Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

14. Jan. 2024 387/415

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

P. makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- P. makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.

Union Find Data Structure \mathcal{P} : Maintains a partition of disjoint sets over elements.

- P. makeset(x): Given an element x, adds x to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for x in the data-structure.
- P. find(x): Given a handle for an element x; find the set that contains x. Returns a representative/identifier for this set.
- \mathcal{P} . union(x, y): Given two elements x, and y that are currently in sets S_x and S_y , respectively, the function replaces S_x and S_y by $S_x \cup S_y$ and returns an identifier for the new set.

Applications:

Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.

Applications:

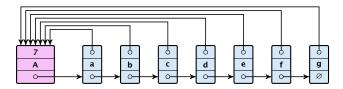
- Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
- Kruskals Minimum Spanning Tree Algorithm

Algorithm 1 Kruskal-MST(G = (V, E), w)1: $A \leftarrow \emptyset$;2: for all $v \in V$ do3: $v.set \leftarrow \mathcal{P}.makeset(v.label)$ 4: sort edges in non-decreasing order of weight w5: for all $(u, v) \in E$ in non-decreasing order do6: if $\mathcal{P}.find(u.set) \neq \mathcal{P}.find(v.set)$ then7: $A \leftarrow A \cup \{(u, v)\}$ 8: $\mathcal{P}.union(u.set, v.set)$

The elements of a set are stored in a list; each node has a backward pointer to the head.

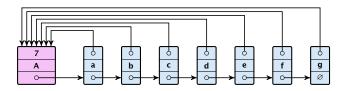
9 Union Find

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.



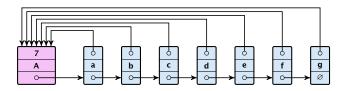
9 Union Find

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.



• makeset(x) can be performed in constant time.

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.



- makeset(x) can be performed in constant time.
- ▶ find(*x*) can be performed in constant time.

union(x, y)

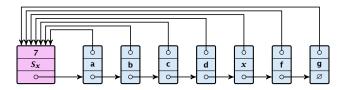
• Determine sets S_x and S_y .

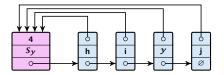
- Determine sets S_x and S_y .
- Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x.

- Determine sets S_x and S_y .
- Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x.
- lnsert list S_{γ} at the head of S_{χ} .

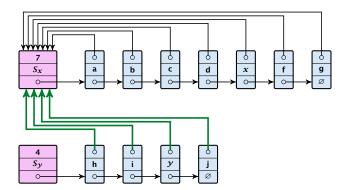
- Determine sets S_x and S_y .
- Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x.
- lnsert list S_y at the head of S_x .
- Adjust the size-field of list S_{χ} .

- Determine sets S_x and S_y .
- Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x.
- lnsert list S_y at the head of S_x .
- Adjust the size-field of list S_x.
- Time: $\min\{|S_x|, |S_y|\}$.

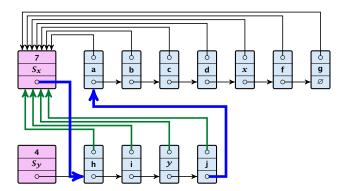




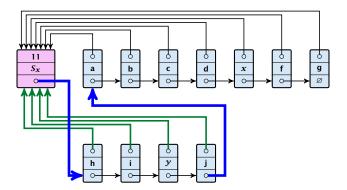
9 Union Find



9 Union Find



9 Union Find



9 Union Find

Running times:

- ▶ find(x): constant
- makeset(x): constant
- ► union(x, y): O(n), where n denotes the number of elements contained in the set system.

Lemma 34

The list implementation for the ADT union find fulfills the following amortized time bounds:

- ▶ find(x): $\mathcal{O}(1)$.
- makeset(x): $\mathcal{O}(\log n)$.
- union(x, y): $\mathcal{O}(1)$.

There is a bank account for every element in the data structure.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.

For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most O(log n) to an element (regardless of the request sequence).

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most O(log n) to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most O(log n) to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to Θ(log n), i.e., at this point we fill the bank account of the element to Θ(log n).

