Matching

- Input: undirected graph $G=(V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

- Input: undirected, bipartite graph $G=(L \uplus R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality
L

Maxflow Formulation

- Input: undirected, bipartite graph $G=\left(L \uplus R \uplus\{s, t\}, E^{\prime}\right)$.
- Direct all edges from L to R.
- Add source s and connect it to all nodes on the left.
- Add t and connect all nodes on the right to t.
- All edges have unit capacity.

Proof

Max cardinality matching in $G \leq$ value of maxflow in G^{\prime}

- Given a maximum matching M of cardinality k.
- Consider flow f that sends one unit along each of k paths.
- f is a flow and has cardinality k.
L
R
G

Proof

Max cardinality matching in $G \geq$ value of maxflow in G^{\prime}

- Let f be a maxflow in G^{\prime} of value k
- Integrality theorem $\Rightarrow k$ integral; we can assume f is $0 / 1$.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- Each node in L and R participates in at most one edge in M.
- $|M|=k$, as the flow must use at least k middle edges.

12.1 Matching

12.1 Matching

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}\left(m \operatorname{val}\left(f^{*}\right)\right)=\mathcal{O}(m n)$.
- Capacity scaling: $\mathcal{O}\left(m^{2} \log C\right)=\mathcal{O}\left(m^{2}\right)$.
- Shortest augmenting path: $\mathcal{O}\left(m n^{2}\right)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m \sqrt{n})$.
A graph is a unit capacity simple graph if
\rightarrow every edge has capacity 1
a node has either at most one leaving edge or at most one
entering edge

| Harald Räcke | 12.1 Matching | 14. Jan. 2024 |
| :--- | :--- | :--- | :--- |
| $463 / 473$ | | |

Baseball Elimination

team	wins	losses	remaining games			
\boldsymbol{i}	$\boldsymbol{w}_{\boldsymbol{i}}$	$\boldsymbol{\ell}_{\boldsymbol{i}}$	$\boldsymbol{A t l}$	$\boldsymbol{P h i}$	$\boldsymbol{N Y}$	Mon
Atlanta	83	71	-	1	6	1
Philadelphia	80	79	1	-	0	2
New York	78	78	6	0	-	0
Montreal	77	82	1	2	0	-

Which team can end the season with most wins?

- Montreal is eliminated, since even after winning all remaining games there are only 80 wins.
- But also Philadelphia is eliminated. Why?

Baseball Elimination

Formal definition of the problem:

- Given a set S of teams, and one specific team $z \in S$.
- Team x has already won w_{x} games.
- Team x still has to play team $y, r_{x y}$ times.
- Does team z still have a chance to finish with the most number of wins.

10 Harald Räck

Certificate of Elimination

Let $T \subseteq S$ be a subset of teams. Define

If $\frac{w(T)+r(T)}{|T|}>M$ then one of the teams in T will have more than M wins in the end. A team that can win at most M games is therefore eliminated.

Baseball Elimination

Flow network for $z=3 . M$ is number of wins Team 3 can still obtain.

Idea. Distribute the results of remaining games in such a way that no team gets too many wins.
\square Harald Räcke 12.2 Baseball Elimination

Theorem 63
A team z is eliminated if and only if the flow network for z does not allow a flow of value $\sum_{i j \in S \backslash\{z\}, i<j} r_{i j}$.

Proof (\Leftarrow)

- Consider the mincut A in the flow network. Let T be the set of team-nodes in A.
- If for node $x-y$ not both team-nodes x and y are in T, then $x-y \notin A$ as otw. the cut would cut an infinite capacity edge.
- We don't find a flow that saturates all source edges:

$$
\begin{aligned}
r(S \backslash\{z\}) & >\operatorname{cap}(A, V \backslash A) \\
& \geq \sum_{i<j: i \notin T \vee j \notin T} r_{i j}+\sum_{i \in T}\left(M-w_{i}\right) \\
& \geq r(S \backslash\{z\})-r(T)+|T| M-w(T)
\end{aligned}
$$

- This gives $M<(w(T)+r(T)) /|T|$, i.e., z is eliminated.

Baseball Elimination

Proof (\Rightarrow)

- Suppose we have a flow that saturates all source edges.
- We can assume that this flow is integral.
- For every pairing $x-y$ it defines how many games team x and team y should win.
- The flow leaving the team-node x can be interpreted as the additional number of wins that team x will obtain.
- This is less than $M-w_{\chi}$ because of capacity constraints.
- Hence, we found a set of results for the remaining games, such that no team obtains more than M wins in total.
- Hence, team z is not eliminated.

Project Selection

The prerequisite graph:

- $\{x, a, z\}$ is a feasible subset.
- $\{x, a\}$ is infeasible.

Theorem 64

A is a mincut if $A \backslash\{s\}$ is the optimal set of projects.

Proof.

- A is feasible because of capacity infinity edges.
- $\operatorname{cap}(A, V \backslash A)=\sum_{v} p_{v}+\sum_{v \in A^{\prime} \cdot p_{v}<0}\left(-p_{v}\right)$

\square

