We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- We are usually interested in the running times for large values of n. Then constant additive terms do not play an important role.
- An exact analysis (e.g. exactly counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- Running time should be expressed by simple functions.

Formal Definition

Let f, g denote functions from \mathbb{N} to \mathbb{R}^+ .

• $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)] \}$ (set of functions that asymptotically grow not faster than f)

Formal Definition

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)] \}$ (set of functions that asymptotically grow not faster than f)
- ▶ $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 \colon [g(n) \geq c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)

Formal Definition

- ▶ $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)]\}$ (set of functions that asymptotically grow not faster than f)
- ▶ $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \geq c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)

Formal Definition

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)] \}$ (set of functions that asymptotically grow not faster than f)
- ▶ $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \geq c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- ▶ $o(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)

Formal Definition

- $\mathcal{O}(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)] \}$ (set of functions that asymptotically grow not faster than f)
- ▶ $\Omega(f) = \{g \mid \exists c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \geq c \cdot f(n)]\}$ (set of functions that asymptotically grow not slower than f)
- $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$ (functions that asymptotically have the same growth as f)
- ▶ $o(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \leq c \cdot f(n)]\}$ (set of functions that asymptotically grow slower than f)
- ▶ $\omega(f) = \{g \mid \forall c > 0 \ \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \geq c \cdot f(n)]\}$ (set of functions that asymptotically grow faster than f)

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}_0^+ .

- Note that for the version of the Landau notation defined here, we assume that f and g are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}_0^+ .

- Note that for the version of the Landau notation defined here, we assume that f and g are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}_0^+ .

$$\triangleright g \in \mathcal{O}(f)$$
: $0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$

•
$$g \in \Omega(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$

$$g \in \Theta(f): \quad 0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$$

- Note that for the version of the Landau notation defined here, we assume that f and g are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}_0^+ .

$$\triangleright g \in \mathcal{O}(f): \quad 0 \le \lim_{n \to \infty} \frac{g(n)}{f(n)} < \infty$$

•
$$g \in \Omega(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$

- Note that for the version of the Landau notation defined here, we assume that f and g are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}_0^+ .

•
$$g \in \Omega(f)$$
: $0 < \lim_{n \to \infty} \frac{g(n)}{f(n)} \le \infty$

$$\triangleright g \in \omega(f)$$
: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$

- Note that for the version of the Landau notation defined here, we assume that f and g are positive functions.
- There also exist versions for arbitrary functions, and for the case that the limes is not infinity.

Abuse of notation

1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).

2. In this context f(n) does not mean the function f evaluated at n, but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule)

of correspondence of the function).

3. This is particularly useful if you do not want to ignore constant factors. For example the median of n elements can be determined using $\frac{3}{2}n + o(n)$ comparisons.

of correspondence of the function).

Abuse of notation

- 1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \to \mathbb{R}^+, n \mapsto f(n)$, and $g: \mathbb{N} \to \mathbb{R}^+, n \mapsto g(n)$.

2. In this context f(n) does **not** mean the function f evaluated at n, but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule using $\frac{3}{2}n + o(n)$ comparisons.

Abuse of notation

- 1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f: \mathbb{N} \to \mathbb{R}^+$, $n \mapsto f(n)$, and $g: \mathbb{N} \to \mathbb{R}^+$, $n \mapsto g(n)$.
- 3. People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z: \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that h(n) = f(n) + z(n).

- **2.** In this context f(n) does **not** mean the function f evaluated at n, but instead it is a shorthand for the function itself (leaving out do-1
 - 3. This is particularly useful if you do not want to ignore constant factors. For example the median of n elements can be determined main and codomain and only giving the rule using $\frac{3}{2}n + o(n)$ comparisons. of correspondence of the function).

Abuse of notation

- 1. People write $f = \mathcal{O}(g)$, when they mean $f \in \mathcal{O}(g)$. This is **not** an equality (how could a function be equal to a set of functions).
- **2.** People write $f(n) = \mathcal{O}(g(n))$, when they mean $f \in \mathcal{O}(g)$, with $f : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto f(n)$, and $g : \mathbb{N} \to \mathbb{R}^+$, $n \mapsto g(n)$.
 - **3.** People write e.g. h(n) = f(n) + o(g(n)) when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that h(n) = f(n) + z(n).
- **4.** People write $\mathcal{O}(f(n)) = \mathcal{O}(g(n))$, when they mean $\mathcal{O}(f(n)) \subseteq \mathcal{O}(g(n))$. Again this is not an equality.
- 2. In this context f(n) does **not** mean the function f evaluated at n, but instead it is a shorthand for the function itself (leaving out domain and codomain and only giving the rule of correspondence of the function).

