9 Union Find

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- ▶ P. makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- ▶ \mathcal{P} . find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- ▶ \mathcal{P} . union(x, y): Given two elements x, and y that are currently in sets S_X and S_Y , respectively, the function replaces S_X and S_Y by $S_X \cup S_Y$ and returns an identifier for the new set.

14. Jan. 2024 387/415

9 Union Find

Algorithm 41 Kruskal-MST(G = (V, E), w)

1: $A \leftarrow \emptyset$;

2: for all $v \in V$ do

3: $v. set \leftarrow P. makeset(v. label)$

4: sort edges in non-decreasing order of weight $\it w$

5: **for all** $(u, v) \in E$ in non-decreasing order **do**

if \mathcal{P} . find(u. set) $\neq \mathcal{P}$. find(v. set) then

7: $A \leftarrow A \cup \{(u, v)\}$

8: $\mathcal{P}.union(u.set, v.set)$

9 Union Find

Applications:

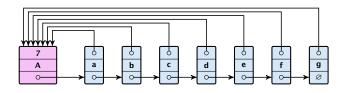
- ► Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

9 Union Find

14. Jan. 2024 388/415

List Implementation

- ► The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.



- ightharpoonup makeset(x) can be performed in constant time.
- $ightharpoonup \operatorname{find}(x)$ can be performed in constant time.

List Implementation

union(x, y)

- ▶ Determine sets S_x and S_y .
- ightharpoonup Traverse the smaller list (say S_{ν}), and change all backward pointers to the head of list S_x .
- ▶ Insert list $S_{\mathcal{V}}$ at the head of $S_{\mathcal{X}}$.
- ▶ Adjust the size-field of list S_X .
- ► Time: $\min\{|S_x|, |S_y|\}$.

Harald Räcke

9 Union Find

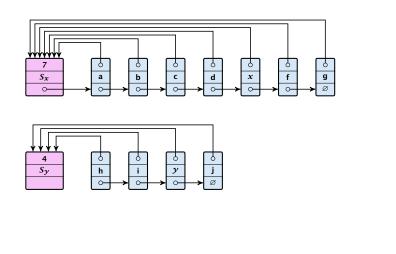
14. Jan. 2024

14. Jan. 2024

392/415

391/415

List Implementation

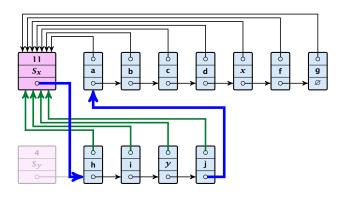


Harald Räcke

9 Union Find

14. Jan. 2024 392/415

List Implementation



List Implementation

Running times:

- ightharpoonup find(x): constant
- ightharpoonup makeset(x): constant
- union(x, y): $\mathcal{O}(n)$, where n denotes the number of elements contained in the set system.

List Implementation

Lemma 34

The list implementation for the ADT union find fulfills the following amortized time bounds:

ightharpoonup find(x): $\mathcal{O}(1)$.

ightharpoonup makeset(x): $\mathcal{O}(\log n)$.

ightharpoonup union(x, y): $\mathcal{O}(1)$.

9 Union Find

14. lan. 2024

394/415

Harald Räcke

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\mathcal{O}(\log n)$ to an element (regardless of the request sequence).
- operation involving this element.
- $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never

The Accounting Method for Amortized Time Bounds

- ▶ There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

9 Union Find

14. Jan. 2024

395/415

List Implementation

- For each element a makeset operation occurs as the first
- ▶ We inflate the amortized cost of the makeset-operation to
- drops below zero.

List Implementation

makeset(x): The actual cost is $\mathcal{O}(1)$. Due to the cost inflation the amortized cost is $O(\log n)$.

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: O(1).

union(x, y):

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- ▶ Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- \blacktriangleright Assume wlog, that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most $c \cdot |S_x|$.
- \triangleright Charge c to every element in set S_x .

List Implementation

Lemma 35

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $\lfloor \log n \rfloor$ times.

Harald Räcke

9 Union Find

14. Jan. 2024

398/415

Implementation via Trees

makeset(x)

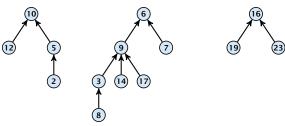
- Create a singleton tree. Return pointer to the root.
- ▶ Time: $\mathcal{O}(1)$.

find(x)

- Start at element x in the tree. Go upwards until you reach the root.
- ▶ Time: $\mathcal{O}(\text{level}(x))$, where level(x) is the distance of element x to the root in its tree. Not constant.

Implementation via Trees

- Maintain nodes of a set in a tree.
- ▶ The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:



Set system {2,5,10,12}, {3,6,7,8,9,14,17}, {16,19,23}.

Harald Räcke

9 Union Find

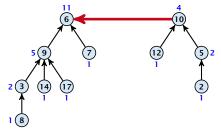
14. Jan. 2024 399/415

Implementation via Trees

To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \text{find}(x)$; $b \leftarrow \text{find}(y)$. Then: link(a, b).
- \blacktriangleright link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



▶ Time: constant for link(a, b) plus two find-operations.

Implementation via Trees

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

- ▶ When we attach a tree with root c to become a child of a tree with root p, then $\operatorname{size}(p) \ge 2\operatorname{size}(c)$, where size denotes the value of the size-field right after the operation.
- ► After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- ► Hence, at any point in time a tree fulfills $size(p) \ge 2 size(c)$, for any pair of nodes (p,c), where p is a parent of c.

