8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.
Structure is much more relaxed than binomial heaps.

8.3 Fibonacci Heaps

Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x.marked that specifies whether x is marked or not.

8.3 Fibonacci Heaps

The potential function:

- $t(S)$ denotes the number of trees in the heap.
- $m(S)$ denotes the number of marked nodes.
- We use the potential function $\Phi(S)=t(S)+2 m(S)$.

The potential is $\Phi(S)=5+2 \cdot 3=11$.

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use \boldsymbol{c} to denote the amount of work that a unit of potential can pay for.

8.3 Fibonacci Heaps

S. minimum ()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Amortized cost $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

- In the figure below the dashed edges are replaced by red edges.
- The minimum of the left heap becomes the new minimum of the merged heap.
- Merge the root lists.
- Adjust the min-pointer

Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Hence, amortized cost is $\mathcal{O}(1)$.

8.3 Fibonacci Heaps

x is inserted next to the min-pointer as this is our entry point into the root-list.
S. insert (x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.

Running time:

- Actual cost $\mathcal{O}(1)$.
- Change in potential is +1 .
- Amortized cost is $c+\mathcal{O}(1)=\mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. delete-min (x)

- Delete minimum; add child-trees to heap; time: $D(\mathrm{~min}) \cdot \mathcal{O}(1)$.
- Update min-pointer; time: $(t+D(\min)) \cdot \mathcal{O}(1)$.

8.3 Fibonacci Heaps

S. delete-min (x)

- Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- Update min-pointer; time: $(t+D(\min)) \cdot \mathcal{O}(1)$.

- Consolidate root-list so that no roots have the same degree. Time $t \cdot \mathcal{O}(1)$ (see next slide).

8.3 Fibonacci Heaps

Consolidate:

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
\circ	\circ	\circ	\circ

I During the consolidation we traverse the root list. Whenever we discover two ' trees that have the same degree we merge these trees. In order to efficiently , check whether two trees have the same degree, we use an array that contains for ; every degree value d a pointer to a tree left of the current pointer whose root has l degree d (if such a tree exist).

8.3 Fibonacci Heaps

Consolidate:

8.3 Fibonacci Heaps

 I after the delete-min() operation, respectively. D_{n} is an upper bound on the degree (i.e., num-1 ' ber of children) of a tree node.
Actual cost for delete-min()

- At most $D_{n}+t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot\left(D_{n}+t\right)$. Hence, there exists c_{1} s.t. actual cost is at most $c_{1} \cdot\left(D_{n}+t\right)$.

Amortized cost for delete-min()

- $t^{\prime} \leq D_{n}+1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_{n}+1-t$;
- We can pay $c \cdot\left(t-D_{n}-1\right)$ from the potential decrease.
- The amortized cost is

$$
\begin{aligned}
& c_{1} \cdot\left(D_{n}+t\right)-c \cdot\left(t-D_{n}-1\right) \\
& \quad \leq\left(c_{1}+c\right) D_{n}+\left(c_{1}-c\right) t+c \leq 2 c\left(D_{n}+1\right) \leq \mathcal{O}\left(D_{n}\right) \\
& \text { for } c \geq c_{1}
\end{aligned}
$$

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_{n} \leq \log n$.

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

- Just decrease the key-value of element referenced by h. Nothing else to do.

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following:
$p \leftarrow \operatorname{parent}[x]$;
while (p is marked)

```
Marking a node can be viewed as a  first step towards becoming a root. ' The first time \(x\) loses a child it is ' marked; the second time it loses a child it is made into a root.
```

$p p \leftarrow \operatorname{parent}[p]$;
cut of p; make it into a root; unmark it;

$$
p \leftarrow p p ;
$$

if p is unmarked and not a root mark it;

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_{2} \cdot(\ell+1)$, for some constant c_{2}.

