Part Il

Approximation Algorithms

!
m Harald Racke

There are many practically important optimization problems that
are NP-hard.

‘m 11 Introduction to Approximation
Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?

‘m 11 Introduction to Approximation
Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?

» Heuristics.

‘m 11 Introduction to Approximation
Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
» Heuristics.

> Exploit special structure of instances occurring in practise.

‘m 11 Introduction to Approximation
Harald Racke

There are many practically important optimization problems that
are NP-hard.

What can we do?
> Heuristics.
> Exploit special structure of instances occurring in practise.

» Consider algorithms that do not compute the optimal
solution but provide solutions that are close to optimum.

m 11 Introduction to Approximation
Harald Racke

Definition 3

An x-approximation for an optimization problem is a
polynomial-time algorithm that for all instances of the problem
produces a solution whose value is within a factor of « of the

value of an optimal solution.

‘m 11 Introduction to Approximation
Harald Racke

Why approximation algorithms?

‘m 11 Introduction to Approximation
Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

‘m 11 Introduction to Approximation
Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying heuristics.

‘m 11 Introduction to Approximation
Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying heuristics.

> It provides a metric to compare the difficulty of various
optimization problems.

m 11 Introduction to Approximation
Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.
It gives a rigorous mathematical base for studying heuristics.

> It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

m 11 Introduction to Approximation
Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.
It gives a rigorous mathematical base for studying heuristics.

> It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?

m 11 Introduction to Approximation
Harald Racke

Why approximation algorithms?

» We need algorithms for hard problems.
It gives a rigorous mathematical base for studying heuristics.

> It provides a metric to compare the difficulty of various
optimization problems.

» Proving theorems may give a deeper theoretical
understanding which in turn leads to new algorithmic
approaches.

Why not?

» Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution
on every instance.

‘m 11 Introduction to Approximation
Harald Racke

Definition 4
An optimization problem P = (7, sol, m, goal) is in NPO if
» x € 7 can be decided in polynomial time
» v € sol(7) can be verified in polynomial time
» m can be computed in polynomial time
>

goal € {min, max}

In other words: the decision problem is there a solution y with
m(x,y) at most/at least z is in NP.

‘m 11 Introduction to Approximation
Harald Racke

> Xx is problem instance
> vy is candidate solution

> m™*(x) cost/profit of an optimal solution

Definition 5 (Performance Ratio)

m(x,y) m*(x) }

Rx,)= maxj(m*(x) " mix,)

‘m 11 Introduction to Approximation
Harald Racke

Definition 6 (r-approximation)
An algorithm A is an v-approximation algorithm iff

VxeT:R(x,Alx)) <7,

and A runs in polynomial time.

‘m 11 Introduction to Approximation
Harald Racke

Definition 7 (PTAS)
A PTAS for a problem P from NPO is an algorithm that takes as
input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+¢€.

The running time is polynomial in |x]|.

approximation with arbitrary good factor... fast?

‘m 11 Introduction to Approximation
Harald Racke

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the
jobs on n machines such that the MAKESPAN is minimized.

‘m 11 Introduction to Approximation
Harald Racke

Definition 8 (FPTAS)
An FPTAS for a problem P from NPO is an algorithm that takes as
input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+¢€.

The running time is polynomial in |x| and 1/e.

approximation with arbitrary good factor... fast!

‘m 11 Introduction to Approximation
Harald Racke

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a
subset of total weight at most W s.t. the profit is maximized.

‘m 11 Introduction to Approximation
Harald Racke

Definition 9 (APX - approximable)
A problem P from NPO is in APX if there exist a constant v > 1
and an r-approximation algorithm for P.

constant factor approximation...

‘m 11 Introduction to Approximation
Harald Racke

Problems that are in APX

MAXCUT. Given a graph G = (V, E); partition V into two disjoint
pieces A and B s.t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables

that satisfies the maximum number of clauses.

m 11 Introduction to Approximation
Harald Racke

Problems with polylogarithmic approximation guarantees
> Set Cover
» Minimum Multicut
» Sparsest Cut
>

Minimum Bisection

There is an r-approximation with » < ©(log®(|x|)) for some
constant c.

Note that only for some of the above problem a matching lower
bound is known.

m 11 Introduction to Approximation
Harald Racke

There are really difficult problems!

‘m 11 Introduction to Approximation
Harald Racke

There are really difficult problems!

Theorem 10

For any constant € > 0 there does not exist an
Q(n'=€)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

‘m 11 Introduction to Approximation
Harald Racke

There are really difficult problems!

Theorem 10

For any constant € > 0 there does not exist an
Q(n'=€)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

m 11 Introduction to Approximation
Harald Racke

There are weird problems!
Asymmetric k-Center admits an @ (log™® n)-approximation.

There is no o(log* n)-approximation to Asymmetric k-Center
unless NP < DTIME (n'osloglogn),

‘m 11 Introduction to Approximation
Harald Racke

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits
a 4-approximation.

One only says that a problem is APX-hard.

