Part III

Approximation Algorithms

Harald Räcke

11. Iul. 2024

Definition 3

An α -approximation for an optimization problem is a polynomial-time algorithm that for all instances of the problem produces a solution whose value is within a factor of α of the value of an optimal solution.

There are many practically important optimization problems that are NP-hard.

What can we do?

- Heuristics.
- Exploit special structure of instances occurring in practise.
- Consider algorithms that do not compute the optimal solution but provide solutions that are close to optimum.

Harald Räcke

11 Introduction to Approximation

11. Jul. 2024

Why approximation algorithms?

- ▶ We need algorithms for hard problems.
- ▶ It gives a rigorous mathematical base for studying heuristics.
- lt provides a metric to compare the difficulty of various optimization problems.
- Proving theorems may give a deeper theoretical understanding which in turn leads to new algorithmic approaches.

Why not?

Sometimes the results are very pessimistic due to the fact that an algorithm has to provide a close-to-optimum solution on every instance.

Definition 4

An optimization problem P = (I, sol, m, goal) is in **NPO** if

- $\triangleright x \in I$ can be decided in polynomial time
- $\nu \in sol(1)$ can be verified in polynomial time
- m can be computed in polynomial time
- ightharpoonup goal $\in \{\min, \max\}$

In other words: the decision problem is there a solution γ with m(x, y) at most/at least z is in NP.

11 Introduction to Approximation

11. Jul. 2024

Definition 6 (γ -approximation)

An algorithm A is an γ -approximation algorithm iff

$$\forall x \in \mathcal{I} : R(x, A(x)) \leq r$$

and A runs in polynomial time.

- x is problem instance
- \triangleright γ is candidate solution
- $ightharpoonup m^*(x)$ cost/profit of an optimal solution

Definition 5 (Performance Ratio)

$$R(x,y) := \max \left\{ \frac{m(x,y)}{m^*(x)}, \frac{m^*(x)}{m(x,y)} \right\}$$

Harald Räcke

11 Introduction to Approximation

11. Jul. 2024

Definition 7 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon > 0$ and produces a solution γ for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the jobs on n machines such that the MAKESPAN is minimized.

Harald Räcke

11 Introduction to Approximation

11. Jul. 2024

KNAPSACK. Given a set of items with profits and weights choose a subset of total weight at most W s.t. the profit is maximized.

Definition 8 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as input $x \in \mathcal{I}$ and $\epsilon > 0$ and produces a solution γ for x with

$$R(x, y) \leq 1 + \epsilon$$
.

The running time is polynomial in |x| and $1/\epsilon$.

approximation with arbitrary good factor... fast!

Harald Räcke

11 Introduction to Approximation

11. Jul. 2024

Problems that have an FPTAS

Definition 9 (APX - approximable)

A problem P from NPO is in APX if there exist a constant $r \geq 1$ and an r-approximation algorithm for P.

constant factor approximation...

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint pieces A and B s.t. the number of edges between both pieces is maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables that satisfies the maximum number of clauses.

Harald Räcke

11 Introduction to Approximation

11. Jul. 2024

There are really difficult problems!

For any constant $\epsilon > 0$ there does not exist an $\Omega(n^{1-\epsilon})$ -approximation algorithm for the maximum clique problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

Problems with polylogarithmic approximation guarantees

- Set Cover
- Minimum Multicut
- Sparsest Cut
- Minimum Bisection

There is an r-approximation with $r \leq \mathcal{O}(\log^{c}(|x|))$ for some constant c.

Note that only for some of the above problem a matching lower bound is known.

Harald Räcke

11 Introduction to Approximation

11. Jul. 2024

Theorem 10

There are weird problems!

Asymmetric k-Center admits an $\mathcal{O}(\log^* n)$ -approximation.

There is no $o(\log^* n)$ -approximation to Asymmetric k-Center unless $NP \subseteq DTIME(n^{\log \log \log n})$.

11 Introduction to Approximation

11. Jul. 2024

11 Introduction to Approximation

11. Jul. 2024

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits a 4-approximation.

One only says that a problem is APX-hard.

Harald Räcke

11 Introduction to Approximation

11. Jul. 2024 54/262

Definition 11

An Integer Linear Program or Integer Program is a Linear Program in which all variables are required to be integral.

Definition 12

A Mixed Integer Program is a Linear Program in which a subset of the variables are required to be integral. A crucial ingredient for the design and analysis of approximation algorithms is a technique to obtain an upper bound (for maximization problems) or a lower bound (for minimization problems).

Therefore Linear Programs or Integer Linear Programs play a vital role in the design of many approximation algorithms.

Harald Räcke

12 Integer Programs

11. Jul. 2024

Many important combinatorial optimization problems can be formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

Set Cover

Given a ground set U, a collection of subsets $S_1, \ldots, S_k \subseteq U$, where the *i*-th subset S_i has weight/cost w_i . Find a collection $I \subseteq \{1, \ldots, k\}$ such that

 $\forall u \in U \exists i \in I : u \in S_i$ (every element is covered)

and

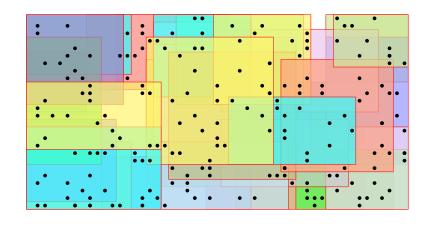
$$\sum_{i \in I} w_i$$
 is minimized.

12 Integer Programs

11. Jul. 2024

IP-Formulation of Set Cover

Set Cover



Harald Räcke

12 Integer Programs

11. Jul. 2024

Vertex Cover

Given a graph G = (V, E) and a weight w_v for every node. Find a vertex subset $S \subseteq V$ of minimum weight such that every edge is incident to at least one vertex in S.

12 Integer Programs

IP-Formulation of Vertex Cover

min
$$\sum_{v \in V} w_v x_v$$
s.t. $\forall e = (i, j) \in E$ $x_i + x_j \ge 1$
$$\forall v \in V$$
 $x_v \in \{0, 1\}$

Harald Räcke

12 Integer Programs

11. Jul. 2024

Maximum Independent Set

Given a graph G=(V,E), and a weight w_{v} for every node $v\in V$. Find a subset $S\subseteq V$ of nodes of maximum weight such that no two vertices in S are adjacent.

Maximum Weighted Matching

Given a graph G=(V,E), and a weight w_e for every edge $e\in E$. Find a subset of edges of maximum weight such that no vertex is incident to more than one edge.

Harald Räcke

12 Integer Programs

11. Jul. 2024

Knapsack

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight w_i and profit p_i , and given a threshold K. Find a subset $I\subseteq\{1,\ldots,n\}$ of items of total weight at most K such that the profit is maximized.

$$\begin{array}{ccccc} \max & & \sum_{i=1}^n p_i x_i \\ \text{s.t.} & & \sum_{i=1}^n w_i x_i & \leq & K \\ & \forall i \in \{1, \dots, n\} & & x_i & \in & \{0, 1\} \end{array}$$

Relaxations

Definition 13

A linear program LP is a relaxation of an integer program IP if any feasible solution for IP is also feasible for LP and if the objective values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing $x_i \in [0, 1]$ instead of $x_i \in \{0, 1\}$.

Harald Räcke

12 Integer Programs

11. Iul. 2024

By solving a relaxation we obtain an upper bound for a maximization problem and a lower bound for a minimization problem.

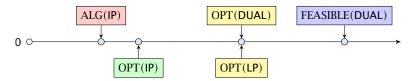
12 Integer Programs

11. Jul. 2024

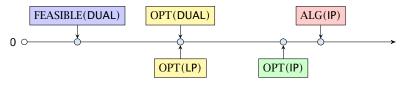
Relations

∏∏∏ Harald Räcke

Maximization Problems:



Minimization Problems:



Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_{u} \{f_u\}$ be the maximum frequency.

Technique 1: Round the LP solution.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Harald Räcke

13.1 Deterministic Rounding

11. Jul. 2024 70/262

Technique 1: Round the LP solution.

The cost of the rounded solution is at most $f \cdot \text{OPT}$.

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \cot(x)$$
$$\le f \cdot \text{OPT}.$$

Technique 1: Round the LP solution.

Lemma 14

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- ▶ We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- ▶ The sum contains at most $f_u \le f$ elements.
- ▶ Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

Harald Räcke

13.1 Deterministic Rounding

11. Jul. 2024

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

$$\begin{array}{ll}
\min & \sum_{i \in I} w_i x_i \\
\text{s.t. } \forall u & \sum_{i:u \in S_i} x_i \ge 1 \\
& x_i \ge 0
\end{array}$$

Dual:

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i}y_u=w_i$$

Harald Räcke

13.2 Rounding the Dual

11. Jul. 2024 74/262

Technique 2: Rounding the Dual Solution.

