Overview: Shortest Augmenting Paths

Lemma 54

The length of the shortest augmenting path never decreases.

Lemma 55

After at most $\mathcal{O}(m)$ augmentations, the length of the shortest augmenting path strictly increases.

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_{f} (along non-zero edges).

Let L_{G} denote the subgraph of the residual graph G_{f} that contains only those edges (u, v) with $\ell(v)=\ell(u)+1$.

A path P is a shortest $s-u$ path in G_{f} iff it is an $s-u$ path in L_{G}.

$$
{\overrightarrow{\text { edge of } G_{f}}}^{\text {edge of } L_{G}}
$$

In the following we assume that the residual graph G_{f} does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.
After an augmentation G_{f} changes as follows:

- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.

Shortest Augmenting Paths

Theorem 57
The shortest augmenting path algorithm performs at most $\mathcal{O}(\mathrm{mn})$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 58 (without proof)
There exist networks with $m=\Theta\left(n^{2}\right)$ that require $\Omega(m n)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow (why?).

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let M denote the set of edges in graph L_{G} at the beginning of a round when the distance between s and t is k.

An $s-t$ path in G_{f} that uses edges not in M has length larger than k, even when using edges added to G_{f} during the round.
In each augmentation an edge is deleted from M.

[^0]
Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}\left(m n^{2}\right)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

Shortest Augmenting Paths

We maintain a subset M of the edges of G_{f} with the guarantee that a shortest s - t path using only edges from M is a shortest augmenting path.

With each augmentation some edges are deleted from M.
When M does not contain an $s-t$ path anymore the distance between s and t strictly increases.

Note that M is not the set of edges of the level graph but a subset of level-graph edges.

Analysis

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing M for the phase takes time $\mathcal{O}(m)$.
The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(\mathrm{mn})$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in M and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_{f} and has to check whether the edge is still in M for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}\left(m n^{2}\right)$.

Suppose that the initial distance between s and t in G_{f} is k.
M is initialized as the level graph L_{G}.
Perform a DFS search to find a path from s to t using edges from M.

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from M.

[^0]: Note that an edge cannot enter M again during the round as this would require an augmentation along a non-shortest path.

