Part V

Matchings

Matching

- Input: undirected graph $G=(V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

16 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)$.
- Capacity scaling: $\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)$.
- Shortest augmenting path: $\mathcal{O}\left(m n^{2}\right)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m \sqrt{n})$.

17 Augmenting Paths for Matchings

Definitions.

- Given a matching M in a graph G, a vertex that is not incident to any edge of M is called a free vertex w.r. .t. M.
- For a matching M a path P in G is called an alternating path if edges in M alternate with edges not in M.
- An alternating path is called an augmenting path for matching M if it ends at distinct free vertices.

Theorem 89
A matching M is a maximum matching if and only if there is no augmenting path w.r.t. M.

Augmenting Paths in Action

17 Augmenting Paths for Matchings

Augmenting Paths in Action

17 Augmenting Paths for Matchings

17 Augmenting Paths for Matchings

Proof.

\Rightarrow If M is maximum there is no augmenting path P, because we could switch matching and non-matching edges along P. This gives matching $M^{\prime}=M \oplus P$ with larger cardinality.
\Leftarrow Suppose there is a matching M^{\prime} with larger cardinality. Consider the graph H with edge-set $M^{\prime} \oplus M$ (i.e., only edges that are in either M or M^{\prime} but not in both).

Each vertex can be incident to at most two edges (one from M and one from M^{\prime}). Hence, the connected components are alternating cycles or alternating path.

As $\left|M^{\prime}\right|>|M|$ there is one connected component that is a path P for which both endpoints are incident to edges from $M^{\prime} . P$ is an alternating path.

17 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 90

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M^{\prime}=M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M^{\prime}.

17 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P^{\prime} w.r.t. M^{\prime} starting at u.
- If P^{\prime} and P are node-disjoint, P^{\prime} is also augmenting path w.r.t. M (z).
- Let u^{\prime} be the first node on P^{\prime} that is in P, and let e be the matching edge from M^{\prime} incident to u^{\prime}.
- u^{\prime} splits P into two parts one of which does not contain e. Call this part P_{1}. Denote the sub-path of P^{\prime} from u to u^{\prime} with P_{1}^{\prime}.
$-P_{1} \circ P_{1}^{\prime}$ is augmenting path in $M(z)$.

How to find an augmenting path?

Construct an alternating tree.

even nodes
odd nodes

Case 1:
y is free vertex not contained in T
you found alternating path

17 Augmenting Paths for Matchings

How to find an augmenting path?

Construct an alternating tree.

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 3: y is already contained in T as an odd vertex
ignore successor y

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex can't ignore y
does not happen in bipartite graphs

```
Algorithm 49 BiMatch ( \(G\), match)
    for \(x \in V\) do mate \([x] \leftarrow 0\);
    \(r \leftarrow 0\); free \(\leftarrow n\);
    while free \(\geq 1\) and \(r<n\) do
    4: \(\quad r \leftarrow r+1\)
    5: if mate \([r]=0\) then
    6: \(\quad\) for \(i=1\) to \(n\) do parent \(\left[i^{\prime}\right] \leftarrow 0\)
    7: \(\quad Q \leftarrow \varnothing ; Q\).append \((r) ;\) aug \(\leftarrow\) false;
    8: \(\quad\) while \(a u g=\) false and \(Q \neq \varnothing\) do
    9: \(\quad x \leftarrow Q\). dequeue();
10: \(\quad\) for \(y \in A_{x}\) do
11: if mate \([y]=0\) then
        augm (mate, parent, \(y\) );
        aug \(\leftarrow\) true;
        free \(\leftarrow\) free - 1 ;
        else
        if parent \([y]=0\) then
        parent \([y] \leftarrow x\);
        \(Q\).enqueue( mate[ \(y]\) );
```

The lecture slides contain a step by istep explanation.

$$
\begin{aligned}
S & =\{1, \ldots, n\} \\
S^{\prime} & =\left\{1^{\prime}, \ldots, n^{\prime}\right\}
\end{aligned}
$$

18 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- Input: undirected, bipartite graph $G=L \cup R, E$.
- an edge $e=(\ell, r)$ has weight $w_{e} \geq 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that $|L|=|R|=n$
- assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

Weighted Bipartite Matching

Theorem 91 (Halls Theorem)
A bipartite graph $G=(L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L,|\Gamma(S)| \geq|S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

18 Weighted Bipartite Matching

Halls Theorem

Proof:

\Leftarrow Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neigbhours.
\Rightarrow For the other direction we need to argue that the minimum cut in the graph G^{\prime} is at least $|L|$.

- Let S denote a minimum cut and let $L_{S} \stackrel{\text { def }}{=} L \cap S$ and $R_{S} \stackrel{\text { def }}{=} R \cap S$ denote the portion of S inside L and R, respectively.
- Clearly, all neighbours of nodes in L_{S} have to be in S, as otherwise we would cut an edge of infinite capacity.
- This gives $R_{S} \geq\left|\Gamma\left(L_{S}\right)\right|$.
- The size of the cut is $|L|-\left|L_{S}\right|+\left|R_{S}\right|$.
- Using the fact that $\left|\Gamma\left(L_{S}\right)\right| \geq L_{S}$ gives that this is at least $|L|$.