How do we interpret an expression like:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

How do we interpret an expression like:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

How do we interpret an expression like:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

Here, $\Theta(n)$ stands for an anonymous function in the set $\Theta(n)$ that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

How do we interpret an expression like:

$$2n^2 + \mathcal{O}(n) = \Theta(n^2)$$

How do we interpret an expression like:

$$2n^2 + \mathcal{O}(n) = \Theta(n^2)$$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta(n^2)$ that makes the expression true.

How do we interpret an expression like:

$$\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$$

How do we interpret an expression like:

$$\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$$

Careful!

The $\Theta(i)$ -symbol on the left represents one anonymous function $f: \mathbb{N} \to \mathbb{R}^+$, and then $\sum_i f(i)$ is computed.

How do we interpret an expression like:

$$\sum_{i=1}^{n} \Theta(i) = \Theta(n^2)$$

Careful!

"It is understood" that every occurrence of an \mathcal{O} -symbol (or $\Theta, \Omega, \rho, \omega$) on the left represents one anonymous function.

Hence, the left side is **not** equal to

$$\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n)$$

 $\Theta(1) + \Theta(2) + \cdots + \Theta(n-1) + \Theta(n)$ does not really have a reasonable interpreta-

We can view an expression containing asymptotic notation as generating a set:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n)$$

represents

$$\begin{cases} f: \mathbb{N} \to \mathbb{R}^+ \mid f(n) = n^2 \cdot g(n) + h(n) \\ & \text{with } g(n) \in \mathcal{O}(n) \text{ and } h(n) \in \mathcal{O}(\log n) \end{cases}$$
 Recall that according to the previous slide e.g. the expressions $\sum_{i=1}^n \mathcal{O}(i)$ and $\sum_{i=1}^{n-1} \mathcal{O}(i) + \sum_{i=n/2+1}^n \mathcal{O}(i)$ generate differential of the previous of the

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) = \Theta(n^2)$$

represents

$$n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) \subseteq \Theta(n^2)$$

Note that the equation does not hold.

Lemma 1

Let f,g be functions with the property

$$\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$$
 (the same for g). Then

 $ightharpoonup c c \cdot f(n) \in \Theta(f(n))$ for any constant c

Lemma 1

Let f, g be functions with the property

 $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c

Lemma 1

Let f, g be functions with the property

 $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\bullet \ \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$

Lemma 1

Let f, g be functions with the property

 $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

- $ightharpoonup c \cdot f(n) \in \Theta(f(n))$ for any constant c
- O(f(n)) + O(g(n)) = O(f(n) + g(n))
- $\bullet \ \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\bullet \ \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

Lemma 1

Let f, g be functions with the property

 $\exists n_0 > 0 \ \forall n \ge n_0 : f(n) > 0$ (the same for g). Then

- $c \cdot f(n) \in \Theta(f(n))$ for any constant c
- $\bullet \ \mathcal{O}(f(n)) \cdot \mathcal{O}(g(n)) = \mathcal{O}(f(n) \cdot g(n))$
- $\bullet \ \mathcal{O}(f(n)) + \mathcal{O}(g(n)) = \mathcal{O}(\max\{f(n), g(n)\})$

The expressions also hold for Ω . Note that this means that $f(n) + g(n) \in \Theta(\max\{f(n), g(n)\})$.

Comments

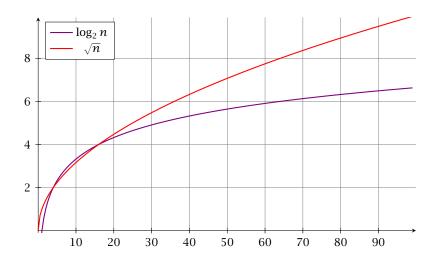
Do not use asymptotic notation within induction proofs.

