7.5 Skip Lists

Why do we not use a list for implementing the ADT Dynamic

 Set?- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

7.5 Skip Lists

Add more express lanes. Lane L_{i} contains roughly every $\frac{L_{i-1}}{L_{i}}$-th item from list L_{i-1}.
$\operatorname{Search}(\mathrm{x})\left(k+1\right.$ lists $\left.L_{0}, \ldots, L_{k}\right)$

- Find the largest item in list L_{k} that is smaller than x. At most $\left|L_{k}\right|+2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-1}\right|}{\left|L_{k}\right|+1}\right\rceil+2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil\frac{\left|L_{k-2}\right|}{\left|L_{k-1}\right|+1}\right\rceil+2$ steps.
- ...
- At most $\left|L_{k}\right|+\sum_{i=1}^{k} \frac{L_{i-1}}{L_{i}}+3(k+1)$ steps.

7.5 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let $\left|L_{1}\right|$ denote the number of elements in the "express lane", and $\left|L_{0}\right|=n$ the number of all elements (ignoring dummy elements).

Worst case search time: $\left|L_{1}\right|+\frac{\left|L_{0}\right|}{\left|L_{1}\right|}$ (ignoring additive constants)
Choose $\left|L_{1}\right|=\sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

7.5 Skip Lists

Choose ratios between list-lengths evenly, i.e., $\frac{\left|L_{i-1}\right|}{\left|L_{i}\right|}=r$, and, hence, $L_{k} \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}\left(r^{-k} n+k r\right)$.
Choose $r=n^{\frac{1}{k+1}}$. Then

$$
\begin{aligned}
r^{-k} n+k r & =\left(n^{\frac{1}{k+1}}\right)^{-k} n+k n^{\frac{1}{k+1}} \\
& =n^{1-\frac{k}{k+1}}+k n^{\frac{1}{k+1}} \\
& =(k+1) n^{\frac{1}{k+1}} .
\end{aligned}
$$

Choosing $k=\Theta(\log n)$ gives a logarithmic running time.

High Probability

Suppose there are polynomially many events $E_{1}, E_{2}, \ldots, E_{\ell}, \ell=n^{c}$ each holding with high probability (e.g. E_{i} may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_{i} hold is at least

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right] & =1-\operatorname{Pr}\left[\bar{E}_{1} \vee \cdots \vee \bar{E}_{\ell}\right] \\
& \geq 1-n^{c} \cdot n^{-\alpha} \\
& =1-n^{c-\alpha}
\end{aligned}
$$

This means $\operatorname{Pr}\left[E_{1} \wedge \cdots \wedge E_{\ell}\right]$ holds with high probability.

7.5 Skip Lists

Backward analysis:

At each point the path goes up with probability $1 / 2$ and left with probability $1 / 2$.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.

7.5 Skip Lists

Lemma 19
A search (and, hence, also insert and delete) in a skip list with n elements takes time $\mathcal{O}(\log n)$ with high probability (w. h. p.).

7.5 Skip Lists

Estimation for Binomial Coefficients

$$
\begin{aligned}
&\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k} \\
&\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}=\frac{n \cdot \ldots \cdot(n-k+1)}{k \cdot \ldots \cdot 1} \geq\left(\frac{n}{k}\right)^{k} \\
&\binom{n}{k}=\frac{n \cdot \ldots \cdot(n-k+1)}{k!} \leq \frac{n^{k}}{k!}=\frac{n^{k} \cdot k^{k}}{k^{k} \cdot k!} \\
&=\left(\frac{n}{k}\right)^{k} \cdot \frac{k^{k}}{k!} \leq\left(\frac{n}{k}\right)^{k} \cdot \sum_{i \geq 0} \frac{k^{i}}{i!}=\left(\frac{e n}{k}\right)^{k}
\end{aligned}
$$

7.5 Skip Lists

Let $E_{z, k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_{k}.

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

7.5 Skip Lists

So far we fixed $k=\gamma \log n, \gamma \geq 1$, and $z=7 \alpha \gamma \log n, \alpha \geq 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$
\operatorname{Pr}\left[A_{k+1}\right] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)}
$$

For the search to take at least $z=7 \alpha \gamma \log n$ steps either the event $E_{z, k}$ or the event A_{k+1} must hold.
Hence,

$$
\operatorname{Pr}[\text { search requires } z \text { steps }] \leq \operatorname{Pr}\left[E_{z, k}\right]+\operatorname{Pr}\left[A_{k+1}\right]
$$

$$
\leq n^{-\alpha}+n^{-(\gamma-1)}
$$

This means, the search requires at most z steps, w.h.p.

7.5 Skip Lists

$\operatorname{Pr}\left[E_{z, k}\right] \leq \operatorname{Pr}[$ at most k heads in z trials $]$

$$
\leq\binom{ z}{k} 2^{-(z-k)} \leq\left(\frac{e z}{k}\right)^{k} 2^{-(z-k)} \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-z}
$$

choosing $k=\gamma \log n$ with $\gamma \geq 1$ and $z=(\beta+\alpha) \gamma \log n$

$$
\begin{aligned}
& \leq\left(\frac{2 e z}{k}\right)^{k} 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq\left(\frac{2 e z}{2^{\beta} k}\right)^{k} \cdot n^{-\alpha} \\
& \leq\left(\frac{2 e(\beta+\alpha)}{2^{\beta}}\right)^{k} n^{-\alpha}
\end{aligned}
$$

now choosing $\beta=6 \alpha$ gives

$$
\leq\left(\frac{42 \alpha}{64^{\alpha}}\right)^{k} n^{-\alpha} \leq n^{-\alpha}
$$

for $\alpha \geq 1$.

Skip Lists

Bibliography
[GT98] Michael T. Goodrich, Roberto Tamassia Data Structures and Algorithms in JAVA, John Wiley, 1998

Skip lists are covered in Chapter 7.5 of [CT98].