Algorithm Outline

Idea:

We introduce a node weighting \vec{x}. Let for a node $v \in V, x_{v} \in \mathbb{R}$ denote the weight of node v.

- Suppose that the node weights dominate the edge-weights in the following sense:

$$
x_{u}+x_{v} \geq w_{e} \text { for every edge } e=(u, v)
$$

- Let $H(\vec{x})$ denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting \vec{x}, i.e. edges $e=(u, v)$ for which $w_{e}=x_{u}+x_{v}$.
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Algorithm Outline

Reason:

- The weight of your matching M^{*} is

$$
\sum_{(u, v) \in M^{*}} w_{(u, v)}=\sum_{(u, v) \in M^{*}}\left(x_{u}+x_{v}\right)=\sum_{v} x_{v}
$$

- Any other perfect matching M (in G, not necessarily in $H(\vec{x})$) has

$$
\sum_{(u, v) \in M} w_{(u, v)} \leq \sum_{(u, v) \in M}\left(x_{u}+x_{v}\right)=\sum_{v} x_{v}
$$

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with
$|\Gamma(S)|<|S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- Only edges from S to $R-\Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between S and $\Gamma(S)$) we can do this decrement for small enough $\delta>0$ until a new edge gets tight.

Weighted Bipartite Matching

Edges not drawn have weight 0 .

$$
\delta=1 \delta=1
$$

Analysis

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in S (we will show that we can always find S and a matching such that this holds).
- This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between $L-S$ and $R-\Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

How to find an augmenting path?

Construct an alternating tree.

Analysis

How do we find S ?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at u).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex u. Hence, $\left|V_{\text {odd }}\right|=\left|\Gamma\left(V_{\text {even }}\right)\right|<\left|V_{\text {even }}\right|$, and all odd vertices are saturated in the current matching.

Analysis

- The current matching does not have any edges from $V_{\text {odd }}$ to $L \backslash V_{\text {even }}$ (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting $V_{\text {even }}$ to a node outside of $V_{\text {odd }}$. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time $\mathcal{O}\left(n^{2}\right)$ (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we obtain a running time of $\mathcal{O}\left(n^{4}\right)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}\left(n^{3}\right)$.

How to find an augmenting path?

Construct an alternating tree.

even nodes odd nodes

Case 4: y is already contained in T as an even vertex

can't ignore y

The cycle $w \leftrightarrow y-x \leftrightarrow w$ is called a blossom. w is called the base of the blossom (even node!!!).
The path $u-w$ is called the stem of the blossom.

Flowers and Blossoms

Definition 92

A flower in a graph $G=(V, E)$ w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that $r=w$ (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Flowers and Blossoms

Flowers and Blossoms

Properties:

1. A stem spans $2 \ell+1$ nodes and contains ℓ matched edges for some integer $\ell \geq 0$.
2. A blossom spans $2 k+1$ nodes and contains k matched edges for some integer $k \geq 1$. The matched edges match all nodes of the blossom except the base.
3. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Flowers and Blossoms

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by $G^{\prime}=G / B$, which is obtained from G by contracting the blossom B.

- Delete all vertices in B (and its incident edges) from G.
- Add a new (pseudo-)vertex b. The new vertex b is connected to all vertices in $V \backslash B$ that had at least one edge to a vertex from B.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T^{\prime} connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M^{\prime}.
- Nodes that are connected in G to at least one node in B become connected to b in G^{\prime}.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T^{\prime} connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M^{\prime}.
- Nodes that are connected in G to at least one node in B become connected to b in G^{\prime}.

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the
lecture version of the slides.

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be the root, B the blossom, and w the base. Let graph $G^{\prime}=G / B$ with pseudonode b. Let M^{\prime} be the matching in the contracted graph.

Lemma 93

If G^{\prime} contains an augmenting path P^{\prime} starting at r (or the pseudo-node containing r) w.r.t. the matching M^{\prime} then G contains an augmenting path starting at r w.r.t. matching M.

Correctness

Proof.

If P^{\prime} does not contain b it is also an augmenting path in G.
Case 1: non-empty stem

- Next suppose that the stem is non-empty.

Correctness

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_{2} from w to k that ends in a matching edge.
- $P_{1} \circ(i, w) \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.
- If $k=w$ then $P_{1} \circ(i, w) \circ(w, \ell) \circ P_{3}$ is an alternating path.

Correctness

Proof.
Case 2: empty stem

- If the stem is empty then after expanding the blossom, $w=r$.

- The path $r \circ P_{2} \circ(k, \ell) \circ P_{3}$ is an alternating path.