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$

$$= \sum_{u} |\{i \in I : u \in S_i\}| \cdot y_u$$

$$\leq \sum_{u} f_u y_u$$

$$\leq f \sum_{u} y_u$$

$$\leq f \cot(x^*)$$

$$\leq f \cdot OPT$$

Technique 2: Rounding the Dual Solution.

Lemma 15

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- ▶ This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- ▶ But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Harald Räcke

13.2 Rounding the Dual

1. Jul. 2024

Let I denote the solution obtained by the first rounding algorithm and I^\prime be the solution returned by the second algorithm. Then

$$I \subseteq I'$$
.

This means I' is never better than I.

- ▶ Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- ▶ This means $x_i \ge \frac{1}{f}$.
- ▶ Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose S_i .

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \cot(x^{*}) \le OPT$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

13.3 Primal Dual Technique

11. Iul. 2024

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

2:
$$\hat{S}_j \leftarrow S_j$$
 for all j

3: **while** I not a set cover **do**

4:
$$\ell \leftarrow \arg\min_{j:\hat{S}_j \neq 0} \frac{w_j}{|\hat{S}_j|}$$

5:
$$I \leftarrow I \cup \{\ell\}$$

6:
$$\hat{S}_j \leftarrow \hat{S}_j - S_\ell$$
 for all j

In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

1:
$$y \leftarrow 0$$

3: while exists $u \notin \bigcup_{i \in I} S_i$ do

increase dual variable y_u until constraint for some new set S_{ℓ} becomes tight

5:
$$I \leftarrow I \cup \{\ell\}$$

13.3 Primal Dual Technique

4:
$$\ell \leftarrow \arg\min_{j:\hat{S}_i \neq 0} \frac{w_j}{|\hat{S}_i|}$$

$$\hat{S}_i \leftarrow \hat{S}_i - S_\ell \quad \text{for all } j$$

Technique 4: The Greedy Algorithm

Lemma 16

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k , and $S \subseteq \{1, \dots, k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Technique 4: The Greedy Algorithm

Let n_ℓ denote the number of elements that remain at the beginning of iteration ℓ . $n_1=n=|U|$ and $n_{s+1}=0$ if we need s iterations.

In the ℓ-th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT .

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}.$

13.4 Greedy

11. Jul. 2024

Technique 4: The Greedy Algorithm

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$= \text{OPT} \sum_{i=1}^n \frac{1}{i}$$

$$= H_n \cdot \text{OPT} \le \text{OPT}(\ln n + 1) .$$

Technique 4: The Greedy Algorithm

Adding this set to our solution means $n_{\ell+1} = n_\ell - |\hat{S}_j|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

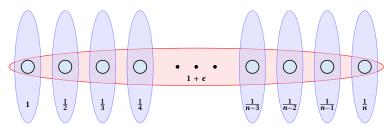
Harald Räcke

13.4 Greedy

1. Jul. 2024

Technique 4: The Greedy Algorithm

A tight example:



Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_i uniformly at random with probability $1 - x_i$ (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover remaining elements by some simple heuristic.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Harald Räcke

13.5 Randomized Rounding

11. Jul. 2024 86/262

 $\Pr[\exists u \in U \text{ not covered after } \ell \text{ round}]$

- = $Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor ... \lor u_n \text{ not covered}]$
- $\leq \sum_{i} \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell}$.

Lemma 17

With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $\mathcal{O}(\log n)$ with probability at least $1-n^{-\alpha}$.

Probability that $u \in U$ is not covered (in one round):

Pr[u not covered in one round]

$$= \prod_{j:u \in S_j} (1 - x_j) \le \prod_{j:u \in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u \in S_j} x_j} \le e^{-1}.$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{e^{\ell}}$$
.

Harald Räcke

13.5 Randomized Rounding

11. Jul. 2024

Proof: We have

 $\Pr[\#\text{rounds} \ge (\alpha + 1) \ln n] \le ne^{-(\alpha + 1) \ln n} = n^{-\alpha}$.

Expected Cost

Version A. Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

$$E[\cos t] \le (\alpha + 1) \ln n \cdot \cos t(LP) + (n \cdot OPT) n^{-\alpha} = \mathcal{O}(\ln n) \cdot OPT$$

Harald Räcke

13.5 Randomized Rounding

11. Jul. 2024 90/262

Randomized rounding gives an $\mathcal{O}(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 18 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\text{poly}(\log n)}$).

Expected Cost

Version B.

Repeat for $s=(\alpha+1)\ln n$ rounds. If you don't have a cover simply repeat the whole process.

$$E[\cos t] = \Pr[success] \cdot E[\cos t \mid success]$$

$$+ \Pr[no success] \cdot E[\cos t \mid no success]$$

This means

$$\begin{split} &E[\cos t \mid \mathsf{success}] \\ &= \frac{1}{\Pr[\mathsf{succ.}]} \Big(E[\cos t] - \Pr[\mathsf{no} \ \mathsf{success}] \cdot E[\cos t \mid \mathsf{no} \ \mathsf{success}] \Big) \\ &\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \mathsf{cost}(\mathsf{LP}) \\ &\leq 2(\alpha + 1) \ln n \cdot \mathsf{OPT} \end{split}$$

for $n \ge 2$ and $\alpha \ge 1$.

13.5 Randomized Rounding

11. Jul. 202

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- $n = 2^k 1$
- ▶ Elements are all vectors \vec{x} over GF[2] of length k (excluding zero vector).
- Every vector \vec{y} defines a set as follows

$$S_{\vec{y}} := \{ \vec{x} \mid \vec{x}^T \vec{y} = 1 \}$$

- each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets
- $x_i = \frac{1}{2k-1} = \frac{2}{n+1}$ is fractional solution.

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

13.5 Randomized Rounding

11. Jul. 2024 94/262

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job $j \in \{1, ..., n\}$ has processing time p_j . Schedule the jobs on m identical parallel machines such that the Makespan (finishing time of the last job) is minimized.

Here the variable $x_{j,i}$ is the decision variable that describes whether job j is assigned to machine i.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

13.5 Randomized Rounding

11. Jul. 2024

Lower Bounds on the Solution

Let for a given schedule C_j denote the finishing time of machine j, and let C_{\max} be the makespan.

Let \mathcal{C}^*_{max} denote the makespan of an optimal solution.

Clearly

$$C_{\max}^* \ge \max_j p_j$$

as the longest job needs to be scheduled somewhere.

14.1 Local Search

11. Jul. 2024

14.1 Local Search

11. Jul. 2024

Lower Bounds on the Solution

The average work performed by a machine is $\frac{1}{m} \sum_{j} p_{j}$. Therefore,

$$C_{\max}^* \ge \frac{1}{m} \sum_j p_j$$

Harald Räcke

14.1 Local Search

11. Jul. 2024

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to move it to another machine. If there is such a move that reduces the makespan, perform the switch.

REPEAT

Local Search

A local search algorithm successively makes certain small (cost/profit improving) changes to a solution until it does not find such changes anymore.

It is conceptionally very different from a Greedy algorithm as a feasible solution is always maintained.

Sometimes the running time is difficult to prove.

Harald Räcke

14.1 Local Search

11. Jul. 2024

Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let S_ℓ be its start time, and let C_ℓ be its completion time.

Note that every machine is busy before time S_ℓ , because otherwise we could move the job ℓ and hence our schedule would not be locally optimal.

We can split the total processing time into two intervals one from 0 to S_{ℓ} the other from S_{ℓ} to C_{ℓ} .

The interval $[S_{\ell}, C_{\ell}]$ is of length $p_{\ell} \leq C_{\max}^*$.

During the first interval $[0, S_\ell]$ all processors are busy, and, hence, the total work performed in this interval is

$$m \cdot S_{\ell} \leq \sum_{j \neq \ell} p_j$$
.

Hence, the length of the schedule is at most

$$p_{\ell} + \frac{1}{m} \sum_{j \neq \ell} p_j = (1 - \frac{1}{m}) p_{\ell} + \frac{1}{m} \sum_j p_j \le (2 - \frac{1}{m}) C_{\text{max}}^*$$

14.1 Local Search

11. Jul. 2024 102/262

A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the least loaded machine.

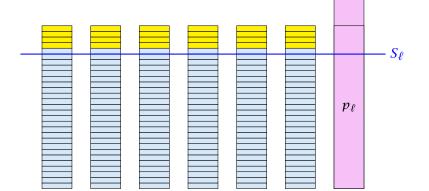
It is easy to see that the result of these greedy strategies fulfill the local optimally condition of our local search algorithm. Hence, these also give 2-approximations.