‘m 11 Introduction to Approximation
Harald Racke

A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization
problems).

m 12 Integer Programs
Harald Racke

A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization
problems).

Therefore Linear Programs or Integer Linear Programs play a vital
role in the design of many approximation algorithms.

‘m 12 Integer Programs
Harald Racke

Definition 11
An Integer Linear Program or Integer Program is a Linear Program
in which all variables are required to be integral.

‘m 12 Integer Programs
Harald Racke

Definition 11
An Integer Linear Program or Integer Program is a Linear Program
in which all variables are required to be integral.

Definition 12
A Mixed Integer Program is a Linear Program in which a subset of
the variables are required to be integral.

‘m 12 Integer Programs
Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

‘m 12 Integer Programs
Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!

m 12 Integer Programs
Harald Racke

Set Cover

Given a ground set U, a collection of subsets Sy,...,Sy € U,
where the i-th subset S; has weight/cost w;. Find a collection
I <{1,...,k} such that

YueU3diel: ues; (every element is covered)
and

Z w; is minimized.
iel

‘m 12 Integer Programs
Harald Racke

Set Cover

m Harald Racke

12 Integer Programs

Set Cover

T e L

‘m 12 Integer Programs 11.Jul. 2024
Harald Racke

Set Cover

m Harald Racke

12 Integer Programs

Set Cover

m Harald Racke

12 Integer Programs

Set Cover

‘m 12 Integer Programs
Harald Racke

Set Cover

m Harald Racke

12 Integer Programs

Set Cover

m Harald Racke

12 Integer Programs

Set Cover

m Harald Racke

12 Integer Programs

Set Cover

m 12 Integer Programs 11.Jul. 2024
Harald Racke

Set Cover

m 12 Integer Programs 11.Jul. 2024
Harald Racke

Set Cover

m 12 Integer Programs 11.Jul. 2024
Harald Racke

Set Cover

m 12 Integer Programs 11.Jul. 2024
Harald Racke

Set Cover

oo O
.) X}
.
oo .) e 0
.)) oo) .
. . eoe 0 . . .
o o . o o
) .)
o o . .
0 0 || .) o o .
oo oo 0 oo
.) . o o .)
) 0 0 0
o o o
) . . .
0) o o) .
. 0 . .
. . eeole oo .
o eoole . LX) 0 e o
| ooo . . .
. oo . .
. . . . XX oo
)) o o) .
.)
. 0 o o o o o |o oo oo
oo o o oo))))

m Harald Racke

12 Integer Programs

Set Cover

m 12 Integer Programs 11.Jul. 2024
Harald Racke

Set Cover

m 12 Integer Programs 11.Jul. 2024
Harald Racke

Set Cover

m 12 Integer Programs 11.Jul. 2024
Harald Racke

Set Cover

m 12 Integer Programs 11.Jul. 2024
Harald Racke

IP-Formulation of Set Cover

min D WiX;

s.t. VueU Xiyes Xi >
Vie{l,..., k} Xi >
Vie{l,..., k} x; integral

‘m 12 Integer Programs
Harald Racke

Vertex Cover

Given a graph G = (V,E) and a weight w, for every node. Find a
vertex subset S < V of minimum weight such that every edge is
incident to at least one vertex in S.

‘m 12 Integer Programs
Harald Racke

IP-Formulation of Vertex Cover

min Dvev WyXy
s.t. Ve=(i,j) €E xXi+x; = 1
Vv eV xy € {0,1}

‘m 12 Integer Programs
Harald Racke

Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.
Find a subset of edges of maximum weight such that no vertex is
incident to more than one edge.

‘m 12 Integer Programs
Harald Racke

Maximum Weighted Matching

Given a graph G = (V,E), and a weight w, for every edge e € E.
Find a subset of edges of maximum weight such that no vertex is
incident to more than one edge.

max D ecE WeXe
st. YveV DopeceXe =< 1
Ve € F x. € {0,1}

‘m 12 Integer Programs
Harald Racke

Maximum Independent Set

Given a graph G = (V,E), and a weight w,, for every node v € V.
Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.

‘m 12 Integer Programs
Harald Racke

Maximum Independent Set

Given a graph G = (V,E), and a weight w,, for every node v € V.
Find a subset S < V of nodes of maximum weight such that no
two vertices in S are adjacent.

max dvey WyXy
st. Ve=(i,j) €E xi+x; < 1
Vvev xy € {0,1}

‘m 12 Integer Programs
Harald Racke

Knapsack

Given a set of items {1,...,n}, where the i-th item has weight w;
and profit p;, and given a threshold K. Find a subset

I < {1,...,n} of items of total weight at most K such that the
profit is maximized.

‘m 12 Integer Programs
Harald Racke

Knapsack

Given a set of items {1,...,n}, where the i-th item has weight w;
and profit p;, and given a threshold K. Find a subset

I < {1,...,n} of items of total weight at most K such that the
profit is maximized.

max S pixi
s.t. SPiwix; < K
Vie{l,...,n} x; € {0,1}

‘m 12 Integer Programs
Harald Racke

Relaxations

Definition 13
A linear program LP is a relaxation of an integer program IP if any

feasible solution for IP is also feasible for LP and if the objective
values of these solutions are identical in both programs.

