8.2 Binomial Heaps

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{* *}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

14. Jan. 2024

Binomial Trees

B_{0}	B_{1}	B_{2}
0	0	0

B_{4}
0010

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.
- The root of B_{k} has degree k.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.
- The root of B_{k} has degree k.
- B_{k} has $\binom{k}{\ell}$ nodes on level ℓ.

Binomial Trees

Properties of Binomial Trees

- B_{k} has 2^{k} nodes.
- B_{k} has height k.
- The root of B_{k} has degree k.
- B_{k} has $\binom{k}{\ell}$ nodes on level ℓ.
- Deleting the root of B_{k} gives trees $B_{0}, B_{1}, \ldots, B_{k-1}$.

Binomial Trees

Deleting the root of B_{5} leaves sub-trees $B_{4}, B_{3}, B_{2}, B_{1}$, and B_{0}.

Binomial Trees

Deleting the leaf furthest from the root (in B_{5}) leaves a path that connects the roots of sub-trees $B_{4}, B_{3}, B_{2}, B_{1}$, and B_{0}.

Binomial Trees

The number of nodes on level ℓ in tree B_{k} is therefore

$$
\binom{k-1}{\ell-1}+\binom{k-1}{\ell}=\binom{k}{\ell}
$$

Binomial Trees

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.
The parent of a node with label b_{k}, \ldots, b_{1} is obtained by setting the least significant 1-bit to 0 .

Binomial Trees

The binomial tree B_{k} is a sub-graph of the hypercube H_{k}.
The parent of a node with label b_{k}, \ldots, b_{1} is obtained by setting the least significant 1-bit to 0 .

The ℓ-th level contains nodes that have $\ell 1$'s in their label.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.

8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left $=x$. right $=x$).

8.2 Binomial Heaps

- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.

Binomial Heap

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

Binomial Heap

In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property
There is at most one tree for every dimension/order. For example the above heap contains trees B_{0}, B_{1}, and B_{4}.

Binomial Heap: Merge

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let $B_{k_{1}}, B_{k_{2}}, B_{k_{3}}, k_{i}<k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let $B_{k_{1}}, B_{k_{2}}, B_{k_{3}}, k_{i}<k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n=\sum_{i} 2^{k_{i}}$ must hold. But since the k_{i} are all distinct this means that the k_{i} define the non-zero bit-positions in the binary representation of n.

Binomial Heap

Properties of a heap with n keys:

Binomial Heap

Properties of a heap with n keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor\log n\rfloor$.

Binomial Heap

Properties of a heap with \boldsymbol{n} keys:

- Let $n=b_{d} b_{d-1}, \ldots, b_{0}$ denote binary representation of n.
- The heap contains tree B_{i} iff $b_{i}=1$.
- Hence, at most $\lfloor\log n\rfloor+1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor\log n\rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous
 to binary addition.

8.2 Binomial Heaps

S_{1}. merge $\left(S_{2}\right)$:

- Analogous to binary addition.

8.2 Binomial Heaps

S_{1}. merge (S_{2}):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.

8.2 Binomial Heaps

S_{1}. merge (S_{2}):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x):

- Create a new heap S^{\prime} that contains just the element x.

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x):

- Create a new heap S^{\prime} that contains just the element x.
- Execute S.merge (S^{\prime}).

8.2 Binomial Heaps

All other operations can be reduced to merge().
S. insert (x):

- Create a new heap S^{\prime} that contains just the element x.
- Execute S.merge(S^{\prime}).
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. minimum():

- Find the minimum key-value among all roots.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. delete-min():

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\text {min }}$ from the heap.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\text {min }}$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\text {min }}$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- Compute S.merge $\left(S^{\prime}\right)$.

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree $T_{\min }$ from the heap.
- Create a new heap S^{\prime} that contains the trees obtained from $T_{\text {min }}$ after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- Compute S.merge $\left(S^{\prime}\right)$.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

S. decrease-key(handle h):

8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.

8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.

8.2 Binomial Heaps

S. decrease-key(handle h):

- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $\mathcal{O}(\log n)$ since the trees have height $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

\boldsymbol{S}. delete(handle \boldsymbol{h}):

8.2 Binomial Heaps

\boldsymbol{S}. delete(handle \boldsymbol{h}):

- Execute S.decrease-key $(h,-\infty)$.

8.2 Binomial Heaps

S. delete(handle \boldsymbol{h}):

- Execute S.decrease-key $(h,-\infty)$.
- Execute S. delete-min().

8.2 Binomial Heaps

\boldsymbol{S}. delete(handle \boldsymbol{h}):

- Execute S.decrease-key $(h,-\infty)$.
- Execute S.delete-min().
- Time: $\mathcal{O}(\log n)$.

