
4 Modelling Issues

What do you measure?

▶ Memory requirement

▶ Running time

▶ Number of comparisons

▶ Number of multiplications

▶ Number of hard-disc accesses

▶ Program size

▶ Power consumption

▶ . . .

14. Jan. 2024

Harald Räcke 3/13

4 Modelling Issues

What do you measure?

▶ Memory requirement

▶ Running time

▶ Number of comparisons

▶ Number of multiplications

▶ Number of hard-disc accesses

▶ Program size

▶ Power consumption

▶ . . .

4 Modelling Issues 14. Jan. 2024

Harald Räcke 3/13

4 Modelling Issues

What do you measure?

▶ Memory requirement

▶ Running time

▶ Number of comparisons

▶ Number of multiplications

▶ Number of hard-disc accesses

▶ Program size

▶ Power consumption

▶ . . .

4 Modelling Issues 14. Jan. 2024

Harald Räcke 3/13

4 Modelling Issues

What do you measure?

▶ Memory requirement

▶ Running time

▶ Number of comparisons

▶ Number of multiplications

▶ Number of hard-disc accesses

▶ Program size

▶ Power consumption

▶ . . .

4 Modelling Issues 14. Jan. 2024

Harald Räcke 3/13

4 Modelling Issues

What do you measure?

▶ Memory requirement

▶ Running time

▶ Number of comparisons

▶ Number of multiplications

▶ Number of hard-disc accesses

▶ Program size

▶ Power consumption

▶ . . .

4 Modelling Issues 14. Jan. 2024

Harald Räcke 3/13

4 Modelling Issues

What do you measure?

▶ Memory requirement

▶ Running time

▶ Number of comparisons

▶ Number of multiplications

▶ Number of hard-disc accesses

▶ Program size

▶ Power consumption

▶ . . .

4 Modelling Issues 14. Jan. 2024

Harald Räcke 3/13

4 Modelling Issues

What do you measure?

▶ Memory requirement

▶ Running time

▶ Number of comparisons

▶ Number of multiplications

▶ Number of hard-disc accesses

▶ Program size

▶ Power consumption

▶ . . .

4 Modelling Issues 14. Jan. 2024

Harald Räcke 3/13

4 Modelling Issues

What do you measure?

▶ Memory requirement

▶ Running time

▶ Number of comparisons

▶ Number of multiplications

▶ Number of hard-disc accesses

▶ Program size

▶ Power consumption

▶ . . .

4 Modelling Issues 14. Jan. 2024

Harald Räcke 3/13

4 Modelling Issues

How do you measure?

▶ Implementing and testing on representative inputs
▶ How do you choose your inputs?
▶ May be very time-consuming.
▶ Very reliable results if done correctly.
▶ Results only hold for a specific machine and for a specific set

of inputs.

▶ Theoretical analysis in a specific model of computation.
▶ Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
▶ Typically focuses on the worst case.
▶ Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the worst
case”.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 4/13

4 Modelling Issues

How do you measure?

▶ Implementing and testing on representative inputs
▶ How do you choose your inputs?
▶ May be very time-consuming.
▶ Very reliable results if done correctly.
▶ Results only hold for a specific machine and for a specific set

of inputs.

▶ Theoretical analysis in a specific model of computation.
▶ Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
▶ Typically focuses on the worst case.
▶ Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the worst
case”.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 4/13

4 Modelling Issues

How do you measure?

▶ Implementing and testing on representative inputs
▶ How do you choose your inputs?
▶ May be very time-consuming.
▶ Very reliable results if done correctly.
▶ Results only hold for a specific machine and for a specific set

of inputs.

▶ Theoretical analysis in a specific model of computation.
▶ Gives asymptotic bounds like “this algorithm always runs in

time O(n2)”.
▶ Typically focuses on the worst case.
▶ Can give lower bounds like “any comparison-based sorting

algorithm needs at least Ω(n logn) comparisons in the worst
case”.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 4/13

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage space,

comparisons, multiplications, program size etc.).

The input length may e.g. be

▶ the size of the input (number of bits)

▶ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 5/13

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage space,

comparisons, multiplications, program size etc.).

The input length may e.g. be

▶ the size of the input (number of bits)

▶ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 5/13

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage space,

comparisons, multiplications, program size etc.).

The input length may e.g. be

▶ the size of the input (number of bits)

▶ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 5/13

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage space,

comparisons, multiplications, program size etc.).