A Tight Example

$$p_{\ell} \approx S_{\ell} + \frac{S_{\ell}}{m-1}$$

$$\frac{\text{ALG}}{\text{OPT}} = \frac{S_{\ell} + p_{\ell}}{p_{\ell}} \approx \frac{2 + \frac{1}{m-1}}{1 + \frac{1}{m-1}} = 2 - \frac{1}{m}$$

 p_{ℓ}



A Greedy Strategy

Lemma 19

If we order the list according to non-increasing processing times the approximation guarantee of the list scheduling strategy improves to 4/3.

Proof:

- Let $p_1 \ge \cdots \ge p_n$ denote the processing times of a set of jobs that form a counter-example.
- ightharpoonup Wlog. the last job to finish is n (otw. deleting this job gives another counter-example with fewer jobs).
- ▶ If $p_n \le C_{\text{max}}^*/3$ the previous analysis gives us a schedule length of at most

$$C_{\max}^* + p_n \le \frac{4}{3} C_{\max}^*$$
.

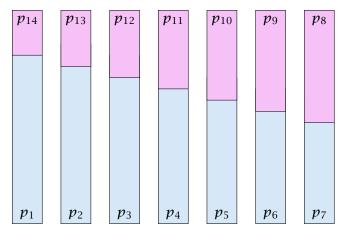
Hence, $p_n > C_{\text{max}}^* / 3$.

- This means that all jobs must have a processing time $> C_{\text{max}}^*/3$.
- But then any machine in the optimum schedule can handle at most two jobs.
- ► For such instances Longest-Processing-Time-First is optimal.

14.2 Greedy 11. Jul. 2024

- We can assume that one machine schedules p_1 and p_n (the largest and smallest job).
- If not assume wlog. that p_1 is scheduled on machine A and p_n on machine B.
- Let p_A and p_B be the other job scheduled on A and B, respectively.
- ▶ $p_1 + p_n \le p_1 + p_A$ and $p_A + p_B \le p_1 + p_A$, hence scheduling p_1 and p_n on one machine and p_A and p_B on the other, cannot increase the Makespan.
- Repeat the above argument for the remaining machines.

When in an optimal solution a machine can have at most 2 jobs the optimal solution looks as follows.



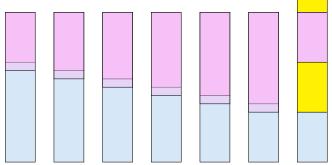
Harald Räcke

14.2 Greedy

1. Jul. 2024

Tight Example

- \triangleright 2m+1 jobs
- ▶ 2 jobs with length 2m, 2m 2, ..., m + 1 (2m 2 jobs in total)
- ightharpoonup 3 jobs of length m



15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1,\ldots,n\}$, where the i-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1,\ldots,n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

Harald Räcke

15.1 Knapsack

11. Jul. 2024

110/262

15 Rounding Data + Dynamic Programming

Definition 20

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack 1: $A(1) \leftarrow [(0,0),(p_1,w_1)]$ 2: for $j \leftarrow 2$ to n do 3: $A(j) \leftarrow A(j-1)$ 4: for each $(p,w) \in A(j-1)$ do 5: if $w + w_j \leq W$ then 6: add $(p + p_j, w + w_j)$ to A(j)7: remove dominated pairs from A(j)8: return $\max_{(p,w) \in A(n)} p$

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

Harald Räcke

15.1 Knapsack

1. Jul. 2024

15 Rounding Data + Dynamic Programming

- ightharpoonup Let M be the maximum profit of an element.
- \blacktriangleright Set $\mu := \epsilon M/n$.
- ► Set $p'_i := \lfloor p_i/\mu \rfloor$ for all i.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

15.1 Knapsack

11. Jul. 2024

15.1 Knapsack

11. Jul. 2024

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

15.1 Knapsack

11. Jul. 2024

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the obervation that if each $p_i \ge \frac{1}{3}C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

15.2 Scheduling Revisited

1. Jul. 2024

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_{\ell} \leq \sum_{j} p_{j}/(mk)$$

which is at most C_{max}^*/k .

Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 21

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

Harald Räcke

15.2 Scheduling Revisited

11. Jul. 2024 118/262

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of T it either finds a schedule of length $(1+\frac{1}{k})T$ or certifies that no schedule of length at most T exists (assume $T \geq \frac{1}{m}\sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- ightharpoonup A job is long if its size is larger than T/k.
- Otw. it is a short job.

Harald Räcke

15.2 Scheduling Revisited

11. Jul. 2024

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{k}\right)T$$
.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T .$$

Harald Räcke

15.2 Scheduling Revisited

11. Jul. 2024

Let $OPT(n_1, ..., n_{k^2})$ be the number of machines that are required to schedule input vector $(n_1, ..., n_{k^2})$ with Makespan at most T.

If $OPT(n_1, ..., n_{k^2}) \le m$ we can schedule the input.

We have

$$OPT(n_1,\ldots,n_{k^2})$$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in \mathcal{C}} \mathsf{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\ \infty & \mathsf{otw}. \end{cases}$$

where *C* is the set of all configurations.

Hence, the running time is roughly $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Running Time for scheduling large jobs: There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i\in\{k,\ldots,k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the i-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the i-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k+1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Harald Räcke

15.2 Scheduling Revisited

11. Jul. 2024

We can turn this into a PTAS by choosing $k=\lceil 1/\epsilon \rceil$ and using binary search. This gives a running time that is exponential in $1/\epsilon$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 22

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times $p_i \le q(n)$
- ▶ We set $k := \lceil 2na(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- ▶ But this means that the algorithm computes the optimal solution as the optimum is integral.
- ▶ This means we can solve problem instances if processing times are polynomially bounded
- ▶ Running time is $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

15.2 Scheduling Revisited

11. Jul. 2024

Bin Packing

Given n items with sizes s_1, \ldots, s_n where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 23

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector (n_1, \ldots, n_A) with Makespan at most T (A: number of different sizes).

If $OPT(n_1, ..., n_A) \leq m$ we can schedule the input.

 $OPT(n_1,\ldots,n_A)$

$$= \begin{cases} 0 & (n_1, \dots, n_A) = 0 \\ 1 + \min_{(s_1, \dots, s_A) \in C} \text{OPT}(n_1 - s_1, \dots, n_A - s_A) & (n_1, \dots, n_A) \geq 0 \\ \infty & \text{otw.} \end{cases}$$

where *C* is the set of all configurations.

 $|C| \leq (B+1)^A$, where B is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B+1)^A n^A)$ because the dynamic programming table has just n^A entries.

Bin Packing

Proof

In the partition problem we are given positive integers b_1, \dots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets S and T s.t.

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- We can solve this problem by setting $s_i := 2b_i/B$ and asking whether we can pack the resulting items into 2 bins or not.
- A ρ -approximation algorithm with $\rho < 3/2$ cannot output 3 or more bins when 2 are optimal.
- ▶ Hence, such an algorithm can solve Partition.

Bin Packing

Definition 24

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_\epsilon\}$ along with a constant c such that A_ϵ returns a solution of value at most $(1+\epsilon){\rm OPT}+c$ for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ▶ However, we will develop an APTAS for Bin Packing.

15.3 Bin Packing

11. Jul. 2024 130/262

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

Bin Packing

Again we can differentiate between small and large items.

Lemma 25

Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$ bins, where $\mathrm{SIZE}(I)=\sum_i s_i$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- ► Hence, $r(1 y) \le \text{SIZE}(I)$ where r is the number of nearly-full bins.
- ► This gives the lemma.

15.3 Bin Packing

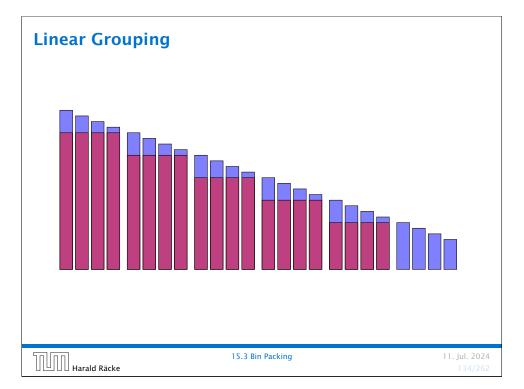
11. Jul. 202

Bin Packing

Linear Grouping:

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- ► Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group;
- ► Round items in the remaining groups to the size of the largest item in the group.



Lemma 27

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- ightharpoonup Any bin packing for I' gives a bin packing for I as follows.
- ▶ Pack the items of group 1 into *k* new bins;
- ► Pack the items of groups 2, where in the packing for *I'* the items for group 2 have been packed;
- **...**

Lemma 26

 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 1:

- ightharpoonup Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- ▶ Pack the items of groups 3, where in the packing for *I* the items for group 2 have been packed;
- · . . .

Harald Räcke

15.3 Bin Packing

11. Jul. 2024 135/262

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then $SIZE(I) \ge \epsilon n/2$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)OPT(I)+1$$
.

