7.2 Red Black Trees

Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

7.2 Red Black Trees

Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.

7.2 Red Black Trees

Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.

7.2 Red Black Trees

Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.

7.2 Red Black Trees

Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

7.2 Red Black Trees

Definition 12

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data

Red Black Trees: Example

7.2 Red Black Trees

Lemma 13

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

7.2 Red Black Trees

Lemma 13

A red-black tree with n internal nodes has height at most $\mathcal{O}(\log n)$.

Definition 14

The black height $\mathrm{bh}(v)$ of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

7.2 Red Black Trees

Lemma 13

A red-black tree with n internal nodes has height at most
$\mathcal{O}(\log n)$.

Definition 14

The black height $\mathrm{bh}(v)$ of a node v in a red black tree is the number of black nodes on a path from v to a leaf vertex (not counting v).

We first show:
Lemma 15
A sub-tree of black height bh (v) in a red black tree contains at least $2^{\text {bh(v) }}-1$ internal vertices.

7.2 Red Black Trees

Proof of Lemma 15.

7.2 Red Black Trees

Proof of Lemma 15.
Induction on the height of v.

7.2 Red Black Trees

Proof of Lemma 15.

Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.

7.2 Red Black Trees

Proof of Lemma 15.

Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0 .

7.2 Red Black Trees

Proof of Lemma 15.

Induction on the height of v.
base case (height $(v)=0$)

- If height (v) (maximum distance btw. v and a node in the sub-tree rooted at v) is 0 then v is a leaf.
- The black height of v is 0 .
- The sub-tree rooted at v contains $0=2^{\text {bh }(v)}-1$ inner vertices.

7.2 Red Black Trees

Proof (cont.)

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children (c_{1}, c_{2}) either have $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)$ or $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)-1$.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children $\left(c_{1}, c_{2}\right)$ either have $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)$ or $\operatorname{bh}\left(c_{i}\right)=\operatorname{bh}(v)-1$.
- By induction hypothesis both sub-trees contain at least $2^{\text {bh }(v)-1}-1$ internal vertices.

7.2 Red Black Trees

Proof (cont.)

induction step

- Supose v is a node with height $(v)>0$.
- v has two children with strictly smaller height.
- These children $\left(c_{1}, c_{2}\right)$ either have $\mathrm{bh}\left(c_{i}\right)=\mathrm{bh}(v)$ or $\operatorname{bh}\left(c_{i}\right)=\operatorname{bh}(v)-1$.
- By induction hypothesis both sub-trees contain at least $2^{\mathrm{bh}(v)-1}-1$ internal vertices.
- Then T_{v} contains at least $2\left(2^{\mathrm{bh}(v)-1}-1\right)+1 \geq 2^{\mathrm{bh}(v)}-1$ vertices.

7.2 Red Black Trees

Proof of Lemma 13.

7.2 Red Black Trees

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

7.2 Red Black Trees

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

7.2 Red Black Trees

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.

7.2 Red Black Trees

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.
The tree contains at least $2^{h / 2}-1$ internal vertices. Hence, $2^{h / 2}-1 \leq n$.

7.2 Red Black Trees

Proof of Lemma 13.

Let h denote the height of the red-black tree, and let P denote a path from the root to the furthest leaf.

At least half of the node on P must be black, since a red node must be followed by a black node.

Hence, the black height of the root is at least $h / 2$.
The tree contains at least $2^{h / 2}-1$ internal vertices. Hence, $2^{h / 2}-1 \leq n$.

Hence, $h \leq 2 \log (n+1)=\mathcal{O}(\log n)$.

7.2 Red Black Trees

Definition 1

A red black tree is a balanced binary search tree in which each internal node has two children. Each internal node has a color, such that

1. The root is black.
2. All leaf nodes are black.
3. For each node, all paths to descendant leaves contain the same number of black nodes.
4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers to special null-vertices, that do not carry any object-data.

7.2 Red Black Trees

We need to adapt the insert and delete operations so that the red black properties are maintained.