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most O(log n) to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to Θ(log n), i.e., at this point we fill the bank account of the element to Θ(log n).
- Later operations charge the account but the balance never drops below zero.

makeset(x): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

makeset(*x*): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(*x*): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: O(1).

makeset(*x*): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(*x*): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

union(x, y):

If $S_x = S_y$ the cost is constant; no bank accounts change.

makeset(*x*): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(*x*): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.

makeset(*x*): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(*x*): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: $\mathcal{O}(1)$.

union(x, y):

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most c · |S_x|.

makeset(*x*): The actual cost is O(1). Due to the cost inflation the amortized cost is $O(\log n)$.

find(*x*): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: O(1).

union(x, y):

- If $S_x = S_y$ the cost is constant; no bank accounts change.
- Otw. the actual cost is $\mathcal{O}(\min\{|S_x|, |S_y|\})$.
- Assume wlog. that S_x is the smaller set; let c denote the hidden constant, i.e., the actual cost is at most c · |S_x|.
- Charge *c* to every element in set S_{χ} .

Lemma 35

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where *n* is the total number of elements in the set system.

Lemma 35

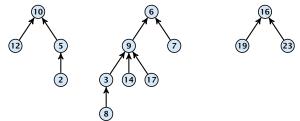
An element is charged at most $\lfloor \log_2 n \rfloor$ times, where *n* is the total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in x's set doubles. This can happen at most $\lfloor \log n \rfloor$ times.

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:



Set system {2, 5, 10, 12}, {3, 6, 7, 8, 9, 14, 17}, {16, 19, 23}.

9 Union Find

14. Jan. 2024 399/415

makeset(x)

Create a singleton tree. Return pointer to the root.

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: *O*(1).

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: *O*(1).

find(x)

Start at element x in the tree. Go upwards until you reach the root.

makeset(x)

- Create a singleton tree. Return pointer to the root.
- ▶ Time: *O*(1).

- Start at element x in the tree. Go upwards until you reach the root.
- Time: O(level(x)), where level(x) is the distance of element x to the root in its tree. Not constant.

To support union we store the size of a tree in its root.

9 Union Find

To support union we store the size of a tree in its root.

union(x, y)

▶ Perform $a \leftarrow \operatorname{find}(x)$; $b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.

To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow find(x)$; $b \leftarrow find(y)$. Then: link(a, b).
- link(a, b) attaches the smaller tree as the child of the larger.

To support union we store the size of a tree in its root.

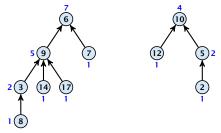
union(x, y)

- ▶ Perform $a \leftarrow \operatorname{find}(x)$; $b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \operatorname{find}(x)$; $b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



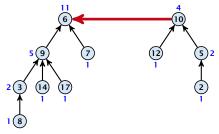
9 Union Find

14. Jan. 2024 401/415

To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \operatorname{find}(x)$; $b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



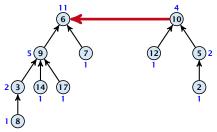
9 Union Find

14. Jan. 2024 401/415

To support union we store the size of a tree in its root.

union(x, y)

- ▶ Perform $a \leftarrow \operatorname{find}(x)$; $b \leftarrow \operatorname{find}(y)$. Then: $\operatorname{link}(a, b)$.
- link(a, b) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.



Time: constant for link(a, b) plus two find-operations.

9 Union Find

14. Jan. 2024 401/415

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

9 Union Find

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

When we attach a tree with root c to become a child of a tree with root p, then size(p) ≥ 2 size(c), where size denotes the value of the size-field right after the operation.

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

- When we attach a tree with root c to become a child of a tree with root p, then size(p) ≥ 2 size(c), where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

- When we attach a tree with root c to become a child of a tree with root p, then size(p) ≥ 2 size(c), where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- Hence, at any point in time a tree fulfills size(p) ≥ 2 size(c), for any pair of nodes (p, c), where p is a parent of c.

Lemma 36

The running time (non-amortized!!!) for find(x) is $O(\log n)$.

Proof.

- When we attach a tree with root c to become a child of a tree with root p, then size(p) ≥ 2 size(c), where size denotes the value of the size-field right after the operation.
- After that the value of size(c) stays fixed, while the value of size(p) may still increase.
- Hence, at any point in time a tree fulfills size(p) ≥ 2 size(c), for any pair of nodes (p, c), where p is a parent of c.

find(x):

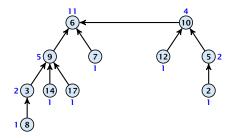
• Go upward until you find the root.