‘m 12 Integer Programs
Harald Racke

Relaxations

Definition 13
A linear program LP is a relaxation of an integer program IP if any

feasible solution for IP is also feasible for LP and if the objective
values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing x; € [0, 1]
instead of x; € {0, 1}.

‘m 12 Integer Programs
Harald Racke

By solving a relaxation we obtain an upper bound for a
maximization problem and a lower bound for a minimization
problem.

‘m 12 Integer Programs
Harald Racke

Relations

Maximization Problems:

[OPT(DUAL) | [FEASIBLE(DUAL) |
J

)

Minimization Problems:

| FEASIBLE(DUAL) | \ OPT(DUAL) \

|

OO A

‘m 12 Integer Programs
Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min SE L wix
s.t. VuelU Xiyes,Xi = 1
Vie{l,...,k} x; € [0,1]

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min SE L wix
s.t. VuelU Xiyes,Xi = 1
Vie{l,...,k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {f,} be the maximum
frequency.

m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > % to 1. Set all other x;-values to O.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

Lemma 14
The rounding algorithm gives an f-approximation.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

Lemma 14
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

Lemma 14
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
> We know that >, e, Xx; = 1.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

Lemma 14
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
> We know that >, e, Xx; = 1.

» The sum contains at most f,, < f elements.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

Lemma 14
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
> We know that >, e, Xx; = 1.
» The sum contains at most f,, < f elements.

» Therefore one of the sets that contain u must have x; > 1/f.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

Lemma 14
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
> We know that >, e, Xx; = 1.
» The sum contains at most f,, < f elements.
» Therefore one of the sets that contain u must have x; > 1/f.

» This set will be selected. Hence, u is covered.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

D wi

iel

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
> wi < > wilf - xq)

iel i=1

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
> wi < > wilf - xq)

icl i=1
= f - cost(x)

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
> wi < > wilf - xq)

iel i=1
= f - cost(x)
<f-OPT.

‘m 13.1 Deterministic Rounding
Harald Racke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:
min Dliel WiXi
s.t. Vu Zi:ueSi x;i=1
x;i =0

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Duet Yu

s.t. Vi Zu:uesi Yu

Primal: Dual:

min Dliel WiXi max
s.t. Vu Zi:ueSi x;i=1
x;i =0

Yu

vV IA

m Harald Racke

13.2 Rounding the Dual

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli eI

> yu=w;

uuUeS;

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 15
The resulting index set is an f-approximation.

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 15
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.
Lemma 15
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

> Suppose there is a u that is not covered.

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 15
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

> Suppose there is a u that is not covered.

> This means >;,.cs, Yu < w; for all sets S; that contain wu.

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Lemma 15
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

> Suppose there is a u that is not covered.
> This means >;,.cs, Yu < w; for all sets S; that contain wu.

» But then y,, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

iel

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel u:ues;

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=2, D v

iel iel u:ues;

=>Hiel:ueSi} - yu
u

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

2wi=2, 2 Yu
iel iel u:ues;

=>Hiel:ueSi} - yu
u

= quyu

‘m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

JWwi=2 > Yu
iel iel u:ues;
=D Hiel:uesSil-yu
u
Squyu
u

szyu

m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel u:ues;
=D Hiel:uesSil-yu
u
Squyu
u
szyu
u

< fcost(x™*)

m 13.2 Rounding the Dual
Harald Racke

Technique 2: Rounding the Dual Solution.

Proof:

Qwi=> > Yu
iel iel u:ues;
=D Hiel:uesSil-yu
u
Squyu
u
szyu
u

< fcost(x™*)
< f-OPT

m 13.2 Rounding the Dual
Harald Racke

Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

IcrI .

This means I’ is never better than I.

‘m 13.2 Rounding the Dual
Harald Racke

Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

IcrI .

This means I’ is never better than I.

> Suppose that we take S; in the first algorithm. l.e., i € I.

m 13.2 Rounding the Dual
Harald Racke

Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

IcrI .

This means I’ is never better than I.

> Suppose that we take S; in the first algorithm. l.e., i € I.

» This means x; > %

m 13.2 Rounding the Dual
Harald Racke

Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

IcrI .

This means I’ is never better than I.

> Suppose that we take S; in the first algorithm. l.e., i € I.
» This means x; > %

> Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

m 13.2 Rounding the Dual
Harald Racke

Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

IcrI .

This means I’ is never better than I.