15.4 Advanced Rounding for Bin Packing

11. Jul. 2024 138/262

Configuration LP

A possible packing of a bin can be described by an m-tuple (t_1,\ldots,t_m) , where t_i describes the number of pieces of size s_i . Clearly,

$$\sum_i t_i \cdot s_i \le 1 .$$

We call a vector that fulfills the above constraint a configuration.

Configuration LP

Change of Notation:

- Group pieces of identical size.
- Let s_1 denote the largest size, and let b_1 denote the number of pieces of size s_1 .
- \triangleright s_2 is second largest size and b_2 number of pieces of size s_2 ;
- **...**
- \triangleright s_m smallest size and b_m number of pieces of size s_m .

Configuration LP

15.4 Advanced Rounding for Bin Packing

11. Jul. 2024

Let N be the number of configurations (exponential).

So so sible packing of a bin can be described by an m-tuple (T_1, \dots, T_N) be the sequence of all possible configurations (a

 $\sum t_i \cdot s_i \leq 1 .$

configuration T_i has T_{ii} pieces of size s_i).

How to solve this LP?

later...

Harald Räcke

15.4 Advanced Rounding for Bin Packing

11. Jul. 2024 142/262

Harmonic Grouping

- Sort items according to size (monotonically decreasing).
- ▶ Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e., G_1 is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G_2, \ldots, G_{r-1} .
- ▶ Only the size of items in the last group G_r may sum up to less than 2.

We can assume that each item has size at least 1/SIZE(I).

Harald Räcke

15.4 Advanced Rounding for Bin Packing

11. Jul. 2024

Harmonic Grouping

From the grouping we obtain instance I^\prime as follows:

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group G_1 and G_r .
- ▶ For groups $G_2, ..., G_{r-1}$ delete $n_i n_{i-1}$ items.
- ▶ Observe that $n_i \ge n_{i-1}$.

Lemma 28

The number of different sizes in I' is at most SIZE(I)/2.

- **Each** group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- \blacktriangleright Hence, the number of surviving groups is at most SIZE(I)/2.
- \blacktriangleright All items in a group have the same size in I'.

15.4 Advanced Rounding for Bin Packing

11. Jul. 2024

Algorithm 1 BinPack

- 1: if SIZE(I) < 10 then
- pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $\mathcal{O}(\log(\text{SIZE}(I)))$ bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack $\lfloor x_i \rfloor$ bins in configuration T_i for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

Lemma 29

The total size of deleted items is at most $\mathcal{O}(\log(\text{SIZE}(I)))$.

- ▶ The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- \triangleright Consider a group G_i that has strictly more items than G_{i-1} .
- lt discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only $3/n_i$.

Summing over all i that have $n_i > n_{i-1}$ gives a bound of at most

 $\sum_{i=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$

(note that $n_r \leq SIZE(I)$ since we assume that the size of each item is at least 1/SIZE(I)).

Analysis

$$OPT_{IP}(I_1) + OPT_{IP}(I_2) \le OPT_{IP}(I') \le OPT_{IP}(I)$$

Proof:

- \triangleright Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence, $OPT_{IP}(I') \leq OPT_{IP}(I)$
- \triangleright $[x_i]$ is feasible solution for I_1 (even integral).
- $\triangleright x_i \lfloor x_i \rfloor$ is feasible solution for I_2 .

Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in I_1 .
- **3.** Pieces in I_2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{IP} many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$$

many bins where *L* is the number of recursion levels.

15.4 Advanced Rounding for Bin Packing

11. Jul. 2024

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

Dual

$$\begin{array}{lll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} & y_i \geq 0 \end{array}$$

Analysis

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $\mathcal{O}(\log(\text{SIZE}(I_{\text{original}})))$ in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- ▶ The total size of items in I_2 can be at most $\sum_{i=1}^{N} x_i \lfloor x_i \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

15.4 Advanced Rounding for Bin Packing Harald Räcke

Separation Oracle

Suppose that I am given variable assignment γ for the dual.

How do I find a violated constraint?

I have to find a configuration $T_i = (T_{i1}, \dots, T_{im})$ that

is feasible, i.e.,

$$\sum_{i=1}^{m} T_{ji} \cdot s_i \leq 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

15.4 Advanced Rounding for Bin Packing

But this is the Knapsack problem.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1-\epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

Primal'

min
$$(1 + \epsilon') \sum_{j=1}^{N} x_j$$
s.t. $\forall i \in \{1...m\}$ $\sum_{j=1}^{N} T_{ji} x_j \geq b_i$
 $\forall j \in \{1,...,N\}$ $x_j \geq 0$

This gives that overall we need at most

$$(1 + \epsilon')$$
OPT_{LP} $(I) + \mathcal{O}(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon' = \frac{1}{\mathrm{OPT}}$ as $\mathrm{OPT} \leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$$OPT \le z \le (1 + \epsilon')OPT$$

How do we get good primal solution (not just the value)?

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- ► Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ▶ Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- ▶ We can compute the corresponding solution in polytime.

16.1 MAXSAT

Problem definition:

- n Boolean variables
- ightharpoonup m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_i for each clause C_i .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

16.1 MAXSAT

Terminology:

- ▶ A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- \triangleright x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

Harald Räcke

16.1 MAXSAT

11. Jul. 202

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{j} w_{j} X_{j}$$

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Harald Räcke

16.1 MAXSAT 11. Ju

 $E[W] = \sum_{j} w_{j} E[X_{j}]$ $= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$ $= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$ $\geq \frac{1}{2} \sum_{j} w_{j}$ $\geq \frac{1}{2} \text{OPT}$

MAXSAT: LP formulation

Let for a clause C_j , P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x}_i$$

Harald Räcke

16.1 MAXSAT

11. Jul. 2024

Lemma 30 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

Harald Räcke

16.1 MAXSAT

11. Jul. 2024

Definition 31

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 32

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \\ &\leq \left(1 - \frac{z_j}{\ell_i} \right)^{\ell_j} \end{split}.$$

Harald Räcke

16.1 MAXSAT

11. Jul. 20

$$\begin{split} E[W] &= \sum_j w_j \Pr[C_j \text{ is satisfied}] \\ &\geq \sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j} \right)^{\ell_j} \right] \\ &\geq \left(1 - \frac{1}{e} \right) \text{OPT }. \end{split}$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j.$$

 $f''(z)=-rac{\ell-1}{\ell}\Big[1-rac{z}{\ell}\Big]^{\ell-2}\leq 0$ for $z\in[0,1].$ Therefore, f is concave.

Harald Räcke

16.1 MAXSAT

11. Jul. 2024 167/262

MAXSAT: The better of two

Theorem 33

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

$$\begin{split} E[\max\{W_1,W_2\}] \\ &\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ &\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \\ &\geq \sum_j w_j z_j \left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)\right] \\ &\geq \frac{3}{4} \text{for all integers} \\ &\geq \frac{3}{4} \text{OPT} \end{split}$$

Harald Räcke

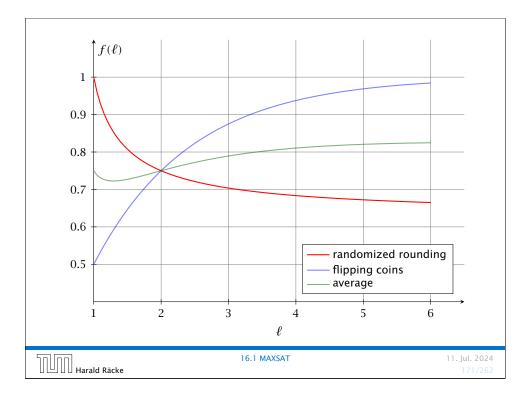
16.1 MAXSAT

11. Jul. 2024

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(y_i)$.



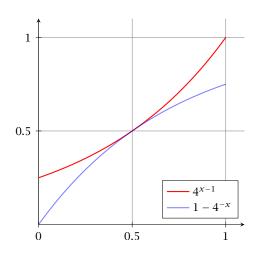
MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x-1}$$

Theorem 34

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.



Harald Räcke

16.1 MAXSAT

11. Jul. 2024

The function $g(z) = 1 - 4^{-z}$ is concave on [0,1]. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{aligned}$$

Harald Räcke

16.1 MAXSAT

11. Jul. 2024 175/262

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 35 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

Lemma 36

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- ▶ hence, the LP has value 4.

16.1 MAXSAT

11. Jul. 2024

Semidefinite Programming

- linear objective, linear constraints
- we can constrain a square matrix of variables to be symmetric positive semidefinite

Note that wlog, we can assume that all variables appear in this matrix. Suppose we have a non-negative scalar z and want to express something like

$$\sum_{ij} a_{ijk} x_{ij} + z = b_k$$

where x_{ij} are variables of the positive semidefinite matrix. We can add z as a diagonal entry $x_{\ell\ell}$, and additionally introduce constraints $x_{\ell r}=0$ and $x_{r\ell}=0$.