The input length may e.g. be

▶ the size of the input (number of bits)

▶ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 5/13

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function f : N→ N
that maps the input length to the running time (or storage space,

comparisons, multiplications, program size etc.).

The input length may e.g. be

▶ the size of the input (number of bits)

▶ the number of arguments

Example 1

Suppose n numbers from the interval {1, . . . ,N} have to be

sorted. In this case we usually say that the input length is n
instead of e.g. n logN, which would be the number of bits

required to encode the input.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 5/13

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 6/13

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 6/13

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 6/13

Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a

simplified, idealized model of computation, e.g. Random

Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons,

multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation

makes it more difficult to obtain meaningful results.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 6/13

Turing Machine
▶ Very simple model of computation.

▶ Only the “current” memory location can be altered.

▶ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

▶ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 7/13

Turing Machine
▶ Very simple model of computation.

▶ Only the “current” memory location can be altered.

▶ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

▶ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 7/13

Turing Machine
▶ Very simple model of computation.

▶ Only the “current” memory location can be altered.

▶ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

▶ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 7/13

Turing Machine
▶ Very simple model of computation.

▶ Only the “current” memory location can be altered.

▶ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

▶ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 7/13

Turing Machine
▶ Very simple model of computation.

▶ Only the “current” memory location can be altered.

▶ Very good model for discussing computabiliy, or polynomial

vs. exponential time.

▶ Some simple problems like recognizing whether input is of

the form xx, where x is a string, have quadratic lower

bound.

=⇒ Not a good model for developing efficient algorithms.

0 11 0 0 1 0 0 1 0 0 1 0 0 1 1 0

control
unit

state
state holds program and can
act as constant size memory

.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 7/13

Random Access Machine (RAM)

▶ Input tape and output tape (sequences of zeros and ones;

unbounded length).

▶ Memory unit: infinite but countable number of registers

R[0], R[1], R[2],
▶ Registers hold integers.

▶ Indirect addressing.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 8/13

Random Access Machine (RAM)

▶ Input tape and output tape (sequences of zeros and ones;

unbounded length).

▶ Memory unit: infinite but countable number of registers

R[0], R[1], R[2],

▶ Registers hold integers.

▶ Indirect addressing.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 8/13

Random Access Machine (RAM)

▶ Input tape and output tape (sequences of zeros and ones;

unbounded length).

▶ Memory unit: infinite but countable number of registers

R[0], R[1], R[2],
▶ Registers hold integers.

▶ Indirect addressing.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 8/13

Random Access Machine (RAM)

▶ Input tape and output tape (sequences of zeros and ones;

unbounded length).

▶ Memory unit: infinite but countable number of registers

R[0], R[1], R[2],
▶ Registers hold integers.

▶ Indirect addressing.

0 11 0 0 1 0 0 1

0 0 1 1

R[0]

R[1]

R[2]

R[3]

R[4]

R[5]

input tape

output tape

memory

control
unit

.

.
.
.
.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 8/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])

▶ READ i
▶ output operations (R[i]→ output tape)

▶ WRITE i

▶ register-register transfers

▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing

▶ R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register

▶ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)

▶ WRITE i

▶ register-register transfers

▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing

▶ R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register

▶ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)

▶ WRITE i
▶ register-register transfers

▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing

▶ R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register

▶ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)
▶ WRITE i

▶ register-register transfers

▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing

▶ R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register

▶ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)
▶ WRITE i

▶ register-register transfers

▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing

▶ R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register

▶ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)
▶ WRITE i

▶ register-register transfers
▶ R[j] := R[i]

▶ R[j] := 4

▶ indirect addressing

▶ R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register

▶ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)
▶ WRITE i

▶ register-register transfers
▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing

▶ R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register

▶ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)
▶ WRITE i

▶ register-register transfers
▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing

▶ R[j] := R[R[i]]
loads the content of the R[i]-th register into the j-th register

▶ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)
▶ WRITE i

▶ register-register transfers
▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing
▶ R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th register

▶ R[R[i]] := R[j]
loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ input operations (input tape → R[i])
▶ READ i

▶ output operations (R[i]→ output tape)
▶ WRITE i

▶ register-register transfers
▶ R[j] := R[i]
▶ R[j] := 4

▶ indirect addressing
▶ R[j] := R[R[i]]

loads the content of the R[i]-th register into the j-th register
▶ R[R[i]] := R[j]

loads the content of the j-th into the R[i]-th register

4 Modelling Issues 14. Jan. 2024

Harald Räcke 9/13

Random Access Machine (RAM)