> Suppose that we take S; in the first algorithm. l.e., i € I.
» This means x; > %

> Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

» Hence, the second algorithm will also choose S;.

m 13.2 Rounding the Dual
Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

m 13.3 Primal Dual Technique
Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

m 13.3 Primal Dual Technique
Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

m 13.3 Primal Dual Technique
Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u
where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

m 13.3 Primal Dual Technique
Harald Racke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.

m 13.3 Primal Dual Technique
Harald Racke

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual
1. v <0
2.1 —O
3: while exists u ¢ UJ;c; S; do
4 increase dual variable 7y, until constraint for some
new set Sy becomes tight
5: I-1u{l}

m 13.3 Primal Dual Technique
Harald Racke

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

1 -9

S —8; forall j

while I not a set cover do
ﬂ«—argmmjsqtO 51
I-1u{¥}
Sj—S;j—S; forallj

mU'I-bUJN—'

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Lemma 16
Given positive numbers a1, ...,ay, and by,..., by, and
Sc{l,...,k} then

ZIES

a;
1’1’111’1 = max—
2165 bz bi

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm
Let 1y denote the number of elements that remain at the

beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wy
min —
J 185

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

W W
min 1 < 2.jeoPT vj
i 1851 Xjeort 1)l

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wi 2jeopT W) OPT
min . < = <
i 181 Xjeort ISj1 Xjcopr IS

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2. jeopT Wj OPT OPT

min —> < o <
i 181 Xjeort ISj1 Xjcopr IS Ny

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2. jeopT Wj OPT OPT
min —— < o <
J |SJ| szOPT|Sj| zjeOPT|Sj| ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

Wy 2.jeopT W OPT OPT
min —< < = <
i 1Sl Xjeorr|Sil XjeorrISjI Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let §j be a subset that minimizes this ratio. Hence,

& OPT
wj/ISJ-I < ng -

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Adding this set to our solution means ny,; = ny — |§j|.

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Adding this set to our solution means ny,; = ny — |§j|.

B IS;IOPT nyp—ny,,
oy ny

- OPT

wj

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

D, wj

Jjel

‘m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

‘m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

‘m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

jel -
< OPT > 1,1 !
oy \1e ny—1 Nnpq +1
&1
=OPT > —
: 1
i=1

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

= H, -OPT < OPT(Inn + 1) .

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

A tight example:

!
‘m 13.4 Greedy
Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).

‘m 13.5 Randomized Rounding
Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

‘m 13.5 Randomized Rounding
Harald Racke

Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.

m 13.5 Randomized Rounding
Harald Racke

m 13.5 Randomized Rounding
Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

‘m 13.5 Randomized Rounding
Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[(1-xj)

j:’I/LESj

‘m 13.5 Randomized Rounding
Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

=]_[(1-xj) < 1_[e Xi

j:’I/LESj j:uESj

‘m 13.5 Randomized Rounding
Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:uESj

_ e* Zj:ueSj Xj

‘m 13.5 Randomized Rounding
Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:uESj

*Zj:ueS' X

=e it <et

‘m 13.5 Randomized Rounding
Harald Racke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

=[] Q=-xp) =< [] e

j:uESj j:uESj

= Yjues; X

=e it <e !,

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < ol

‘m 13.5 Randomized Rounding
Harald Racke

m 13.5 Randomized Rounding
Harald Racke

Pr[3u € U not covered after £ round]

m 13.5 Randomized Rounding
Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]

‘m 13.5 Randomized Rounding
Harald Racke

Pr[3u € U not covered after £ round]
= Pr[u; not covered V u»> not covered V ...V u, not covered]

< ZPr[ui not covered after £ rounds]
i

‘m 13.5 Randomized Rounding
Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

‘m 13.5 Randomized Rounding
Harald Racke

Pr[3u € U not covered after £ round]
= Pr[u; not covered V u»> not covered V ...V u, not covered]

< ZPr[ui not covered after £ rounds] < ne ! .

1

Lemma 17
With high probability O (logn) rounds suffice.

‘m 13.5 Randomized Rounding
Harald Racke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! |
i

Lemma 17
With high probability O (logn) rounds suffice.

With high probability:

For any constant « the number of rounds is at most O (logn) with
probability at least 1 — n~%.

‘m 13.5 Randomized Rounding
Harald Racke

Proof: We have

Pr[#rounds > (x + 1)Inn] < ne~(®+n _ -

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version A.
Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover

simply take for each element u the cheapest set that
contains u.

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version A.

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover

simply take for each element u the cheapest set that
contains u.

E[cost]

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version A.

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n~«

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version A.

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (ax+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

1
= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1
= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

1 1
< mlf[cost] < m(a +1)Inn - cost(LP)

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

1
= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

1 1
< mlf[cost] < m(a +1)Inn - cost(LP)

<2(x+1)Inn - OPT

‘m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

1
= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

1 1
< mlf[cost] < m(a +1)Inn - cost(LP)

<2(x+1)Inn - OPT

form=2and x> 1.

‘m 13.5 Randomized Rounding
Harald Racke

Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

‘m 13.5 Randomized Rounding
Harald Racke

Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

Theorem 18 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
gpoly(logn))

m 13.5 Randomized Rounding
Harald Racke

Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

v

n=2k-1
Elements are all vectors X over GF[2] of length k (excluding
zero vector).

Every vector y defines a set as follows

Sy ={x|xTy =1}

each set contains 2¥~1 vectors; each vector is contained in
2k=1 sets

Xj = 2%1 = ﬁ is fractional solution.