MaxCut

MaxCut

Given a weighted graph G = (V, E, w), $w(v) \ge 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

Trivial 2-approximation

Harald Räcke

16.2 MAXCUT

Vector Programming

$$\begin{array}{cccc}
\max / \min & \sum_{i,j} c_{ij} (v_i^t v_j) \\
\text{s.t.} & \forall k & \sum_{i,j,k} a_{ijk} (v_i^t v_j) &= b_k \\
v_i \in \mathbb{R}^n
\end{array}$$

- variables are vectors in *n*-dimensional space
- objective functions and constraints are linear in inner products of the vectors

This is equivalent!

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

Harald Räcke

16.2 MAXCUT

11. Jul. 2024

Semidefinite Relaxation

$$\begin{array}{cccc}
\max & \frac{1}{2} \sum_{i,j} w_{ij} (1 - v_i^t v_j) \\
\forall i & v_i^t v_i = 1 \\
\forall i & v_i \in \mathbb{R}^n
\end{array}$$

- this is clearly a relaxation
- ▶ the solution will be vectors on the unit sphere

Quadratic Programs

Quadratic Program for MaxCut:

$$\max \frac{\frac{1}{2} \sum_{i,j} w_{ij} (1 - y_i y_j)}{\forall i} \quad \forall i \quad y_i \in \{-1, 1\}$$

This is exactly MaxCut!

Harald Räcke

16.2 MAXCUT

11. Jul. 2024

Rounding the SDP-Solution

- ► Choose a random vector r such that $r/\|r\|$ is uniformly distributed on the unit sphere.
- ▶ If $r^t v_i > 0$ set $y_i = 1$ else set $y_i = -1$

Rounding the SDP-Solution

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0,1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, ..., x_n)]$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot ... \cdot e^{x_n^2/2} dx_1 \cdot ... \cdot dx_n$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + ... + x_n^2)} dx_1 \cdot ... \cdot dx_n$$

Hence the probability for a point only depends on its distance to the origin.

Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection $(r'/\|r'\|)$ is uniformly distributed on the unit circle within the hyperplane.

Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e_1 and e_2 are independent and are normally distributed with mean 0 and variance 1 iff e_1 and e_2 are orthogonal.

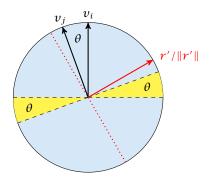
Note that this is clear if e_1 and e_2 are standard basis vectors.

Harald Räcke

16.2 MAXCUT

1. Jul. 2024

Rounding the SDP-Solution



- if the normalized projection falls into the shaded region, v_i and v_i are rounded to different values
- \blacktriangleright this happens with probability θ/π

Rounding the SDP-Solution

ightharpoonup contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\big(1-v_i^tv_j\big)$$

- \blacktriangleright (expected) contribution of edge (i, j) to the rounded instance $w_{ij} \arccos(v_i^t v_j)/\pi$
- ratio is at most

$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.878$$

Harald Räcke

16.2 MAXCUT

11. Jul. 2024

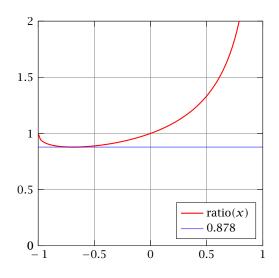
Harald Räcke

16.2 MAXCUT

-0.5

11. Jul. 2024

Rounding the SDP-Solution



0.75 0.5 0.25

 $\frac{1}{\pi} \arccos(x)$ $\frac{1}{2}(1-x)$

0.5

Rounding the SDP-Solution

Rounding the SDP-Solution

Theorem 37

Given the unique games conjecture, there is no α -approximation for the maximum cut problem with constant

$$\alpha > \min_{x \in [-1,1]} \frac{2 \arccos(x)}{\pi (1-x)}$$

unless P = NP.

Repetition: Primal Dual for Set Cover

Primal Relaxation:

Dual Formulation:

Harald Räcke

17.1 Primal Dual Revisited

11. Jul. 2024 194/262

Repetition: Primal Dual for Set Cover

Analysis:

For every set S_i with $x_i = 1$ we have

$$\sum_{e \in S_j} y_e = w_j$$

Hence our cost is

$$\sum_{j} w_{j} x_{j} = \sum_{j} \sum_{e \in S_{j}} y_{e} = \sum_{e} |\{j : e \in S_{j}\}| \cdot y_{e}$$

$$\leq f \cdot \sum_{e} y_{e} \leq f \cdot \text{OPT}$$

Repetition: Primal Dual for Set Cover

Algorithm:

- Start with y = 0 (feasible dual solution). Start with x = 0 (integral primal solution that may be infeasible).
- \triangleright While x not feasible
 - ▶ Identify an element *e* that is not covered in current primal integral solution.
 - Increase dual variable y_e until a dual constraint becomes tight (maybe increase by 0!).
 - If this is the constraint for set S_j set $x_j = 1$ (add this set to your solution).

Harald Räcke

17.1 Primal Dual Revisited

1. Jul. 2024

Note that the constructed pair of primal and dual solution fulfills primal slackness conditions.

This means

$$x_j > 0 \Rightarrow \sum_{e \in S_i} y_e = w_j$$

If we would also fulfill dual slackness conditions

$$y_e > 0 \Rightarrow \sum_{j:e \in S_j} x_j = 1$$

then the solution would be optimal!!!

We don't fulfill these constraint but we fulfill an approximate version:

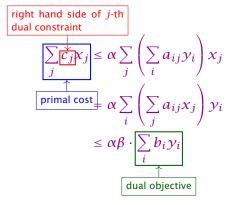
$$y_e > 0 \Rightarrow 1 \le \sum_{j:e \in S_j} x_j \le f$$

This is sufficient to show that the solution is an f-approximation.

Harald Räcke

17.1 Primal Dual Revisited

Then



Suppose we have a primal/dual pair

min
$$\sum_{j} c_{j} x_{j}$$

s.t. $\forall i \quad \sum_{j:} a_{ij} x_{j} \geq b_{i}$
 $\forall j \quad x_{j} \geq 0$ max $\sum_{i} b_{i} y_{i}$
s.t. $\forall j \quad \sum_{i} a_{ij} y_{i} \leq c_{j}$
 $\forall i \quad y_{i} \geq 0$

and solutions that fulfill approximate slackness conditions:

$$x_{j} > 0 \Rightarrow \sum_{i} a_{ij} y_{i} \ge \frac{1}{\alpha} c_{j}$$
$$y_{i} > 0 \Rightarrow \sum_{j} a_{ij} x_{j} \le \beta b_{i}$$

Harald Räcke

17.1 Primal Dual Revisited

11. Jul. 2024

Feedback Vertex Set for Undirected Graphs

- Given a graph G = (V, E) and non-negative weights $w_v \ge 0$ for vertex $v \in V$.
- ► Choose a minimum cost subset of vertices s.t. every cycle contains at least one vertex.

We can encode this as an instance of Set Cover

- Each vertex can be viewed as a set that contains some cycles.
- However, this encoding gives a Set Cover instance of non-polynomial size.
- ▶ The $O(\log n)$ -approximation for Set Cover does not help us to get a good solution.

Harald Räcke

17.2 Feedback Vertex Set for Undirected Graphs

11. Jul. 2024 202/262

If we perform the previous dual technique for Set Cover we get the following:

- Start with x = 0 and y = 0
- ▶ While there is a cycle *C* that is not covered (does not contain a chosen vertex).
 - Increase y_C until dual constraint for some vertex v becomes tight.
 - ightharpoonup set $x_v = 1$.

Let ${\mathbb C}$ denote the set of all cycles (where a cycle is identified by its set of vertices)

Primal Relaxation:

min
$$\sum_{v} w_{v} x_{v}$$
s.t.
$$\forall C \in \mathbb{C} \quad \sum_{v \in C} x_{v} \geq 1$$

$$\forall v \quad x_{v} \geq 0$$

Dual Formulation:

Harald Räcke

17.2 Feedback Vertex Set for Undirected Graphs

11. Jul. 2024

Then

$$\sum_{v} w_{v} x_{v} = \sum_{v} \sum_{C:v \in C} y_{C} x_{v}$$
$$= \sum_{v \in S} \sum_{C:v \in C} y_{C}$$
$$= \sum_{C} |S \cap C| \cdot y_{C}$$

where *S* is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this is unrealistic.

Algorithm 1 FeedbackVertexSet

1: $\gamma \leftarrow 0$

2: $x \leftarrow 0$

3: while exists cycle C in G do

increase y_C until there is $v \in C$ s.t. $\sum_{C:v \in C} y_C = w_v$

5: $x_v = 1$

remove v from G6:

repeatedly remove vertices of degree 1 from G

17.2 Feedback Vertex Set for Undirected Graphs

11. Jul. 2024

Observation:

If we always choose a cycle for which the number of vertices of degree at least 3 is at most α we get a 2α -approximation.