Harald Räcke

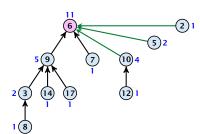
9 Union Find

14. Jan. 2024 402/415

Path Compression

find(x):

- ► Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



One could change the algorithm to update the size-fields. This could be done without asymptotically affecting the running time.

However, the only size-field that is actually required is the field at the root, which is always correct.

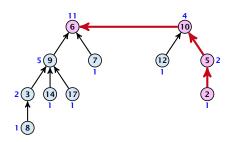
We will only use the other size-fields for the proof of Theorem 39.

Note that the size-fields now only give an upper bound on the size of a sub-tree.

Path Compression

find(x):

- ► Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



Note that the size-fields now only give an upper bound on the size of a sub-tree.

Harald Räcke

9 Union Find

14. Jan. 2024

403/415

Path Compression

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.

Amortized Analysis

Definitions:

 \triangleright size(v) := the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v's subtree in the case that there are no find-operations.

- $ightharpoonup rank(v) = |\log(\operatorname{size}(v))|.$
- \Rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

Lemma 37

The rank of a parent must be strictly larger than the rank of a child.

9 Union Find

14. lan. 2024

405/415

Amortized Analysis

We define

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$$

Theorem 39

Union find with path compression fulfills the following amortized running times:

- ightharpoonup makeset(x) : $\mathcal{O}(\log^*(n))$
- $ightharpoonup find(x) : \mathcal{O}(\log^*(n))$
- ightharpoonup union(x, y): $\mathcal{O}(\log^*(n))$

Harald Räcke

Amortized Analysis

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.
- \triangleright A node ν sees at most one node of rank s during the running time of the algorithm.
- ▶ This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.
- ▶ Hence, every node sees at most one rank s node, but every rank s node is seen by at least 2s different nodes.

9 Union Find

14. Jan. 2024

406/415

Amortized Analysis

In the following we assume $n \ge 2$.

rank-group:

- ▶ A node with rank rank(v) is in rank group $log^*(rank(v))$.
- ▶ The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- ▶ A rank group $g \ge 1$ contains ranks tow(g - 1) + 1, ..., tow(g).
- The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) - 1$ (which holds for $n \ge 2$).
- \blacktriangleright Hence, the total number of rank-groups is at most $\log^* n$.

9 Union Find

Amortized Analysis

Accounting Scheme:

- create an account for every find-operation
- ightharpoonup create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

- ► If parent[v] is the root we charge the cost to the find-account.
- ▶ If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- ▶ Otherwise we charge the cost to the find-account.

9 Union Find

14. Jan. 2024 409/415

Amortized Analysis

What is the total charge made to nodes?

► The total charge is at most

$$\sum_{g} n(g) \cdot \text{tow}(g) ,$$

where n(g) is the number of nodes in group g.

Amortized Analysis

Observations:

- ▶ A find-account is charged at most $\log^*(n)$ times (once for the root and at most $\log^*(n) 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\Rightarrow v$ will never be charged again.
- ► The total charge made to a node in rank-group g is at most $tow(g) tow(g-1) 1 \le tow(g)$.

9 Union Find

14. Jan. 2024

410/415

Amortized Analysis

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)}.$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g) \le n(0) \operatorname{tow}(0) + \sum_{g \ge 1} n(g) \operatorname{tow}(g) \le n \log^*(n)$$

14. Jan. 2024

411/415

Amortized Analysis

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

9 Union Find

14. Jan. 2024

413/415

Amortized Analysis

$$A(x,y) = \begin{cases} y+1 & \text{if } x = 0\\ A(x-1,1) & \text{if } y = 0\\ A(x-1,A(x,y-1)) & \text{otw.} \end{cases}$$

$$\alpha(m, n) = \min\{i \ge 1 : A(i, \lfloor m/n \rfloor) \ge \log n\}$$

- A(0, y) = y + 1
- A(1, y) = y + 2
- A(2, y) = 2y + 3
- $A(3, y) = 2^{y+3} 3$
- ► $A(4, y) = \underbrace{2^{2^2}}_{y+3 \text{ times}} -3$

9 Union Find 14. Jan. 2024 Harald Räcke 415/415

Amortized Analysis

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

9 Union Find

14. Jan. 2024

414/415

Union Find

Bibliography

[CLRS90a] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest: Introduction to Algorithms (1st ed.),

MIT Press and McGraw-Hill, 1990

[CLRS90b] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to Algorithms (2nd ed.),

MIT Press and McGraw-Hill, 2001

[CLRS90c] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill. 2009

[AHU74] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman: The Design and Analysis of Computer Algorithms,

Addison-Wesley, 1974

Union find data structures are discussed in Chapter 21 of [CLRS90b] and [CLRS90c] and in Chapter 22 of [CLRS90a]. The analysis of union by rank with path compression can be found in [CLRS90a] but neither in [CLRS90b] in nor in [CLRS90c]. The latter books contains a more involved analysis that gives a better bound than $\mathcal{O}(\log^* n)$.

A description of the $\mathcal{O}(\log^*)$ -bound can also be found in Chapter 4.8 of [AHU74].

Harald Räcke

9 Union Find

14. Jan. 2024

416/415