‘m 13.5 Randomized Rounding
Harald Racke

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Q(logn).

‘m 13.5 Randomized Rounding
Harald Racke

Techniques:

» Deterministic Rounding
Rounding of the Dual
Primal Dual
Greedy
Randomized Rounding

Local Search

vV vV v v v Y

Rounding Data + Dynamic Programming

‘m 13.5 Randomized Rounding
Harald Racke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

‘m 14.1 Local Search
Harald Racke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

min L
s.t. Vmachinesi > ;pj-xj; < L
Vjobs j Yixji>1
Vi, j x;i € {0,1}

Here the variable x; ; is the decision variable that describes
whether job j is assigned to machine 1.

‘m 14.1 Local Search
Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

‘m 14.1 Local Search
Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

Let C.x denote the makespan of an optimal solution.

‘m 14.1 Local Search
Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
7, and let Chax be the makespan.

Let C%,x denote the makespan of an optimal solution.

Clearly
sk
Chax = mjax P

as the longest job needs to be scheduled somewhere.

‘m 14.1 Local Search
Harald Racke

Lower Bounds on the Solution

The average work performed by a machine is % 2Py

‘m 14.1 Local Search
Harald Racke

Lower Bounds on the Solution

The average work performed by a machine is % 2Py
Therefore,

1
CrT‘lax = % %: pJ

‘m 14.1 Local Search
Harald Racke

Local Search

‘m 14.1 Local Search
Harald Racke

Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not find
such changes anymore.

‘m 14.1 Local Search
Harald Racke

Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not find
such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

m 14.1 Local Search
Harald Racke

Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not find
such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

Sometimes the running time is difficult to prove.

m 14.1 Local Search
Harald Racke

Local Search for Scheduling

‘m 14.1 Local Search
Harald Racke

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.

‘m 14.1 Local Search
Harald Racke

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.

REPEAT

‘m 14.1 Local Search
Harald Racke

Local Search Analysis

‘m 14.1 Local Search
Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.

‘m 14.1 Local Search
Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.

Let Sy be its start time, and let Cy be its completion time.

‘m 14.1 Local Search
Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.
Let Sy be its start time, and let Cy be its completion time.

Note that every machine is busy before time Sy, because
otherwise we could move the job £ and hence our schedule would
not be locally optimal.

‘m 14.1 Local Search
Harald Racke

‘m 14.1 Local Search
Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from S, to Cy.

‘m 14.1 Local Search
Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from S, to Cy.

The interval [Sy, Cy] is of length py < Ci.«

‘m 14.1 Local Search
Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from Sy to Cy.

The interval [Sy, Cy] is of length py < Ci.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

m 14.1 Local Search
Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from Sy to Cy.

The interval [Sy, Cy] is of length py < Ci.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
jt

Hence, the length of the schedule is at most

1
o+ 2P
j#l

m 14.1 Local Search
Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from Sy to Cy.

The interval [Sy, Cy] is of length py < Ci.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

m+%2m—(l——)w+f2vj
j#l

m 14.1 Local Search
Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from Sy to Cy.

The interval [Sy, Cy] is of length py < Ci.«

During the first interval [0, Sp] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j#l

Hence, the length of the schedule is at most

1
m+%2m—(1——)w+*2v]s<2—) Clhax
j#l

m 14.1 Local Search
Harald Racke

A Tight Example

~Sp+
pe~Set T

ALG _ Sp+ppr 2+ mg

OPT P 1+ L

m-1

:2——
m

pe

A Greedy Strategy

m 14.2 Greedy
Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

m 14.2 Greedy
Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

m 14.2 Greedy
Harald Racke

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the
local optimally condition of our local search algorithm. Hence,
these also give 2-approximations.

m 14.2 Greedy
Harald Racke

A Greedy Strategy

Lemma 19

If we order the list according to non-increasing processing times
the approximation guarantee of the list scheduling strategy
improves to 4/3.

m 14.2 Greedy
Harald Racke

Proof:

> Let p; = - - - = py denote the processing times of a set of
jobs that form a counter-example.

m 14.2 Greedy
Harald Racke

Proof:

> Let p; = - - - = py denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

m 14.2 Greedy
Harald Racke

Proof:
> Let p; = - - - = py denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

> If py < Ciax/3 the previous analysis gives us a schedule
length of at most

4
CI>)I<1aX +Pn = *Cfl';ax .

3

m 14.2 Greedy
Harald Racke

Proof:
> Let p; = - - - = py denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

> If py < Ciax/3 the previous analysis gives us a schedule
length of at most

4
CI>)I<1aX +Pn = §CI>1'<1ax .
Hence, pyn > Ch.x/3.

» This means that all jobs must have a processing time
> Chax/3-

m 14.2 Greedy
Harald Racke

Proof:

> Let p; = - - - = py denote the processing times of a set of
jobs that form a counter-example.

» Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

> If py < Ciax/3 the previous analysis gives us a schedule
length of at most

4
CI>)I<1aX +Pn = §CI>1'<1ax .
Hence, pyn > Ch.x/3.

» This means that all jobs must have a processing time
> Chax/3-

> But then any machine in the optimum schedule can handle at
most two jobs.

m 14.2 Greedy
Harald Racke

Proof:

> Let p; = - - - = py denote the processing times of a set of

>

jobs that form a counter-example.

Wlog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

If pn < Ciiax/3 the previous analysis gives us a schedule
length of at most

4
CI>)I<1aX +Pn = §CI>1'<1ax .
Hence, pyn > Ch.x/3.

This means that all jobs must have a processing time
> Chax/3-

But then any machine in the optimum schedule can handle at
most two jobs.

For such instances Longest-Processing-Time-First is optimal.

m 14.2 Greedy
Harald Racke

When in an optimal solution a machine can have at most 2 jobs
the optimal solution looks as follows.

P14 P13 P12 P11 P10 4} ps

pP1 p2 pP3 P4 Ps Pe6 p7

m 14.2 Greedy
Harald Racke

> We can assume that one machine schedules p; and p;, (the
largest and smallest job).

m 14.2 Greedy
Harald Racke

> We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

m 14.2 Greedy
Harald Racke

We can assume that one machine schedules p; and py, (the
largest and smallest job).

If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

Let pa and pp be the other job scheduled on A and B,
respectively.

m 14.2 Greedy
Harald Racke

> We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let pa and pp be the other job scheduled on A and B,
respectively.

> p1+Pn<p1L+paand pa+ pp < p1 + pa, hence scheduling
p1 and p, on one machine and p4 and pp on the other,
cannot increase the Makespan.

m 14.2 Greedy
Harald Racke

> We can assume that one machine schedules p; and p;, (the
largest and smallest job).

> If not assume wlog. that p; is scheduled on machine A and
Pn on machine B.

> Let pa and pp be the other job scheduled on A and B,
respectively.

> p1+Pn<p1L+paand pa+ pp < p1 + pa, hence scheduling
p1 and p, on one machine and p4 and pp on the other,
cannot increase the Makespan.

» Repeat the above argument for the remaining machines.

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length 2m,2m —2,...,m +1 (2m — 2 jobs in
total)

> 3 jobs of length m

m 14.2 Greedy
Harald Racke

15 Rounding Data + Dynamic Programming

Knapsack:
Given a set of items {1,...,n}, where the i-th item has weight

w; € N and profit p; € N, and given a threshold W. Find a subset
I < {1,...,n} of items of total weight at most W such that the
profit is maximized (we can assume each w; < W).

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Knapsack:
Given a set of items {1,...,n}, where the i-th item has weight

w; € N and profit p; € N, and given a threshold W. Find a subset
I < {1,...,n} of items of total weight at most W such that the
profit is maximized (we can assume each w; < W).

max i pixi
s.t. Z?:l wix; < W
Vie{l,...,n} x; € {0,1}

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1: A(1) <~ [(0,0), (p1,w1)]

2: forj —2 to ndo

3 A(j) = A(G-1)

4 for each (p,w) € A(j—1) do
5 if w+w; <W then
6

7

8:

add (p + pj,w +wj) to A(j)
remove dominated pairs from A(j)
return maxy w)eam) P

The running time is O(n - min{W, P}), where P = >, p; is the
total profit of all items. This is only pseudo-polynomial.

m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Definition 20

An algorithm is said to have pseudo-polynomial running time if
the running time is polynomial when the numerical part of the
input is encoded in unary.

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.
» Set u:=eM/n.

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

> Let M be the maximum profit of an element.
» Set u:=eM/n.
> Set p;:=|pi/u] forall i.

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let M be the maximum profit of an element.
Set u:=eM/n.
Set p; := | pi/u] for all i.

vV v.v Vv

Run the dynamic programming algorithm on this revised
instance.

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let M be the maximum profit of an element.
Set u:=eM/n.
Set p; := | pi/u] for all i.

vV v.v Vv

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

O(nP’)

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let M be the maximum profit of an element.
Set u:=eM/n.
Set p; := | pi/u] for all i.

vV v.v Vv

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

OmP') = O(n Zi p{)

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let M be the maximum profit of an element.
Set u:=eM/n.
Set p; := | pi/u] for all i.

vV v.v Vv

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

omp)=0(nY pj)=0(ny, [d\’;ﬁJ)

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let M be the maximum profit of an element.
Set u:=eM/n.
Set p; := | pi/u] for all i.

vV v.v Vv

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

omp) =0(nY,pi) ~o(nY, |) <o(L)

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

Zr’i

ieS

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

> pizup> pi

ieS ieS

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

> pizup> pi

ieS ieS

=H 2 P

ieO

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.
DpizUY p;
ieS ieS
=D pi
i€O

> > pi—10lu
ie0

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.
DpizUY p;
ieS ieS
=H 2 P
i€O
> pi—lOlu
ie0

>, pi—np
i€0

%

%

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.
DpizUY p;
ieS ieS
=D pi
i€O
> pi—lOlu
ie0
> pi—np
ie0

> pi—eM
ie0

%

%

‘m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.
DpizUY p;
ieS ieS
=H 2 P
i€O
> > pi—|0lu
ie0
> > pi—npy
ie0
=D pi—€eM
ie0
> (1 -¢€)OPT .