Theorem 38

In any graph with no vertices of degree 1, there always exists a cycle that has at most $O(\log n)$ vertices of degree 3 or more. We can find such a cycle in linear time.

This means we have

$$\gamma_C > 0 \Rightarrow |S \cap C| \leq \mathcal{O}(\log n)$$
.

Idea:

Always choose a short cycle that is not covered. If we always find a cycle of length at most α we get an α -approximation.

Observation:

For any path *P* of vertices of degree 2 in *G* the algorithm chooses at most one vertex from P.

17.2 Feedback Vertex Set for Undirected Graphs

11. Jul. 2024

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes $s, t \in V$ and edge-weights $c: E \to \mathbb{R}^+$ find a shortest path between s and tw.r.t. edge-weights *c*.

$$\begin{array}{llll} & & \sum_{e} c(e) x_{e} \\ \text{s.t.} & \forall S \in S & \sum_{e:\delta(S)} x_{e} & \geq & 1 \\ & \forall e \in E & x_{e} & \in & \{0,1\} \end{array}$$

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

Primal Dual for Shortest Path

The Dual:

Here $\delta(S)$ denotes the set of edges with exactly one end-point in S, and $S = \{S \subseteq V : s \in S, t \notin S\}$.

17.3 Primal Dual for Shortest Path

11. Iul. 2024

Algorithm 1 PrimalDualShortestPath

- 1: *y* ← 0
- 2: *F* ← Ø
- 3: **while** there is no s-t path in (V, F) **do**
- Let C be the connected component of (V, F) containing s
- that $\sum_{S:e'\in\delta(S)} y_S = c(e')$.
- $F \leftarrow F \cup \{e'\}$
- 7: Let P be an s-t path in (V, F)
- 8: **return** *P*

Primal Dual for Shortest Path

We can interpret the value γ_S as the width of a moat surrounding the set *S*.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path

11. Jul. 2024

- Increase y_C until there is an edge $e' \in \delta(C)$ such

Lemma 39

At each point in time the set F forms a tree.

Proof:

- In each iteration we take the current connected component from (V, F) that contains s (call this component C) and add some edge from $\delta(C)$ to F.
- ▶ Since, at most one end-point of the new edge is in *C* the edge cannot close a cycle.

$$\sum_{e \in P} c(e) = \sum_{e \in P} \sum_{S: e \in \delta(S)} y_S$$
$$= \sum_{S: s \in S, t \notin S} |P \cap \delta(S)| \cdot y_S.$$

If we can show that $y_S > 0$ implies $|P \cap \delta(S)| = 1$ gives

$$\sum_{e \in P} c(e) = \sum_{S} y_{S} \le OPT$$

by weak duality.

Hence, we find a shortest path.

17.3 Primal Dual for Shortest Path

11. Jul. 2024 214/262

Steiner Forest Problem:

Given a graph G=(V,E), together with source-target pairs s_i,t_i , $i=1,\ldots,k$, and a cost function $c:E\to\mathbb{R}^+$ on the edges. Find a subset $F\subseteq E$ of the edges such that for every $i\in\{1,\ldots,k\}$ there is a path between s_i and t_i only using edges in F.

$$\begin{array}{lll} \min & \sum_{e} c(e) x_e \\ \text{s.t.} & \forall S \subseteq V : S \in S_i \text{ for some } i & \sum_{e \in \delta(S)} x_e & \geq & 1 \\ & \forall e \in E & x_e & \in & \{0,1\} \end{array}$$

Here S_i contains all sets S such that $S_i \in S$ and $S_i \notin S$.

If $\delta(S)$ contains two edges from P then there must exist a subpath P' of P that starts and ends with a vertex from S (and all interior vertices are not in S).

When we increased y_S , S was a connected component of the set of edges F' that we had chosen till this point.

 $F' \cup P'$ contains a cycle. Hence, also the final set of edges contains a cycle.

This is a contradiction.

Harald Räcke

17.3 Primal Dual for Shortest Path

11. Jul. 202

max $\sum_{S:\exists i \text{ s.t. } S \in S_i} y_S$ s.t. $\forall e \in E$ $\sum_{S:e \in \delta(S)} y_S \leq c(e)$ $y_S \geq 0$

The difference to the dual of the shortest path problem is that we have many more variables (sets for which we can generate a moat of non-zero width).

Algorithm 1 FirstTry

3: **while** not all s_i - t_i pairs connected in F **do**

4: Let C be some connected component of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.

5: Increase y_C until there is an edge $e' \in \delta(C)$ s.t. $\sum_{S \in S_i: e' \in \delta(S)} y_S = c_{e'}$

6:
$$F \leftarrow F \cup \{e'\}$$

7: **return**
$$\bigcup_i P_i$$

17.4 Steiner Forest

11. Jul. 2024

Algorithm 1 SecondTry

1:
$$\gamma \leftarrow 0$$
; $F \leftarrow \emptyset$; $\ell \leftarrow 0$

2: while not all s_i - t_i pairs connected in F do

3:
$$\ell \leftarrow \ell + 1$$

4: Let \mathbb{C} be set of all connected components C of (V, F) such that $|C \cap \{s_i, t_i\}| = 1$ for some i.

5: Increase y_C for all $C \in \mathbb{C}$ uniformly until for some edge $e_\ell \in \delta(C')$, $C' \in \mathbb{C}$ s.t. $\sum_{S:e_\ell \in \delta(S)} y_S = c_{e_\ell}$

$$F \leftarrow F \cup \{e_{\ell}\}$$

7:
$$F' \leftarrow F$$

8: **for** $k \leftarrow \ell$ downto 1 **do** // reverse deletion

9: **if** $F' - e_k$ is feasible solution **then**

10: remove e_k from F'

11: return F'

$$\sum_{e \in F} c(e) = \sum_{e \in F} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |\delta(S) \cap F| \cdot y_S.$$

If we show that $y_S > 0$ implies that $|\delta(S) \cap F| \le \alpha$ we are in good shape.

However, this is not true:

- ▶ Take a complete graph on k+1 vertices v_0, v_1, \ldots, v_k .
- ▶ The *i*-th pair is v_0 - v_i .
- ▶ The first component C could be $\{v_0\}$.
- We only set $y_{\{v_0\}} = 1$. All other dual variables stay 0.
- ▶ The final set F contains all edges $\{v_0, v_i\}$, i = 1, ..., k.
- $> y_{\{v_0\}} > 0 \text{ but } |\delta(\{v_0\}) \cap F| = k.$

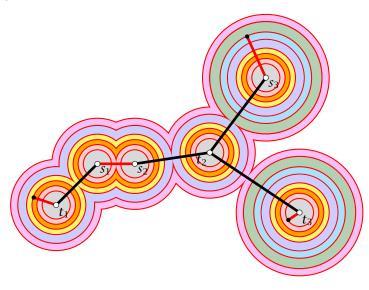
Harald Räcke

17.4 Steiner Forest

1. Jul. 2024

The reverse deletion step is not strictly necessary this way. It would also be sufficient to simply delete all unnecessary edges in any order.

Example



Harald Räcke

17.4 Steiner Forest

11. Jul. 2024

$$\sum_{e \in F'} c_e = \sum_{e \in F'} \sum_{S: e \in \delta(S)} y_S = \sum_{S} |F' \cap \delta(S)| \cdot y_S.$$

We want to show that

$$\sum_{S} |F' \cap \delta(S)| \cdot y_S \le 2 \sum_{S} y_S$$

 \blacktriangleright In the *i*-th iteration the increase of the left-hand side is

$$\epsilon \sum_{C \in \mathfrak{C}} |F' \cap \delta(C)|$$

and the increase of the right hand side is $2\epsilon |C|$.

▶ Hence, by the previous lemma the inequality holds after the iteration if it holds in the beginning of the iteration.

Lemma 40

For any C in any iteration of the algorithm

$$\sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

This means that the number of times a moat from \mathbb{C} is crossed in the final solution is at most twice the number of moats.

Proof: later...

17.4 Steiner Forest

Lemma 41

For any set of connected components $\mathbb C$ in any iteration of the algorithm

$$\sum_{C \in \mathfrak{C}} |\delta(C) \cap F'| \le 2|\mathfrak{C}|$$

Proof:

- At any point during the algorithm the set of edges forms a forest (why?).
- Fix iteration i. Let F_i be the set of edges in F at the beginning of the iteration.
- $\blacktriangleright \text{ Let } H = F' F_i.$
- ▶ All edges in *H* are necessary for the solution.