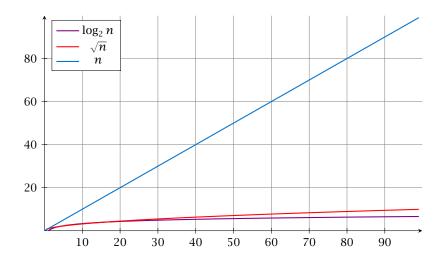
Comments

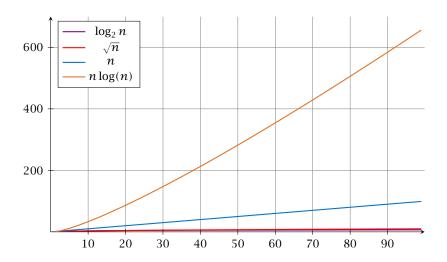
- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log_a n = \Theta(\log_b n)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.

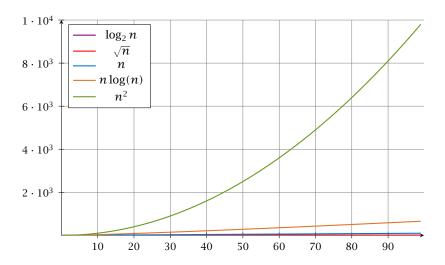
Comments

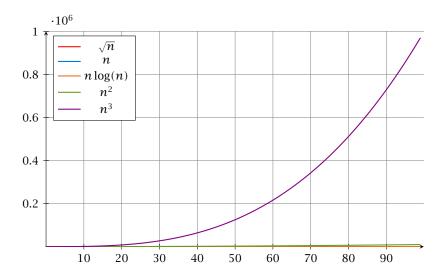
- Do not use asymptotic notation within induction proofs.
- For any constants a, b we have $\log_a n = \Theta(\log_b n)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- In general $\log n = \log_2 n$, i.e., we use 2 as the default base for the logarithm.

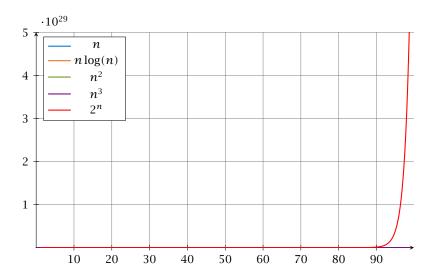












Laufzeiten

Funktion	Eingabelänge n							
f(n)	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10 ⁷	10^{8}
$\log n$	33 ns	66ns	0.1µs	0.1µs	0.2µs	0.2µs	0.2µs	0.3µs
\sqrt{n}	32ns	$0.1 \mu s$	0.3µs	1µs	3.1 µs	10 µs	31 µs	$0.1 \mathrm{ms}$
n	100ns	1µs	10 µs	$0.1 \mathrm{ms}$	1ms	10ms	0.1s	1s
$n \log n$	0.3µs	6.6µs	0.1ms	1.3ms	16ms	0.2s	2.3s	27s
$n^{3/2}$	0.3µs	10µs	0.3ms	10ms	0.3s	10s	5.2min	2.7h
n^2	1µs	$0.1 \mathrm{ms}$	10ms	1s	1.7min	2.8h	11 d	3.2 y
n^3	10µs	10ms	10s	2.8h	115 d	317 y	3.2·10 ⁵ y	
1.1^{n}	26ns	0.1 ms	$7.8 \cdot 10^{25}$ y					
2^n	10µs	$4\cdot 10^{14}$ y						
n!	36ms	$3 \cdot 10^{142}$ y						

1 Operation = 10ns; 100MHz

Alter des Universums: ca. $13.8 \cdot 10^9 \mathrm{y}$

In general asymptotic classification of running times is a good measure for comparing algorithms:

▶ If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of *n*.

In general asymptotic classification of running times is a good measure for comparing algorithms:

- ▶ If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:

In general asymptotic classification of running times is a good measure for comparing algorithms:

- ▶ If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of *n*.
- However, suppose that I have two algorithms:
 - ► Algorithm A. Running time $f(n) = 1000 \log n = O(\log n)$.

In general asymptotic classification of running times is a good measure for comparing algorithms:

- ▶ If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of n.
- However, suppose that I have two algorithms:
 - ▶ Algorithm A. Running time $f(n) = 1000 \log n = O(\log n)$.
 - ► Algorithm B. Running time $g(n) = \log^2 n$.