‘m 15.1 Knapsack
Harald Racke

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
o 2Pt P
j=t

where £ is the last job to complete.

m 15.2 Scheduling Revisited
Harald Racke

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
m Z pj+pe
j=t

where £ is the last job to complete.

Together with the obervation that if each p; > %Cﬁ“mx then LPT is
optimal this gave a 4/3-approximation.

m 15.2 Scheduling Revisited
Harald Racke

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

m 15.2 Scheduling Revisited
Harald Racke

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

vj—kmz pi

m 15.2 Scheduling Revisited
Harald Racke

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

vj—kmz pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

m 15.2 Scheduling Revisited
Harald Racke

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

J*kmzpl

Idea:
1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,
always assigning the next job to the least loaded machine.

m 15.2 Scheduling Revisited
Harald Racke

We still have a cost of

1
- Z pi+pe
j=t

where £ is the last job (this only requires that all machines are
busy before time Sy).

m 15.2 Scheduling Revisited
Harald Racke

We still have a cost of

1
m Z pj+pe
j=t

where £ is the last job (this only requires that all machines are
busy before time Sy).

If £ is a long job, then the schedule must be optimal, as it consists
of an optimal schedule of long jobs plus a schedule for short jobs.

m 15.2 Scheduling Revisited
Harald Racke

We still have a cost of

1
m Z pj+pe
j=t

where £ is the last job (this only requires that all machines are
busy before time Sy).

If £ is a long job, then the schedule must be optimal, as it consists
of an optimal schedule of long jobs plus a schedule for short jobs.

If £ is a short job its length is at most

pe <2, pil(mk)

which is at most Cjf ./ k.

m 15.2 Scheduling Revisited
Harald Racke

Hence we get a schedule of length at most

(1+ %)C{’ﬁax

m 15.2 Scheduling Revisited
Harald Racke

Hence we get a schedule of length at most

(1+ %)C;{;ax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on m machines is at most
mk™ which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

m 15.2 Scheduling Revisited
Harald Racke

Hence we get a schedule of length at most

(1+ %)Cg;ax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on m machines is at most
mk™ which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

Theorem 21

The above algorithm gives a polynomial time approximation
scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = [%].

m 15.2 Scheduling Revisited
Harald Racke

How to get rid of the requirement that m is constant?

m 15.2 Scheduling Revisited
Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

m 15.2 Scheduling Revisited
Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1 + %)T or
certifies that no schedule of length at most T exists (assume
T=> 3P

m 15.2 Scheduling Revisited
Harald Racke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:
On input of T it either finds a schedule of length (1 + %)T or
certifies that no schedule of length at most T exists (assume

T= 03P
We partition the jobs into long jobs and short jobs:
> A job is long if its size is larger than T'/k.

> Otw. it is a short job.

m 15.2 Scheduling Revisited
Harald Racke

» We round all long jobs down to multiples of T/k?.

m 15.2 Scheduling Revisited
Harald Racke

» We round all long jobs down to multiples of T/k?.
> For these rounded sizes we first find an optimal schedule.

m 15.2 Scheduling Revisited
Harald Racke

» We round all long jobs down to multiples of T/k?.
> For these rounded sizes we first find an optimal schedule.

> If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

m 15.2 Scheduling Revisited
Harald Racke

» We round all long jobs down to multiples of T/k?.
> For these rounded sizes we first find an optimal schedule.

> If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

> If we have a good schedule we extend it by adding the short
jobs according to the LPT rule.

m 15.2 Scheduling Revisited
Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

m 15.2 Scheduling Revisited
Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).

m 15.2 Scheduling Revisited
Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.
their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k? going from
rounded sizes to original sizes gives that the Makespan is at most

(1+%>T.

m 15.2 Scheduling Revisited
Harald Racke

During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.

m 15.2 Scheduling Revisited
Harald Racke

During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.
Assigning the current (short) job to such a machine gives that the
new load is at most

m 15.2 Scheduling Revisited
Harald Racke

Running Time for scheduling large jobs: There should not be a
job with rounded size more than T as otw. the problem becomes
trivial.

m 15.2 Scheduling Revisited
Harald Racke

Running Time for scheduling large jobs: There should not be a

job with rounded size more than T as otw. the problem becomes
trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k2 where, the i-th entry describes
the number of jobs of size k—iZT). This is polynomial.

m 15.2 Scheduling Revisited
Harald Racke

Running Time for scheduling large jobs: There should not be a
job with rounded size more than T as otw. the problem becomes
trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k2 where, the i-th entry describes
the number of jobs of size k—izT). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k—iZT assigned to x. There are
only (k + 1)K different vectors.

‘m 15.2 Scheduling Revisited
Harald Racke

Running Time for scheduling large jobs: There should not be a
job with rounded size more than T as otw. the problem becomes
trivial.