Operations

▶ branching (including loops) based on comparisons

▶ jump x
jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

▶ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

▶ jumpi i
jump to R[i] (indirect jump);

▶ arithmetic instructions: +, −, ×, /

▶ R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 14. Jan. 2024

Harald Räcke 10/13

Random Access Machine (RAM)

Operations

▶ branching (including loops) based on comparisons
▶ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

▶ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

▶ jumpi i
jump to R[i] (indirect jump);

▶ arithmetic instructions: +, −, ×, /

▶ R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 14. Jan. 2024

Harald Räcke 10/13

Random Access Machine (RAM)

Operations

▶ branching (including loops) based on comparisons
▶ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

▶ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

▶ jumpi i
jump to R[i] (indirect jump);

▶ arithmetic instructions: +, −, ×, /

▶ R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 14. Jan. 2024

Harald Räcke 10/13

Random Access Machine (RAM)

Operations

▶ branching (including loops) based on comparisons
▶ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

▶ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

▶ jumpi i
jump to R[i] (indirect jump);

▶ arithmetic instructions: +, −, ×, /

▶ R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 14. Jan. 2024

Harald Räcke 10/13

Random Access Machine (RAM)

Operations

▶ branching (including loops) based on comparisons
▶ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

▶ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

▶ jumpi i
jump to R[i] (indirect jump);

▶ arithmetic instructions: +, −, ×, /

▶ R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 14. Jan. 2024

Harald Räcke 10/13

Random Access Machine (RAM)

Operations

▶ branching (including loops) based on comparisons
▶ jump x

jumps to position x in the program;
sets instruction counter to x;
reads the next operation to perform from register R[x]

▶ jumpz x R[i]
jump to x if R[i] = 0
if not the instruction counter is increased by 1;

▶ jumpi i
jump to R[i] (indirect jump);

▶ arithmetic instructions: +, −, ×, /
▶ R[i] := R[j] + R[k];
R[i] := -R[k];

4 Modelling Issues 14. Jan. 2024

Harald Räcke 10/13

Model of Computation

▶ uniform cost model

Every operation takes time 1.

▶ logarithmic cost model
The cost depends on the content of memory cells:

▶ The time for a step is equal to the largest operand involved;
▶ The storage space of a register is equal to the length (in bits)

of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed 2w , where usually w = log2n.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 11/13

Model of Computation

▶ uniform cost model

Every operation takes time 1.

▶ logarithmic cost model
The cost depends on the content of memory cells:

▶ The time for a step is equal to the largest operand involved;
▶ The storage space of a register is equal to the length (in bits)

of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed 2w , where usually w = log2n.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 11/13

Model of Computation

▶ uniform cost model

Every operation takes time 1.

▶ logarithmic cost model
The cost depends on the content of memory cells:
▶ The time for a step is equal to the largest operand involved;

▶ The storage space of a register is equal to the length (in bits)
of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed 2w , where usually w = log2n.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 11/13

Model of Computation

▶ uniform cost model

Every operation takes time 1.

▶ logarithmic cost model
The cost depends on the content of memory cells:
▶ The time for a step is equal to the largest operand involved;
▶ The storage space of a register is equal to the length (in bits)

of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed 2w , where usually w = log2n.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 11/13

Model of Computation

▶ uniform cost model

Every operation takes time 1.

▶ logarithmic cost model
The cost depends on the content of memory cells:
▶ The time for a step is equal to the largest operand involved;
▶ The storage space of a register is equal to the length (in bits)

of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value

stored in a register may not exceed 2w , where usually w = log2n.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 11/13

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

▶ running time (for Line 3):

▶ uniform model: n steps
▶ logarithmic model:

2+ 3+ 5+ · · · + (1+ 2n) = 2n+1 − 1+n = Θ(2n)

▶ space requirement:

▶ uniform model: O(1)
▶ logarithmic model: O(2n)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 12/13

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

▶ running time (for Line 3):

▶ uniform model: n steps
▶ logarithmic model:

2+ 3+ 5+ · · · + (1+ 2n) = 2n+1 − 1+n = Θ(2n)
▶ space requirement:

▶ uniform model: O(1)
▶ logarithmic model: O(2n)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 12/13

