Mincost Flow

Problem Definition:

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad 0 \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
$$

- $G=(V, E)$ is a directed graph.
- $u: E \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\}$ is the capacity function.
- $c: E \rightarrow \mathbb{R}$ is the cost function (note that $c(e)$ may be negative).
- $b: V \rightarrow \mathbb{R}, \sum_{v \in V} b(v)=0$ is a demand function.

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

- Given a flow network for a standard maxflow problem, and a value k.
- Set $b(v)=0$ for every node apart from s or t. Set $b(s)=-k$ and $b(t)=k$.
- Set edge-costs to zero, and keep the capacities.
- There exists a maxflow of value at least k if and only if the mincost-flow problem is feasible.

Solve Maxflow Using Mincost Flow

- Given a flow network for a standard maxflow problem.
- Set $b(v)=0$ for every node. Keep the capacity function u for all edges. Set the cost $c(e)$ for every edge to 0 .
- Add an edge from t to s with infinite capacity and cost -1 .
- Then, $\operatorname{val}\left(f^{*}\right)=-\operatorname{cost}\left(f_{\text {min }}\right)$, where f^{*} is a maxflow, and $f_{\text {min }}$ is a mincost-flow.

Generalization

Our model:

$\min \quad \sum_{e} c(e) f(e)$
s.t. $\forall e \in E: 0 \leq f(e) \leq u(e)$ $\forall v \in V: \quad f(v)=b(v)$
where $b: V \rightarrow \mathbb{R}, \sum_{v} b(v)=0 ; u: E \rightarrow \mathbb{R}_{0}^{+} \cup\{\infty\} ; c: E \rightarrow \mathbb{R} ;$

A more general model?

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
$$

where $a: V \rightarrow \mathbb{R}, b: V \rightarrow \mathbb{R} ; \ell: E \rightarrow \mathbb{R} \cup\{-\infty\}, u: E \rightarrow \mathbb{R} \cup\{\infty\}$ $c: E \rightarrow \mathbb{R}$;

Generalization

Differences

- Flow along an edge e may have non-zero lower bound $\ell(e)$.
- Flow along e may have negative upper bound $u(e)$.
- The demand at a node v may have lower bound $a(v)$ and upper bound $b(v)$ instead of just lower bound = upper bound $=b(v)$.

Reduction II

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
$$

We can assume that either $\ell(e) \neq-\infty$ or $u(e) \neq \infty$:

If $c(e)=0$ we can contract the edge/identify nodes u and v.
If $c(e) \neq 0$ we can transform the graph so that $c(e)=0$.

Reduction III

```
min }\mp@subsup{\sum}{e}{}c(e)f(e
s.t. }\foralle\inE:\quad\ell(e)\leqf(e)\lequ(e
    \forallv\inV: f(v)=b(v)
```

We can assume that $\ell(e) \neq-\infty$:

Replace the edge by an edge in opposite direction.

Reduction IV

$$
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\text { s.t. } & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad f(v)=b(v)
\end{array}
$$

We can assume that $\ell(e)=0$:

The added edges have infinite capacity and cost $c(e) / 2$.

$1 \boxed{10}$ Harald Räcke	14 Mincost Flow	$\begin{array}{r} \text { 6. Feb. } 2024 \\ 518 / 530 \end{array}$

Applications

Caterer Problem

- She needs to supply r_{i} napkins on N successive days.
- She can buy new napkins at p cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes $k>m$ days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