Amortized cost:

- $t^{\prime}=t+\ell$, as every cut creates one new root.
- $m^{\prime} \leq m-(\ell-1)+1=m-\ell+2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \leq \ell+2(-\ell+2)=4-\ell$
- Amortized cost is at most
$c_{2}(\ell+1)+c(4-\ell) \leq\left(c_{2}-c\right) \ell+4 c+c_{2}=\mathcal{O}(1), \begin{aligned} & m \text { and } m^{\prime}: \text { number of } \\ & \text { marked nodes before }\end{aligned}$
if $c \geq c_{2}$.

Delete node

H. delete (\boldsymbol{x}):

- decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}\left(\boldsymbol{D}_{\boldsymbol{n}}\right)$

- $\mathcal{O}(1)$ for decrease-key.
- $\mathcal{O}\left(D_{n}\right)$ for delete-min.

8.3 Fibonacci Heaps

Lemma 32

Let x be a node with degree k and let y_{1}, \ldots, y_{k} denote the children of x in the order that they were linked to x. Then

$$
\text { degree }\left(y_{i}\right) \geq \begin{cases}0 & \text { if } i=1 \\ i-2 & \text { if } i>1\end{cases}
$$

[^0]
8.3 Fibonacci Heaps

Proof

- When y_{i} was linked to x, at least y_{1}, \ldots, y_{i-1} were already linked to x.
- Hence, at this time degree $(x) \geq i-1$, and therefore also degree $\left(y_{i}\right) \geq i-1$ as the algorithm links nodes of equal degree only.
- Since, then y_{i} has lost at most one child.
- Therefore, degree $\left(y_{i}\right) \geq i-2$.

8.3 Fibonacci Heaps

- Let s_{k} be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_{k} monotonically increases with k
- $s_{0}=1$ and $s_{1}=2$.

Let x be a degree k node of size s_{k} and let y_{1}, \ldots, y_{k} be its children.

$$
\begin{aligned}
s_{k} & =2+\sum_{i=2}^{k} \operatorname{size}\left(y_{i}\right) \\
& \geq 2+\sum_{i=2}^{k} s_{i-2} \\
& =2+\sum_{i=0}^{k-2} s_{i}
\end{aligned}
$$

8.3 Fibonacci Heaps

Definition 33
Consider the following non-standard Fibonacci type sequence:

$$
F_{k}= \begin{cases}1 & \text { if } k=0 \\ 2 & \text { if } k=1 \\ F_{k-1}+F_{k-2} & \text { if } k \geq 2\end{cases}
$$

Facts:

1. $F_{k} \geq \phi^{k}$.
2. For $k \geq 2$: $F_{k}=2+\sum_{i=0}^{k-2} F_{i}$.

The above facts can be easily proved by induction. From this it follows that $s_{k} \geq F_{k} \geq \phi^{k}$, which gives that the maximum degree in a Fibonacci heap is logarithmic.
$\mathrm{k}=0: \quad 1=F_{0} \geq \Phi^{0}=1$
$\mathrm{k}=1: \quad 2=F_{1} \geq \Phi^{1} \approx 1.61$
$\mathrm{k}-2, \mathrm{k}-1 \rightarrow \mathrm{k}: \quad F_{k}=F_{k-1}+F_{k-2} \geq \Phi^{k-1}+\Phi^{k-2}=\Phi^{k-\overbrace{(\Phi+1)}}=\Phi^{k}$
$\mathrm{k}=2$:
$3=F_{2}=2+1=2+F_{0}$
$\mathrm{k}-1 \rightarrow \mathrm{k}$:
$F_{k}=F_{k-1}+F_{k-2}=2+\sum_{i=0}^{k-3} F_{i}+F_{k-2}=2+\sum_{i=0}^{k-2} F_{i}$

[^0]: 'The marking process is very important for the proof of ' this lemma. It ensures that a node can have lost at most , one child since the last time it became a non-root node. ' ' When losing a first child the node gets marked; when losing the second child it is cut from the parent and made into a root.

