most
\[
n \cdot(\mathcal{O}(m n)+\mathcal{O}(n))=\mathcal{O}\left(m n^{2}\right)
\]
```