9 Union Find

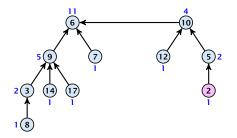
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

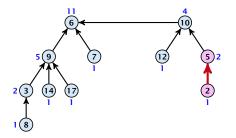
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



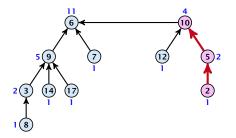
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



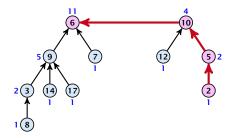
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



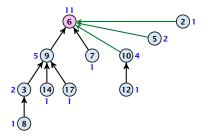
- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

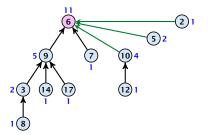


- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.



Note that the size-fields now only give an upper bound on the size of a sub-tree.

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $O(\log n)$.

Amortized Analysis

Definitions:

9 Union Find

14. Jan. 2024 405/415

Amortized Analysis

Definitions:

size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v's subtree in the case that there are no find-operations.

Definitions:

size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v's subtree in the case that there are no find-operations.

► rank(v) = $\lfloor \log(size(v)) \rfloor$.

Definitions:

size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v's subtree in the case that there are no find-operations.

► rank(v) = $\lfloor \log(size(v)) \rfloor$.

```
► \Rightarrow size(v) \ge 2^{\operatorname{rank}(v)}.
```


Definitions:

size(v) = the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v's subtree in the case that there are no find-operations.

- ► rank(v) = $\lfloor \log(size(v)) \rfloor$.
- ► \Rightarrow size $(v) \ge 2^{\operatorname{rank}(v)}$.

Lemma 37

The rank of a parent must be strictly larger than the rank of a child.

Lemma 38 *There are at most* $n/2^s$ *nodes of rank s*.

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Proof.

Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.

Lemma 38

There are at most $n/2^s$ nodes of rank s.

Proof.

- Let's say a node v sees node x if v is in x's sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node sees at most one rank s node, but every rank s node is seen by at least 2^s different nodes.

We define

$$\operatorname{tow}(i) := \begin{cases} 1 & \text{if } i = 0\\ 2^{\operatorname{tow}(i-1)} & \text{otw.} \end{cases}$$

9 Union Find

We define

tow(*i*) :=
$$\begin{cases} 1 & \text{if } i = 0 \\ 2^{\text{tow}(i-1)} & \text{otw.} \end{cases}$$
 tow(*i*) = $2^{2^{2^{2^{2^{2}}}}} i$ times

9 Union Find

We define

tow(*i*) :=
$$\begin{cases} 1 & \text{if } i = 0 \\ 2^{\text{tow}(i-1)} & \text{otw.} \end{cases}$$
 tow(*i*) = $2^{2^{2^{2^2}}} i$ times

and

 $\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$

9 Union Find

14. Jan. 2024 407/415

We define

$$\operatorname{tow}(i) := \begin{cases} 1 & \text{if } i = 0\\ 2^{\operatorname{tow}(i-1)} & \text{otw.} \end{cases} \quad \operatorname{tow}(i) = 2^{2^{2^{2^{2^{2}}}}} i \text{ times}$$

and

$$\log^*(n) := \min\{i \mid \text{tow}(i) \ge n\} .$$

Theorem 39

Union find with path compression fulfills the following amortized running times:

- makeset(x) : $O(\log^*(n))$
- find(x) : $\mathcal{O}(\log^*(n))$
- union(x, y) : $\mathcal{O}(\log^*(n))$

In the following we assume $n \ge 2$.

9 Union Find

In the following we assume $n \ge 2$.

rank-group:

• A node with rank rank(v) is in rank group $log^*(rank(v))$.

In the following we assume $n \ge 2$.

- A node with rank rank(v) is in rank group $log^*(rank(v))$.
- The rank-group g = 0 contains only nodes with rank 0 or rank 1.

In the following we assume $n \ge 2$.

- A node with rank rank(v) is in rank group $log^*(rank(v))$.
- The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- A rank group $g \ge 1$ contains ranks $tow(g-1) + 1, \dots, tow(g)$.

In the following we assume $n \ge 2$.

- A node with rank rank(v) is in rank group $log^*(rank(v))$.
- The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- A rank group $g \ge 1$ contains ranks $tow(g-1) + 1, \dots, tow(g)$.
- ▶ The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) 1$ (which holds for $n \ge 2$).