- \triangleright Contract all edges in F_i into single vertices V'.
- \blacktriangleright We can consider the forest H on the set of vertices V'.
- Let deg(v) be the degree of a vertex $v \in V'$ within this forest.
- ightharpoonup Color a vertex $v \in V'$ red if it corresponds to a component from \mathbb{C} (an active component). Otw. color it blue. (Let B the set of blue vertices (with non-zero degree) and *R* the set of red vertices)
- We have

$$\sum_{v \in R} \deg(v) \ge \sum_{C \in \mathbb{C}} |\delta(C) \cap F'| \stackrel{?}{\le} 2|\mathbb{C}| = 2|R|$$

17.4 Steiner Forest

11. Jul. 2024

Traveling Salesman

Given a set of cities $(\{1,\ldots,n\})$ and a symmetric matrix $C=(c_{ij})$, $c_{ij} \ge 0$ that specifies for every pair $(i,j) \in [n] \times [n]$ the cost for travelling from city i to city j. Find a permutation π of the cities such that the round-trip cost

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

is minimized.

- Suppose that no node in B has degree one.
- ► Then

$$\sum_{v \in R} \deg(v) = \sum_{v \in R \cup B} \deg(v) - \sum_{v \in B} \deg(v)$$

$$\leq 2(|R| + |B|) - 2|B| = 2|R|$$

- Every blue vertex with non-zero degree must have degree at least two.
 - Suppose not. The single edge connecting $b \in B$ comes from H, and, hence, is necessary.
 - ightharpoonup But this means that the cluster corresponding to b must separate a source-target pair.
 - But then it must be a red node.

17.4 Steiner Forest

$$c_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} c_{\pi(i)\pi(i+1)}$$

Traveling Salesman

Theorem 42

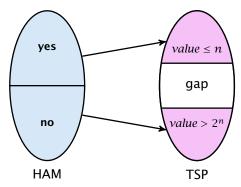
There does not exist an $O(2^n)$ -approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- ▶ If $(i, j) \notin E$ then set c_{ij} to $n2^n$ otw. set c_{ij} to 1. This instance has polynomial size.
- ▶ There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than $n2^n$.
- ightharpoonup An $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.

Gap Introducing Reduction



Reduction from Hamiltonian cycle to TSP

- instance that has Hamiltonian cycle is mapped to TSP instance with small cost
- otherwise it is mapped to instance with large cost
- ightharpoonup \Rightarrow there is no $2^n/n$ -approximation for TSP

PCP theorem: Proof System View

Definition 44 (NP)

A language $L \in NP$ if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

$[x \in L]$ completeness

There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".

$[x \notin L]$ soundness

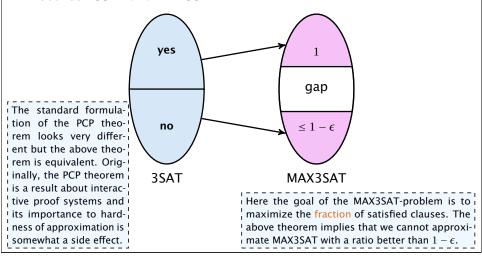
For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for $x \notin L$ does not make a difference (why?).

PCP theorem: Approximation View

Theorem 43 (PCP Theorem A)

There exists $\epsilon > 0$ for which there is gap introducing reduction between 3SAT and MAX3SAT.



Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access to an oracle.

Such an oracle allows ${\cal M}$ to solve some problem in a single step.

For example having access to a TSP-oracle π_{TSP} would allow M to write a TSP-instance x on a special oracle tape and obtain the answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query complexity, i.e., how often the machine queries the oracle.

For a proof string y, π_y is an oracle that upon given an index i returns the i-th character y_i of y.

Probabilistic Checkable Proofs proof-bit read by the verifier may not de-Non-adaptive means that e.g. the second pend on the value of the first bit.

Definition 45 (PCP)

A language $L \in PCP_{c(n),s(n)}(r(n),q(n))$ if there exists a polynomial time, non-adaptive, randomized verifier V, s.t.

- [$x \in L$] There exists a proof string y, s.t. $V^{\pi_y}(x) =$ "accept" with probability $\geq c(n)$.
- [$x \notin L$] For any proof string y, $V^{\pi_y}(x) =$ "accept" with probability $\leq s(n)$.

The verifier uses at most $\mathcal{O}(r(n))$ random bits and makes at most $\mathcal{O}(q(n))$ oracle queries.

Note that the proof itself does not count towards the input of the verifier. The verifier has to write the number of a bit-position it wants to read onto a special tape, and then the corresponding bit from the proof is returned to the verifier. The proof may only be exponentially long, as a polynomial time verifier cannot address longer proofs.

Probabilistic Checkable Proofs

RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

- P = PCP(0, 0)
 - verifier without randomness and proof access is deterministic algorithm
- $ightharpoonup PCP(\log n, 0) \subseteq P$ we can simulate $O(\log n)$ random bits in deterministic. polynomial time
- $ightharpoonup PCP(0, \log n) \subseteq P$ we can simulate short proofs in polynomial time
- $ightharpoonup PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$ by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.

s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

18 Hardness of Approximation

Probabilistic Checkable Proofs

- ightharpoonup PCP(0, poly(n)) = NPby definition; NP-verifier does not use randomness and asks polynomially many queries
- $ightharpoonup PCP(\log n, poly(n)) \subseteq NP$ NP-verifier can simulate $O(\log n)$ random bits
- $ightharpoonup PCP(poly(n), 0) = coRP \stackrel{?!}{\subseteq} NP$
- \triangleright NP \subseteq PCP(log n, 1) hard part of the PCP-theorem

PCP theorem: Proof System View

Theorem 46 (PCP Theorem B)

 $NP = PCP(\log n, 1)$

18 Hardness of Approximation

11. Jul. 2024

Probabilistic Proof for Graph NonIsomorphism

Verifier:

- ▶ choose $b \in \{0, 1\}$ at random
- **•** take graph G_b and apply a random permutation to obtain a labeled graph H
- ightharpoonup check whether P[H] = b

If $G_0 \not\equiv G_1$ then by using the obvious proof the verifier will always accept.

If $G_0 \equiv G_1$ a proof only accepts with probability 1/2.

- ▶ suppose $\pi(G_0) = G_1$
- if we accept for b=1 and permutation $\pi_{\rm rand}$ we reject for b=0 and permutation $\pi_{\rm rand}\circ\pi$

Probabilistic Proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G_0, G_1) (two graphs with *n*-nodes)

It expects a proof of the following form:

► For any labeled *n*-node graph *H* the *H*'s bit *P*[*H*] of the proof fulfills

$$G_0 \equiv H \implies P[H] = 0$$

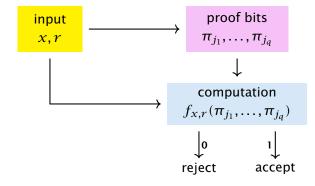
 $G_1 \equiv H \implies P[H] = 1$
 $G_0, G_1 \not\equiv H \implies P[H] = \text{arbitrary}$

18 Hardness of Approximation

11. Jul. 2024

Version B \Rightarrow Version A

- ▶ For 3SAT there exists a verifier that uses $c \log n$ random bits, reads $q = \mathcal{O}(1)$ bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:



Version B ⇒ Version A

- transform Boolean formula $f_{x,r}$ into 3SAT formula $C_{x,r}$ (constant size, variables are proof bits)
- **consider 3SAT formula** $C_x = \bigwedge_r C_{x,r}$
- [$x \in L$] There exists proof string y, s.t. all formulas $C_{x,r}$ evaluate to 1. Hence, all clauses in C_x satisfied.
- [$x \notin L$] For any proof string y, at most 50% of formulas $C_{x,y}$ evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in C_x are not satisfied.
 - this means we have gap introducing reduction

18 Hardness of Approximation

11. Jul. 2024 242/262

Version A ⇒ Version B

- [$x \in L$] There exists proof string y, s.t. all clauses in C_x evaluate to 1. In this case the verifier returns 1.
- [$x \notin L$] For any proof string y, at most a (1ϵ) -fraction of clauses in C_x evaluate to 1. The verifier will reject with probability at least ϵ .

To show Theorem B we only need to run this verifier a constant number of times to push rejection probability above 1/2.

Version A ⇒ Version B

We show: Version $A \Rightarrow NP \subseteq PCP_{1,1-\epsilon}(\log n, 1)$.

given $L \in NP$ we build a PCP-verifier for L

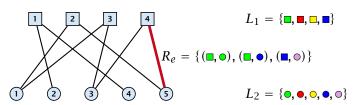
Verifier:

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance I_x , s.t. I_x satisfiable iff $x \in L$
- \blacktriangleright map I_x to MAX3SAT instance C_x (PCP Thm. Version A)
- interpret proof as assignment to variables in C_x
- **•** choose random clause X from C_X
- ightharpoonup query variable assignment σ for X;
- accept if $X(\sigma)$ = true otw. reject

Label Cover

Input:

- bipartite graph $G = (V_1, V_2, E)$
- ▶ label sets L_1, L_2
- ▶ for every edge $(u, v) \in E$ a relation $R_{u,v} \subseteq L_1 \times L_2$ that describe assignments that make the edge happy.
- maximize number of happy edges



The label cover problem also has its origin in proof systems. It encodes a 2PR1 (2 prover 1 round system). Each side of the graph corresponds to a prover. An edge is a query consisting of a question for prover 1 and prover 2. If the answers are consistent the verifer accepts otw. it rejects.