[^0]f\mathrm{ in }
while }\mp@subsup{G}{f}{}\mathrm{ contains negative cycle do
use Bellman-Ford to find a negative circuit }
\delta\leftarrow\operatorname{min}{\mp@subsup{u}{f}{\prime}(e)|e\inZ}
augment \delta units along Z and update G}\mp@subsup{G}{f}{

```

\section*{14 Mincost Flow}

Lemma 86
A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t.
edge-weights \(c: E \rightarrow \mathbb{R}\).

\section*{Proof.}
- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- You still have a circulation with negative cost.
- Repeat.
\begin{tabular}{|c|c|c|}
\hline ) & 14 Mincost Flow & \[
\begin{array}{r}
\text { 6. Feb. } 2024 \\
524 / 530
\end{array}
\] \\
\hline
\end{tabular}

\section*{How do we find the initial feasible flow?}

- Connect new node \(s\) to all nodes with negative \(b(v)\)-value.
- Connect nodes with positive \(b(v)\)-value to a new node \(t\).
- There exist a feasible flow in the original graph iff in the resulting graph there exists an \(s\) - \(t\) flow of value
\[
\sum_{v: b(v)<0}(-b(v))=\sum_{v: b(v)>0} b(v) .
\]




\section*{14 Mincost Flow}

Lemma 87
The improving cycle algorithm runs in time \(\mathcal{O}\left(\mathrm{nm}^{2} \mathrm{CU}\right)\), for integer capacities and costs, when for all edges \(e,|c(e)| \leq C\) and \(|u(e)| \leq U\).
- Running time of Bellman-Ford is \(\mathcal{O}(m n)\).
- Pushing flow along the cycle can be done in time \(\mathcal{O}(n)\).
- Each iteration decreases the total cost by at least 1.
- The true optimum cost must lie in the interval \([-m C U, \ldots,+m C U]\).

Note that this lemma is weak since it does not allow for edges with infinite capacity.

\section*{14 Mincost Flow}


175 Harald Räcke
14 Mincost Flow

\section*{14 Mincost Flow}

A general mincost flow problem is of the following form:
\[
\begin{array}{ll}
\min & \sum_{e} c(e) f(e) \\
\mathrm{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\
& \forall v \in V: \quad a(v) \leq f(v) \leq b(v)
\end{array}
\]
where \(a: V \rightarrow \mathbb{R}, b: V \rightarrow \mathbb{R} ; \ell: E \rightarrow \mathbb{R} \cup\{-\infty\}, u: E \rightarrow \mathbb{R} \cup\{\infty\}\)
\(c: E \rightarrow \mathbb{R}\);

Lemma 88 (without proof)
A general mincost flow problem can be solved in polynomial time.```


[^0]:    day edges:
    upper bound: $u\left(e_{i}\right)=\infty ;$
    upper bound: $u\left(e_{i}\right)=\infty ;$
    lower bound: $\ell\left(e_{i}\right)=r_{i}$;
    lower bound: $\ell\left(e_{i}\right)=r_{i}$;
    cost: $c(e)=0$
    cost: $c(e)=0$
    
    d: $u\left(e_{i}\right)=\infty$
    buy edges: lower bound: $\ell\left(e_{i}\right)=0$; cost: $c(e)=p$
    
    
    upper bound: $u\left(e_{i}\right)=\infty$; lower bound: $\ell\left(e_{i}\right)=0$; cost: $c(e)=0$
    
    fast edges:
    upper bound: $u\left(e_{i}\right)=\infty$
    lower bound: $\ell\left(e_{i}\right)=0$;
    cost: $c(e)=f$
    

    ## Residual Graph

    ## Version A:

    The residual graph $G^{\prime}$ for a mincost flow is just a copy of the graph $G$.

    If we send $f(e)$ along an edge, the corresponding edge $e^{\prime}$ in the residual graph has its lower and upper bound changed to
    $\ell\left(e^{\prime}\right)=\ell(e)-f(e)$ and $u\left(e^{\prime}\right)=u(e)-f(e)$.

    ## Version B:

    The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

    For a flow of $z$ from $u$ to $v$ the residual edge $(v, u)$ has capacity $z$ and a cost of $-c((u, v))$.

    Lemma 85
    A given flow is a mincost-flow if and only if the corresponding residual graph $G_{f}$ does not have a feasible circulation of negative cost.
    $\Rightarrow$ Suppose that $g$ is a feasible circulation of negative cost in the residual graph.

    Then $f+g$ is a feasible flow with cost
    $\operatorname{cost}(f)+\operatorname{cost}(g)<\operatorname{cost}(f)$. Hence, $f$ is not minimum cost.
    $\Leftarrow$ Let $f$ be a non-mincost flow, and let $f^{*}$ be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

    Clearly $f^{*}-f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending $-f$ in the residual graph (pushing all flow back) we arrive at the original graph; for this $f^{*}$ is clearly feasible)
    

    14 Mincost Flow

    ## 14 Mincost Flow

    ```
 Algorithm 48 CycleCanceling(G=(V,E),c,u,b)
 establish a feasible flow ```