In general asymptotic classification of running times is a good measure for comparing algorithms:

- ▶ If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of *n*.
- However, suppose that I have two algorithms:
 - Algorithm A. Running time $f(n) = 1000 \log n = \mathcal{O}(\log n)$.
 - ► Algorithm B. Running time $g(n) = \log^2 n$.

Clearly f = o(g). However, as long as $\log n \le 1000$ Algorithm B will be more efficient.

23/25

Sometimes the input for an algorithm consists of several parameters (e.g., nodes and edges of a graph (n and m)).

Sometimes the input for an algorithm consists of several parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asympotic statements for $n \to \infty$ and $m \to \infty$ we have to extend the definition to multiple variables.

Sometimes the input for an algorithm consists of several parameters (e.g., nodes and edges of a graph (n and m)).

If we want to make asymptoic statements for $n \to \infty$ and $m \to \infty$ we have to extend the definition to multiple variables.

Formal Definition

Let f, g denote functions from \mathbb{N}^d to \mathbb{R}_0^+ .

 $\mathcal{O}(f) = \{ g \mid \exists c > 0 \ \exists N \in \mathbb{N}_0 \ \forall \vec{n} \ \text{with} \ n_i \ge N \ \text{for some} \ i : \\ [g(\vec{n}) \le c \cdot f(\vec{n})] \}$

(set of functions that asymptotically grow not faster than f)

Example 2

 $f: \mathbb{N} \to \mathbb{R}_0^+, f(n,m) = 1 \text{ und } g: \mathbb{N} \to \mathbb{R}_0^+, g(n,m) = n-1$

Example 2

▶ $f: \mathbb{N} \to \mathbb{R}_0^+$, f(n,m) = 1 und $g: \mathbb{N} \to \mathbb{R}_0^+$, g(n,m) = n-1 then $f = \mathcal{O}(g)$ does not hold

- ▶ $f: \mathbb{N} \to \mathbb{R}_0^+$, f(n,m) = 1 und $g: \mathbb{N} \to \mathbb{R}_0^+$, g(n,m) = n-1 then $f = \mathcal{O}(g)$ does not hold
- $ightharpoonup f: \mathbb{N} \to \mathbb{R}_0^+, f(n,m) = 1 \text{ und } g: \mathbb{N} \to \mathbb{R}_0^+, g(n,m) = n$

- ▶ $f: \mathbb{N} \to \mathbb{R}_0^+$, f(n,m) = 1 und $g: \mathbb{N} \to \mathbb{R}_0^+$, g(n,m) = n-1 then $f = \mathcal{O}(g)$ does not hold
- ▶ $f: \mathbb{N} \to \mathbb{R}_0^+$, f(n,m) = 1 und $g: \mathbb{N} \to \mathbb{R}_0^+$, g(n,m) = n then: $f = \mathcal{O}(g)$

- ▶ $f: \mathbb{N} \to \mathbb{R}_0^+$, f(n,m) = 1 und $g: \mathbb{N} \to \mathbb{R}_0^+$, g(n,m) = n-1 then $f = \mathcal{O}(g)$ does not hold
- ► $f: \mathbb{N} \to \mathbb{R}_0^+$, f(n,m) = 1 und $g: \mathbb{N} \to \mathbb{R}_0^+$, g(n,m) = n then: $f = \mathcal{O}(g)$
- $ightharpoonup f: \mathbb{N}_0 \to \mathbb{R}_0^+, f(n,m) = 1 \text{ und } g: \mathbb{N}_0 \to \mathbb{R}_0^+, g(n,m) = n$

- ▶ $f: \mathbb{N} \to \mathbb{R}_0^+$, f(n,m) = 1 und $g: \mathbb{N} \to \mathbb{R}_0^+$, g(n,m) = n-1 then $f = \mathcal{O}(g)$ does not hold
- ▶ $f: \mathbb{N} \to \mathbb{R}_0^+$, f(n,m) = 1 und $g: \mathbb{N} \to \mathbb{R}_0^+$, g(n,m) = n then: $f = \mathcal{O}(g)$
- ▶ $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, f(n,m) = 1 und $g: \mathbb{N}_0 \to \mathbb{R}_0^+$, g(n,m) = n then $f = \mathcal{O}(g)$ does not hold