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

▶ running time (for Line 3):
▶ uniform model: n steps

▶ logarithmic model:
2+ 3+ 5+ · · · + (1+ 2n) = 2n+1 − 1+n = Θ(2n)

▶ space requirement:

▶ uniform model: O(1)
▶ logarithmic model: O(2n)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 12/13

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

▶ running time (for Line 3):
▶ uniform model: n steps
▶ logarithmic model:

2+ 3+ 5+ · · · + (1+ 2n) = 2n+1 − 1+n = Θ(2n)

▶ space requirement:

▶ uniform model: O(1)
▶ logarithmic model: O(2n)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 12/13

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

▶ running time (for Line 3):
▶ uniform model: n steps
▶ logarithmic model:

2+ 3+ 5+ · · · + (1+ 2n) = 2n+1 − 1+n = Θ(2n)
▶ space requirement:

▶ uniform model: O(1)
▶ logarithmic model: O(2n)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 12/13

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

▶ running time (for Line 3):
▶ uniform model: n steps
▶ logarithmic model:

2+ 3+ 5+ · · · + (1+ 2n) = 2n+1 − 1+n = Θ(2n)
▶ space requirement:

▶ uniform model: O(1)

▶ logarithmic model: O(2n)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 12/13

4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)
1: r ← 2;

2: for i = 1→ n do

3: r ← r2

4: return r

▶ running time (for Line 3):
▶ uniform model: n steps
▶ logarithmic model:

2+ 3+ 5+ · · · + (1+ 2n) = 2n+1 − 1+n = Θ(2n)
▶ space requirement:

▶ uniform model: O(1)
▶ logarithmic model: O(2n)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 12/13

There are different types of complexity bounds:

▶ best-case complexity:

Cbc(n) :=min{C(x) | |x| = n}

Usually easy to analyze, but not very meaningful.

▶ worst-case complexity:

Cwc(n) :=max{C(x) | |x| = n}

Usually moderately easy to analyze; sometimes too

pessimistic.
▶ average case complexity:

Cavg(n) := 1
|In|

∑
|x|=n

C(x)

more general: probability measure µ

Cavg(n) :=
∑
x∈In

µ(x) · C(x)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 13/13

There are different types of complexity bounds:

▶ best-case complexity:

Cbc(n) :=min{C(x) | |x| = n}

Usually easy to analyze, but not very meaningful.
▶ worst-case complexity:

Cwc(n) :=max{C(x) | |x| = n}

Usually moderately easy to analyze; sometimes too

pessimistic.

▶ average case complexity:

Cavg(n) := 1
|In|

∑
|x|=n

C(x)

more general: probability measure µ

Cavg(n) :=
∑
x∈In

µ(x) · C(x)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 13/13

There are different types of complexity bounds:

▶ best-case complexity:

Cbc(n) :=min{C(x) | |x| = n}

Usually easy to analyze, but not very meaningful.
▶ worst-case complexity:

Cwc(n) :=max{C(x) | |x| = n}

Usually moderately easy to analyze; sometimes too

pessimistic.
▶ average case complexity:

Cavg(n) := 1
|In|

∑
|x|=n

C(x)

more general: probability measure µ

Cavg(n) :=
∑
x∈In

µ(x) · C(x)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 13/13

There are different types of complexity bounds:

▶ best-case complexity:

Cbc(n) :=min{C(x) | |x| = n}

Usually easy to analyze, but not very meaningful.
▶ worst-case complexity:

Cwc(n) :=max{C(x) | |x| = n}

Usually moderately easy to analyze; sometimes too

pessimistic.
▶ average case complexity:

Cavg(n) := 1
|In|

∑
|x|=n

C(x)

more general: probability measure µ

Cavg(n) :=
∑
x∈In

µ(x) · C(x)

4 Modelling Issues 14. Jan. 2024

Harald Räcke 13/13

There are different types of complexity bounds:

▶ amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

▶ randomized complexity:

The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input x.

Then take the worst-case over all x with |x| = n.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 13/13

There are different types of complexity bounds:

▶ amortized complexity:

The average cost of data structure operations over a worst

case sequence of operations.

▶ randomized complexity:

The algorithm may use random bits. Expected running time

(over all possible choices of random bits) for a fixed input x.

Then take the worst-case over all x with |x| = n.

4 Modelling Issues 14. Jan. 2024

Harald Räcke 13/13

	Modelling Issues