In the following we assume $n \ge 2$.

- A node with rank rank(v) is in rank group $log^*(rank(v))$.
- The rank-group g = 0 contains only nodes with rank 0 or rank 1.
- A rank group $g \ge 1$ contains ranks $tow(g-1) + 1, \dots, tow(g)$.
- The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \le \log^*(n) 1$ (which holds for $n \ge 2$).
- Hence, the total number of rank-groups is at most $\log^* n$.

9 Union Find

14. Jan. 2024 409/415

Accounting Scheme:

create an account for every find-operation

9 Union Find

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

If parent[v] is the root we charge the cost to the find-account.

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to parent[v] as follows:

- If parent[v] is the root we charge the cost to the find-account.
- If the group-number of rank(v) is the same as that of rank(parent[v]) (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.

Observations:

9 Union Find

14. Jan. 2024 410/415

Observations:

► A find-account is charged at most log*(n) times (once for the root and at most log*(n) - 1 times when increasing the rank-group).

Observations:

- ► A find-account is charged at most log*(n) times (once for the root and at most log*(n) - 1 times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.

Observations:

- ► A find-account is charged at most log*(n) times (once for the root and at most log*(n) - 1 times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. ⇒ v will never be charged again.

Observations:

- ► A find-account is charged at most log*(n) times (once for the root and at most log*(n) - 1 times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- ► After some charges to v the parent will be in a larger rank-group. ⇒ v will never be charged again.
- The total charge made to a node in rank-group g is at most tow(g) - tow(g − 1) − 1 ≤ tow(g).

What is the total charge made to nodes?

What is the total charge made to nodes?

The total charge is at most

$$\sum_{g} n(g) \cdot \operatorname{tow}(g)$$
,

where n(g) is the number of nodes in group g.

For $g \ge 1$ we have

n(g)

9 Union Find

For $g \ge 1$ we have

$$n(g) \leq \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s}$$

9 Union Find

For $g \ge 1$ we have

$$n(g) \leq \sum_{s=\mathrm{tow}(g-1)+1}^{\mathrm{tow}(g)} \frac{n}{2^s} \leq \sum_{s=\mathrm{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

9 Union Find

14. Jan. 2024 412/415

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s}$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

9 Union Find

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}}$$

9 Union Find

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} .$$

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} .$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g)$$

9 Union Find

14. Jan. 2024 412/415

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} .$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g) \le n(0) \operatorname{tow}(0) + \sum_{g \ge 1} n(g) \operatorname{tow}(g)$$

9 Union Find

14. Jan. 2024 412/415

For $g \ge 1$ we have

$$n(g) \le \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \le \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$
$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$
$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} .$$

Hence,

$$\sum_{g} n(g) \operatorname{tow}(g) \le n(0) \operatorname{tow}(0) + \sum_{g \ge 1} n(g) \operatorname{tow}(g) \le n \log^*(n)$$

9 Union Find

14. Jan. 2024 412/415

Without loss of generality we can assume that all makeset-operations occur at the start.

Without loss of generality we can assume that all makeset-operations occur at the start.

This means if we inflate the cost of makeset to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).

9 Union Find

14. Jan. 2024 414/415

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\mathcal{O}(\alpha(m,n))$, where $\alpha(m,n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.

$$A(x, y) = \begin{cases} y+1 & \text{if } x = 0\\ A(x-1, 1) & \text{if } y = 0\\ A(x-1, A(x, y-1)) & \text{otw.} \end{cases}$$

 $\alpha(m,n) = \min\{i \ge 1 : A(i, \lfloor m/n \rfloor) \ge \log n\}$

9 Union Find

14. Jan. 2024 415/415

$$A(x, y) = \begin{cases} y+1 & \text{if } x = 0\\ A(x-1, 1) & \text{if } y = 0\\ A(x-1, A(x, y-1)) & \text{otw.} \end{cases}$$

 $\alpha(m, n) = \min\{i \ge 1 : A(i, \lfloor m/n \rfloor) \ge \log n\}$

•
$$A(0, y) = y + 1$$

• $A(1, y) = y + 2$
• $A(2, y) = 2y + 3$
• $A(3, y) = 2^{y+3} - 3$
• $A(4, y) = \frac{2^{2^{2^2}}}{2^{2^2}} - 3$

9 Union Find

14. Jan. 2024 415/415