Label Cover

- ▶ an instance of label cover is (d_1, d_2) -regular if every vertex in L_1 has degree d_1 and every vertex in L_2 has degree d_2 .
- ▶ if every vertex has the same degree d the instance is called d-regular

18 Hardness of Approximation

11. Jul. 2024 246/262

MAX E3SAT via Label Cover

Lemma 47

If we can satisfy k out of m clauses in ϕ we can make at least 3k + 2(m - k) edges happy.

Proof:

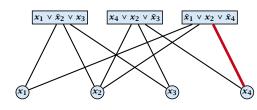
- for V_2 use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V_1 use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m-k) happy edges)

MAX E3SAT via Label Cover

instance:

$$\Phi(x) = (x_1 \vee \bar{x}_2 \vee x_3) \wedge (x_4 \vee x_2 \vee \bar{x}_3) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4)$$

corresponding graph:



The verifier accepts if the labelling (assignment to variables in clauses at the top + assignment to variables at the bottom) causes the clause to evaluate to true and is consistent, i.e., the assignment of e.g. x_4 at the bottom is the same as the assignment given to x_4 in the labelling of the clause.

label sets: $L_1 = \{T, F\}^3, L_2 = \{T, F\}$ (*T*=true, *F*=false)

relation: $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$, where the clause C is over variables x_i, x_j, x_k and assignment (u_i, u_j, u_k) satisfies C

$$R = \{((F, F, F), F), ((F, T, F), F), ((F, F, T), T), ((F, T, T), T), ((T, T, T), T), ((T, T, F), F), ((T, F, F), F)\}$$

MAX E3SAT via Label Cover

Lemma 48

If we can satisfy at most k clauses in Φ we can make at most 3k + 2(m - k) = 2m + k edges happy.

Proof:

- ightharpoonup the labeling of nodes in V_2 gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- ▶ hence at most 3m (m k) = 2m + k edges are happy

Hardness for Label Cover

Here $\epsilon>0$ is the constant from PCP Theorem A.

We cannot distinguish between the following two cases

- ightharpoonup all 3m edges can be made happy
- ▶ at most $2m + (1 \epsilon)m = (3 \epsilon)m$ out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant $\alpha > \frac{3-\epsilon}{3}$.

18 Hardness of Approximation

11. Jul. 2024 250/262

(3, 5)-regular instances

The previous theorem can be obtained with a series of gap-preserving reductions:

- \blacktriangleright MAX3SAT \leq MAX3SAT(\leq 29)
- ► $MAX3SAT(\le 29) \le MAX3SAT(\le 5)$
- ightharpoonup MAX3SAT(= 5) \leq MAXE3SAT(= 5)

Here MAX3SAT(≤ 29) is the variant of MAX3SAT in which a variable appears in at most 29 clauses. Similar for the other problems.

(3, 5)-regular instances

Theorem 49

There is a constant ρ s.t. MAXE3SAT is hard to approximate with a factor of ρ even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- ▶ the resulting Label Cover instance is (3, 5)-regular
- it is hard to approximate for a constant $\alpha < 1$
- given a label ℓ_1 for x there is at most one label ℓ_2 for y that makes edge (x, y) happy (uniqueness property)

18 Hardness of Approximation

11. Jul. 2024

Regular instances

We take the (3,5)-regular instance. We make 3 copies of every clause vertex and 5 copies of every variable vertex. Then we add edges between clause vertex and variable vertex iff the clause contains the variable. This increases the size by a constant factor. The gap instance can still either only satisfy a constant fraction of the edges or all edges. The uniqueness property still holds for the new instance.

Theorem 50

There is a constant $\alpha < 1$ such if there is an α -approximation algorithm for Label Cover on 15-regular instances than P=NP.

Given a label ℓ_1 for $x \in V_1$ there is at most one label ℓ_2 for y that makes (x, y) happy. (uniqueness property)

Parallel Repetition

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance probability of a wrong proof (or as here: a pair of wrong proofs) one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several rounds in parallel and hope that the acceptance probability of wrong proofs goes down.

18 Hardness of Approximation

11. Jul. 2024

Parallel Repetition

If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ_1, ℓ_2 that satisfies just an α -fraction of edges in *I*.
- \blacktriangleright We transfer this labelling to instance I': vertex (x_1, \ldots, x_k) gets label $(\ell_1(x_1), \ldots, \ell_1(x_k))$, vertex $(y_1, ..., y_k)$ gets label $(\ell_2(y_1), ..., \ell_2(y_k))$.
- How many edges are happy? only $(\alpha | E|)^k$ out of $|E|^k!!!$ (just an α^k fraction)

Does this always work?

Parallel Repetition

Given Label Cover instance I with $G = (V_1, V_2, E)$, label sets L_1 and L_2 we construct a new instance I':

$$V_1' = V_1^k = V_1 \times \cdots \times V_1$$

$$V_2' = V_2^k = V_2 \times \cdots \times V_2$$

$$L_1' = L_1^k = L_1 \times \cdots \times L_1$$

$$L_2' = L_2^k = L_2 \times \cdots \times L_2$$

$$ightharpoonup E' = E^k = E \times \cdots \times E$$

An edge $((x_1, \dots, x_k), (y_1, \dots, y_k))$ whose end-points are labelled by $(\ell_1^x, \dots, \ell_k^x)$ and $(\ell_1^y, \dots, \ell_k^y)$ is happy if $(\ell_i^x, \ell_i^y) \in R_{x_i, y_i}$ for

18 Hardness of Approximation

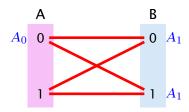
Counter Example

Non interactive agreement:

- Two provers A and B
- ▶ The verifier generates two random bits b_A , and b_B , and sends one to A and one to B.
- **Each** prover has to answer one of A_0, A_1, B_0, B_1 with the meaning $A_0 := \text{prover } A$ has been given a bit with value 0.
- ▶ The provers win if they give the same answer and if the answer is correct.

Counter Example

The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!

18 Hardness of Approximation

11. Jul. 2024 258/262

Boosting

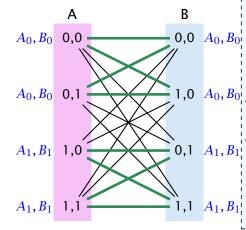
Theorem 51

There is a constant c>0 such if $\mathrm{OPT}(I)=|E|(1-\delta)$ then $\mathrm{OPT}(I')\leq |E'|(1-\delta)^{\frac{ck}{\log L}}$, where $L=|L_1|+|L_2|$ denotes total number of labels in I.

proof is highly non-trivial

Counter Example

In the repeated game the provers can also win with probability 1/2:



For the first game/coordinate the provers give an answer of the form "A has received..." $(A_0 \text{ or } A_1)$ and for the second an answer of the form "B has received..." $(B_0 \text{ or } B_1)$.

If the answer a prover has to give is about himself a prover can answer correctly. If the answer to be given is about the other prover the same bit is returned. This means e.g. Prover B answers A_1 for the first game iff in the second game the receives a 1-bit.

By this method the provers always win if Prover A gets the same bit in the first game as Prover B in the second game. This happens with probability 1/2.

0,1 A_1, B_1 This strategy is not possible for the provers if the game is repeated sequentially. How should prover B know (for her answer in the first A_1, B_1 game) which bit she is going to receive in the second game?

Hardness of Label Cover

Theorem 52

There are constants c>0, $\delta<1$ s.t. for any k we cannot distinguish regular instances for Label Cover in which either

$$ightharpoonup OPT(I) = |E|$$
, or

$$ightharpoonup OPT(I) = |E|(1-\delta)^{ck}$$

unless each problem in NP has an algorithm running in time $\mathcal{O}(n^{\mathcal{O}(k)})$.

Corollary 53

There is no α -approximation for Label Cover for any constant α .

Here the verifier reads exactly three bits **Advanced PCP Theorem** from the proof. Not O(3) bits. Theorem 54 For any positive constant $\epsilon > 0$, it is the case that $NP \subseteq PCP_{1-\epsilon,1/2+\epsilon}(\log n, 3)$. Moreover, the verifier just reads three bits from the proof, and bases its decision only on the parity of these bits. It is NP-hard to approximate a MAXE3LIN problem by a factor better than $1/2 + \delta$, for any constant δ . It is NP-hard to approximate MAX3SAT better than $7/8 + \delta$, for any constant δ . Harald Räcke 18 Hardness of Approximation 11. Jul. 2024