21 Weighted Bipartite Matching

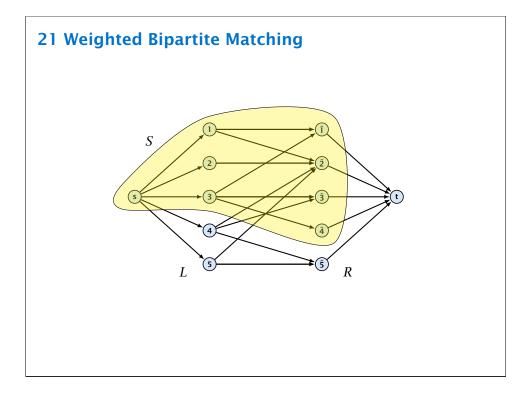
Weighted Bipartite Matching/Assignment

- lnput: undirected, bipartite graph $G = L \cup R, E$.
- an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- ▶ assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

[חח] [חר]	25. Jan. 2023
U 🕒 I Harald Räcke	615/628



Weighted Bipartite Matching

Theorem 98 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

Harald Räcke

21 Weighted Bipartite Matching

25. Jan. 2023 616/628

Halls Theorem Proof: G course, the condition is necessary as otherwise not all nodes in S could be matched to different neigbhours. For the other direction we need to argue that the minimum cut in the graph G' is at least |L|. Let S denote a minimum cut and let L_S ≝ L ∩ S and R_S ≝ R ∩ S denote the portion of S inside L and R, respectively. Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity. This gives R_S ≥ |Γ(L_S)|. The size of the cut is |L| - |L_S| + |R_S|. Using the fact that |Γ(L_S)| ≥ L_S gives that this is at least |L|.

Harald Räcke

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \in \mathbb{R}$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

```
x_u + x_v \ge w_e for every edge e = (u, v).
```

- Let H(x) denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting x, i.e. edges e = (u, v) for which w_e = x_u + x_v.
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

1114	1	Harald	Räcke

21 Weighted Bipartite Matching

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Algorithm Outline

Reason:

• The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v \ .$$

Any other perfect matching M (in G, not necessarily in $H(\vec{x})$) has

21 Weighted Bipartite Matching

$$\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u + x_v) = \sum_v x_v .$$

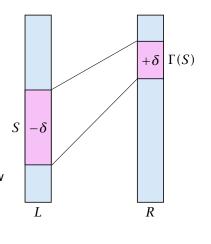
Harald Räcke

25. Jan. 2023 620/628

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- Only edges from S to R Γ(S) decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in *H*(*x*), and hence would go between *S* and Γ(*S*)) we can do this decrement for small enough δ > 0 until a new edge gets tight.



Harald Räcke

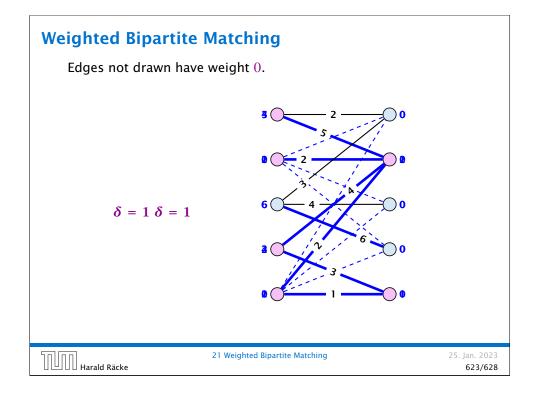
25. Jan. 2023 621/628

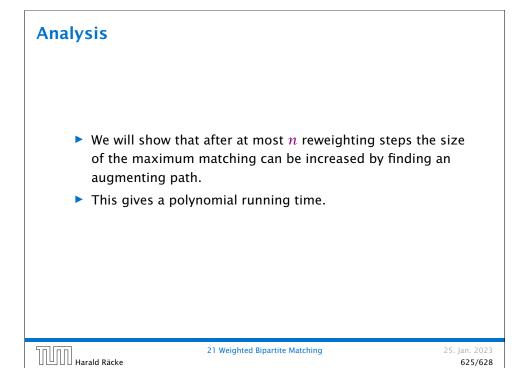
25. Ian. 2023

619/628

Harald Räcke

21 Weighted Bipartite Matching



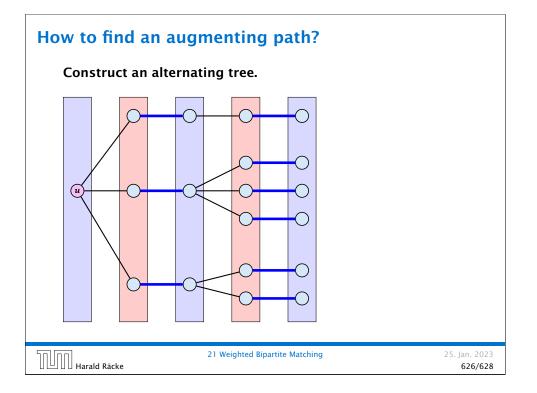


Analysis

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L S and $R \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

החוחר	21 Weighted Bipartite Matching	25. Jan. 2023
UUU Harald Räcke		624/628



Analysis

How do we find *S*?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*. Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

50,00	21 Weighted Bipartite Matching	25. Jan. 2023
Harald Räcke		627/628

	1 A A A A A A A A A A A A A A A A A A A
Ana	lysis
	.,

- The current matching does not have any edges from V_{odd} to L \ V_{even} (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we obtain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