Rotations

The properties will be maintained through rotations:

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Insert:

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

- first make a normal insert into a binary search tree
- then fix red-black properties

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)
- or the parent does not exist (violation since root must be black)

Red Black Trees: Insert

Invariant of the fix-up algorithm:

- z is a red node
- the black-height property is fulfilled at every node
- the only violation of red-black properties occurs at z and parent[z]
- either both of them are red (most important case)
- or the parent does not exist (violation since root must be black)
If z has a parent but no grand-parent we could simply color the parent/root black; however this case never happens.

Red Black Trees: Insert

Algorithm 10 InsertFix (z)
1: while parent $[z] \neq$ null and col[parent $[z]]=$ red do
2: \quad if parent $[z]=\operatorname{left}[g p[z]]$ then
3: uncle $\leftarrow \operatorname{right}[$ grandparent $[z]]$
4: if col[uncle] = red then
5:
6:
7: else
8:
9:
10:
11:
if $z=\operatorname{right}[$ parent $[z]]$ then $z \leftarrow \mathrm{p}[z]$; LeftRotate (z);
$\operatorname{col}[\mathrm{p}[z]] \leftarrow$ black; $\operatorname{col}[\mathrm{gp}[z]] \leftarrow \mathrm{red}$;
RightRotate(gp[z]);
12: else same as then-clause but right and left exchanged
13: $\operatorname{col}(\operatorname{root}[T]) \leftarrow$ black;

Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: if parent \([z]=\operatorname{left}[g p[z]]\) then \(z\) in left subtree of grandparent
        uncle \(\leftarrow \operatorname{right}[\) grandparent \([z]\) ]
        if \(\operatorname{col}[\) uncle] \(=\) red then
            \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
            \(\operatorname{col}[\operatorname{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
else
            if \(z=\operatorname{right}[\) parent \([z]]\) then
                                    \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z)\);
                            \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow\) red;
                            RightRotate(gp[z]);
                    else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: \(\quad\) if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent[z]]
        if col[uncle] \(=\) red then
    5: \(\quad \operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
6:
    7: else
8:
9:
10:
11:
12: else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: \(\quad\) if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent[z]]
    4: if \(\operatorname{col}[\) uncle \(]=\) red then
            \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
        \(\operatorname{col}[\operatorname{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
        else
            if \(z=\operatorname{right}[\) parent \([z]]\) then
        \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z)\);
                            \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow \mathrm{red}\);
                            RightRotate(gp[z]);
            else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Red Black Trees: Insert

```
Algorithm 10 InsertFix \((z)\)
    1: while parent \([z] \neq\) null and col[parent \([z]]=\) red do
    2: \(\quad\) if parent \([z]=\operatorname{left}[g p[z]]\) then
    3: uncle \(\leftarrow \operatorname{right}[\) grandparent[z]]
    4: if \(\operatorname{col}[\) uncle \(]=\) red then
            \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[u] \leftarrow\) black;
                        \(\operatorname{col}[\operatorname{gp}[z]] \leftarrow\) red; \(z \leftarrow\) grandparent \([z]\);
else
            if \(z=\operatorname{right}[\) parent \([z]]\) then
                        \(z \leftarrow \mathrm{p}[z]\); LeftRotate \((z) ;\)
        \(\operatorname{col}[\mathrm{p}[z]] \leftarrow\) black; \(\operatorname{col}[\mathrm{gp}[z]] \leftarrow\) red; \(2 \mathrm{~b}: z\) left child
11: RightRotate (gp[z]);
12: else same as then-clause but right and left exchanged
13: \(\operatorname{col}(\operatorname{root}[T]) \leftarrow\) black;
```


Case 1: Red Uncle

1. recolour

Case 1: Red Uncle

1. recolour

Case 1: Red Uncle

1. recolour
2. move z to grand-parent

Case 1: Red Uncle

1. recolour
2. move z to grand-parent
3. invariant is fulfilled for new z

Case 1: Red Uncle

1. recolour
2. move z to grand-parent
3. invariant is fulfilled for new z
4. you made progress

Case 2b: Black uncle and z is left child

Case 2 b: Black uncle and z is left child

Case 2b: Black uncle and z is left child

1. rotate around grandparent

Case 2b: Black uncle and z is left child

1. rotate around grandparent
2. re-colour to ensure that black height property holds

Case 2b: Black uncle and z is left child

1. rotate around grandparent
2. re-colour to ensure that black height property holds
3. you have a red black tree

Case 2a: Black uncle and z is right child

Case 2a: Black uncle and z is right child

Case 2a: Black uncle and z is right child

1. rotate around parent

Case 2a: Black uncle and z is right child

1. rotate around parent
2. move z downwards

Case 2a: Black uncle and z is right child

1. rotate around parent
2. move z downwards
3. you have Case 2b.

