13.2 Relabel to Front

```
Algorithm 1 relabel-to-front \((G, s, t)\)
    initialize preflow
    initialize node list \(L\) containing \(V \backslash\{s, t\}\) in any order
    foreach \(u \in V \backslash\{s, t\}\) do
    u.current-neighbour \(\leftarrow\) u.neighbour-list-head
    \(u \leftarrow\) L.head
    while \(u \neq\) null do
        old-height \(\leftarrow \ell(u)\)
        discharge ( \(u\) )
        if \(\ell(u)>\) old-height then // relabel happened
            move \(u\) to the front of \(L\)
        \(u \leftarrow u . n e x t\)
```


101 Harald Räck

Proof:

- Initialization:

1. In the beginning s has label $n \geq 2$, and all other nodes have label 0 . Hence, no edge is admissible, which means that any ordering L is permitted.
2. We start with u being the head of the list; hence no node before u can be active

- Maintenance:

1. Pushes do no create any new admissible edges. Therefore, if discharge() does not relabel u, L is still topologically sorted.

- After relabeling, u cannot have admissible incoming edges as such an edge (x, u) would have had a difference $\ell(x)-\ell(u) \geq 2$ before the re-labeling (such edges do not exist in the residual graph).
Hence, moving u to the front does not violate the sorting property for any edge; however it fixes this property for all admissible edges leaving u that were generated by the relabeling.

13.2 Relabel to Front

Lemma 76 (Invariant)
In Line 6 of the relabel-to-front algorithm the following invariant holds.

1. The sequence L is topologically sorted w.r.t. the set of admissible edges; this means for an admissible edge (x, y) the node x appears before y in sequence L.
2. No node before u in the list L is active.

Harald Räcke	13.2 Relabel to Front	14. Jan. 2024
$496 / 502$		

13.2 Relabel to Front

Proof:

- Maintenance:

2. If we do a relabel there is nothing to prove because the only node before u^{\prime} (u in the next iteration) will be the current u; the discharge (u) operation only terminates when u is not active anymore.

For the case that we do not relabel, observe that the only way a predecessor could be active is that we push flow to it via an admissible arc. However, all admissible arc point to successors of u.

Note that the invariant means that for $u=$ null we have a preflow with a valid labelling that does not have active nodes. This means we have a maximum flow.

$T \\|$ Harald Räcke	13.2 Relabel to Front

13.2 Relabel to Front

Lemma 77

There are at most $\mathcal{O}\left(n^{3}\right)$ calls to discharge(u).

Every discharge operation without a relabel advances u (the current node within list L). Hence, if we have n discharge operations without a relabel we have $u=$ null and the algorithm terminates.

Therefore, the number of calls to discharge is at most $n(\#$ relabels +1$)=\mathcal{O}\left(n^{3}\right)$.
717013 Relabel to Front

13.2 Relabel to Front

Recall that a saturating push operation
$\left(\min \left\{c_{f}(e), f(u)\right\}=c_{f}(e)\right)$ can also be a deactivating push operation $\left(\min \left\{c_{f}(e), f(u)\right\}=f(u)\right)$.

Lemma 79
The cost for all saturating push-operations that are not deactivating is only $\mathcal{O}(\mathrm{mn})$.

Note that such a push-operation leaves the node u active but makes the edge e disappear from the residual graph. Therefore the push-operation is immediately followed by an increase of the pointer u.current-neighbour.
This pointer can traverse the neighbour-list at most $\mathcal{O}(n)$ times (upper bound on number of relabels) and the neighbour-list has only degree (u) +1 many entries (+1 for null-entry).

Lemma 80
The cost for all deactivating push-operations is only $\mathcal{O}\left(n^{3}\right)$.

A deactivating push-operation takes constant time and ends the current call to discharge(). Hence, there are only $\mathcal{O}\left(n^{3}\right)$ such operations.

Theorem 81
The push-relabel algorithm with the rule relabel-to-front takes time $\mathcal{O}\left(n^{3}\right)$.

13.2 Relabel to Front

Lemma 78
The cost for all relabel-operations is only $\mathcal{O}\left(n^{2}\right)$.

A relabel-operation at a node is constant time (increasing the label and resetting u.current-neighbour). In total we have $\mathcal{O}\left(n^{2}\right)$ relabel-operations.

$7 \square$ Harald Räcke	13.2 Relabel to Front	$\begin{array}{r} \text { 14. Jan. } 2024 \\ 502 / 502 \end{array}$