Correctness

Lemma 94
If G contains an augmenting path P from r to q w.r.t. matching M then G^{\prime} contains an augmenting path from r (or the p seudo-node containing r) to q w.r.t. M^{\prime}.

Correctness

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.
P is of the form $P_{1} \circ(i, j) \circ P_{2}$, for some node j and (i, j) is unmatched.
$(b, j) \circ P_{2}$ is an augmenting path in the contracted network.

Correctness

Illustration for Case 1:

Correctness

Case 2: non-empty stem

Let P_{3} be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_{+}=M \oplus P_{3}$. In M_{+}, r is matched and w is unmatched.
G must contain an augmenting path w.r.t. matching M_{+}, since M and M_{+}have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_{+}.

For M_{+}^{\prime} the blossom has an empty stem. Case 1 applies.
G^{\prime} has an augmenting path w.r.t. M_{+}^{\prime}. It must also have an augmenting path w.r.t. M^{\prime}, as both matchings have the same cardinality.

This path must go between r and q.

The lecture slides contain a step by
Algorithm 50 search $(r$, found $)$ step explanation.'

1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
2: found \leftarrow false
3: unlabel all nodes;
4: give an even label to r and initialize list $\leftarrow\{r\}$
5: while list $\neq \varnothing$ do
6: delete a node i from list
7: examine(i, found)
8: \quad if found $=$ true then return

Search for an augmenting path starting at r.

```
Algorithm 51 examine( \(i\), found)
    1: for all \(j \in \bar{A}(i)\) do
    2: \(\quad\) if \(j\) is even then contract \((i, j)\) and return
    3: \(\quad\) if \(j\) is unmatched then
    4: \(\quad q \leftarrow j\);
    5: \(\quad \operatorname{pred}(q) \leftarrow i\);
    6: found \(\leftarrow\) true;
    7: return
    8: \(\quad\) if \(j\) is matched and unlabeled then
    9: \(\quad \operatorname{pred}(j) \leftarrow i\);
10: \(\quad \operatorname{pred}(\operatorname{mate}(j)) \leftarrow j\);
11: add mate( \(j\) ) to list
```

 The lecture slides
 contain a step by
 'step explanation. '
 Examine the neighbours of a node i

```
Algorithm 52 contract \((i, j)\)
    1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
    2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
    3: label \(b\) even and add to list
    4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
    5: form a circular double linked list of nodes in \(B\)
    6: delete nodes in \(B\) from the graph
```

Contract blossom identified by nodes i and j

```
Algorithm 52 contract \((i, j)\)
    1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
    2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
    3: label \(b\) even and add to list
    4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
    5: form a circular double linked list of nodes in \(B\)
    6: delete nodes in \(B\) from the graph
```

Get all nodes of the blossom.
Time: $\mathcal{O}(m)$

```
Algorithm 52 contract \((i, j)\)
    1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
    2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
    3: label \(b\) even and add to list
    4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
    5: form a circular double linked list of nodes in \(B\)
    6: delete nodes in \(B\) from the graph
```

 Identify all neighbours of \(b\).
 Time: \(\mathcal{O}(m)\) (how?)

Algorithm 52 contract (i, j)
 1: trace pred-indices of i and j to identify a blossom B
 2: create new node b and set $\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)$
 3: label b even and add to list
 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}$ for each $j \in \bar{A}(b)$
 5: form a circular double linked list of nodes in B
 6: delete nodes in B from the graph

b will be an even node, and it has unexamined neighbours.

```
Algorithm 52 contract \((i, j)\)
    1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
    2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
    3: label \(b\) even and add to list
    4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
    5: form a circular double linked list of nodes in \(B\)
    6: delete nodes in \(B\) from the graph
```

 Every node that was adjacent to a node
 in \(B\) is now adjacent to \(b\)
    ```
Algorithm 52 contract \((i, j)\)
    1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
    2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
    3: label \(b\) even and add to list
    4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
    5: form a circular double linked list of nodes in \(B\)
    6: delete nodes in \(B\) from the graph
```

Only for making a blossom expansion easier.

```
Algorithm 52 contract \((i, j)\)
    1: trace pred-indices of \(i\) and \(j\) to identify a blossom \(B\)
    2: create new node \(b\) and set \(\bar{A}(b) \leftarrow \cup_{x \in B} \bar{A}(x)\)
    3: label \(b\) even and add to list
    4: update \(\bar{A}(j) \leftarrow \bar{A}(j) \cup\{b\}\) for each \(j \in \bar{A}(b)\)
    5: form a circular double linked list of nodes in \(B\)
    6: delete nodes in \(B\) from the graph
```

Only delete links from nodes not in B to B. When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.

Analysis

- A contraction operation can be performed in time $\mathcal{O}(m)$. Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

$$
n \cdot(\mathcal{O}(m n)+\mathcal{O}(n))=\mathcal{O}\left(m n^{2}\right)
$$

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the
lecture version of the slides.