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree
- Case $2 \mathrm{~b} \rightarrow$ red-black tree

Red Black Trees: Insert

Running time:

- Only Case 1 may repeat; but only $h / 2$ many steps, where h is the height of the tree.
- Case $2 \mathrm{a} \rightarrow$ Case $2 \mathrm{~b} \rightarrow$ red-black tree
- Case $2 \mathrm{~b} \rightarrow$ red-black tree

Performing Case 1 at most $\mathcal{O}(\log n)$ times and every other case at most once, we get a red-black tree. Hence $\mathcal{O}(\log n)$ re-colorings and at most 2 rotations.

Red Black Trees: Delete

Red Black Trees: Delete

First do a standard delete.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.
If it was black there may be the following problems.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.

Red Black Trees: Delete

First do a standard delete.
If the spliced out node x was red everything is fine.
If it was black there may be the following problems.

- Parent and child of x were red; two adjacent red vertices.
- If you delete the root, the root may now be red.
- Every path from an ancestor of x to a descendant leaf of x changes the number of black nodes. Black height property might be violated.

Red Black Trees: Delete

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Case 3:
Element has two children

- do normal delete
- when replacing content by content of successor, don't change color of node

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine

Red Black Trees: Delete

Delete:

- deleting black node messes up black-height property
- if z is red, we can simply color it black and everything is fine
- the problem is if z is black (e.g. a dummy-leaf); we call a fix-up procedure to fix the problem.

Red Black Trees: Delete

Invariant of the fix-up algorithm

- the node z is black

Red Black Trees: Delete

Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Red Black Trees: Delete

Invariant of the fix-up algorithm

- the node z is black
- if we "assign" a fake black unit to the edge from z to its parent then the black-height property is fulfilled

Goal: make rotations in such a way that you at some point can remove the fake black unit from the edge.

Case 1 : Sibling of z is red

Case 1: Sibling of z is red

Case 1 : Sibling of z is red

1. left-rotate around parent of z

Case 1 : Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c

Case 1: Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c
3. the new sibling is black (and parent of z is red)

Case 1: Sibling of z is red

1. left-rotate around parent of z
2. recolor nodes b and c
3. the new sibling is black (and parent of z is red)
4. Case 2 (special), or Case 3, or Case 4

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

Case 2: Sibling is black with two black children

1. re-color node c

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards
4. we made progress

Case 2: Sibling is black with two black children

1. re-color node c
2. move fake black unit upwards
3. move z upwards
4. we made progress
5. if b is red we color it black and are done

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

Case 3: Sibling black with one black child to the right

1. do a right-rotation at sibling
2. recolor c and d
3. new sibling is black with red right child (Case 4)

Case 4: Sibling is black with red right child

Case 4: Sibling is black with red right child

Case 4: Sibling is black with red right child

1. left-rotate around b

Case 4: Sibling is black with red right child

1. left-rotate around b
2. remove the fake black unit

Case 4: Sibling is black with red right child

1. left-rotate around b
2. remove the fake black unit
3. recolor nodes b, c, and e

Case 4: Sibling is black with red right child

1. left-rotate around b
2. remove the fake black unit
3. recolor nodes b, c, and e
4. you have a valid red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree

Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree

Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree

Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree

- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $4 \rightarrow$ red black tree

Running time:

- only Case 2 can repeat; but only h many steps, where h is the height of the tree
- Case $1 \rightarrow$ Case 2 (special) \rightarrow red black tree Case $1 \rightarrow$ Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
Case $1 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $3 \rightarrow$ Case $4 \rightarrow$ red black tree
- Case $4 \rightarrow$ red black tree

Performing Case 2 at most $\mathcal{O}(\log n)$ times and every other step at most once, we get a red black tree. Hence, $\mathcal{O}(\log n)$ re-colorings and at most 3 rotations.