Hence, any large job has rounded size of k—iZT forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k2 where, the i-th entry describes
the number of jobs of size k—izT). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k—iZT assigned to x. There are
only (k + 1)K° different vectors.

This means there are a constant number of different machine
configurations.

‘m 15.2 Scheduling Revisited
Harald Racke

Let OPT(n1,...,ny2) be the number of machines that are required
to schedule input vector (n1,...,n2) with Makespan at most T.

m 15.2 Scheduling Revisited
Harald Racke

Let OPT(n1,...,ny2) be the number of machines that are required
to schedule input vector (n1,...,n2) with Makespan at most T.

If OPT(ny,...,n2) < m we can schedule the input.

m 15.2 Scheduling Revisited
Harald Racke

Let OPT(n1,...,ny2) be the number of machines that are required
to schedule input vector (n1,...,n2) with Makespan at most T.

If OPT(ny,...,n2) < m we can schedule the input.

We have

OPT(T’ll, .. .,’I’lkz)

0 (’I’l1,...,1’Lk2):0
— 1+ min OPT(?’Ll—Sl,...,TLkz—SkZ) (nl,...,nkz)zo
(81500y832)€C
00 otw.

where C is the set of all configurations.

m 15.2 Scheduling Revisited
Harald Racke

Let OPT(n1,...,ny2) be the number of machines that are required
to schedule input vector (n1,...,n2) with Makespan at most T.

If OPT(ny,...,n2) < m we can schedule the input.

We have

OPT(nq,...,nk2)

0 (’I’l],...,?’LkZ)ZO
_J 1+ min OPT(m; —S1,...,M2 — Sg2) (M1,...,Mp2) 2 0
(81500y832)€C
00 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k + 1) nk* ~ (nk)k’.

m 15.2 Scheduling Revisited
Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using
binary search. This gives a running time that is exponential in
1/e.

m 15.2 Scheduling Revisited
Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/e.

Can we do better?

m 15.2 Scheduling Revisited
Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/€.

Can we do better?

Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.

m 15.2 Scheduling Revisited
Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/€.

Can we do better?

Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.

Theorem 22
There is no FPTAS for problems that are strongly NP-hard.

m 15.2 Scheduling Revisited
Harald Racke

> Suppose we have an instance with polynomially bounded
processing times p; < g(n)

m 15.2 Scheduling Revisited
Harald Racke

> Suppose we have an instance with polynomially bounded
processing times p; < g(n)
> We set k:=[2nq(n)] = 20PT

m 15.2 Scheduling Revisited
Harald Racke

> Suppose we have an instance with polynomially bounded
processing times p; < g(n)
> We set k:=[2nq(n)] = 20PT

> Then

ALG < (1 + %) OPT < OPT +%

m 15.2 Scheduling Revisited
Harald Racke

> Suppose we have an instance with polynomially bounded
processing times p; < q(n)
> We set k:=[2nq(n)] = 20PT

» Then

ALG < (1 + %) OPT < OPT+%

» But this means that the algorithm computes the optimal
solution as the optimum is integral.

m 15.2 Scheduling Revisited
Harald Racke

Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k :=[2ng(n)] = 20PT

Then

ALG < (1 + %) OPT < OPT+%

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

m 15.2 Scheduling Revisited
Harald Racke

Suppose we have an instance with polynomially bounded
processing times p; < q(n)
We set k :=[2ng(n)] = 20PT

Then

ALG < (1 + %) OPT < OPT+%

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

Running time is O(poly(n, k)) = O(poly(n))

m 15.2 Scheduling Revisited
Harald Racke

Suppose we have an instance with polynomially bounded
processing times p; < q(n)

We set k :=[2ng(n)] = 20PT

Then

ALG < (1 + %) OPT < OPT+%

But this means that the algorithm computes the optimal
solution as the optimum is integral.

This means we can solve problem instances if processing
times are polynomially bounded

» Running time is @(poly(n, k)) = O(poly(n))

For strongly NP-complete problems this is not possible
unless P=NP

m 15.2 Scheduling Revisited
Harald Racke

More General

Let OPT(n1,...,1n4) be the number of machines that are required to
schedule input vector (n,...,114) with Makespan at most T
(A: number of different sizes).

More General

Let OPT(n1,...,1n4) be the number of machines that are required to
schedule input vector (n,...,114) with Makespan at most T
(A: number of different sizes).

If OPT(ny,...,n4) < m we can schedule the input.

More General
Let OPT(n1,...,1n4) be the number of machines that are required to

schedule input vector (n,...,114) with Makespan at most T
(A: number of different sizes).
,na) < m we can schedule the input.

If OPT(nq,...
OPT(nq,...,Mn4)
(ny,...,na) =0
_J 1+ min OPT(ni—-s1,...,04—3S54) (M1,...,m4) 20
(81yuny sa)eC
(e8] otw.

where C is the set of all configurations.
|C| < (B + 1)#, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O ((B + 1)4n4) because the dynamic
programming table has just n4 entries.

Bin Packing

Given n items with sizes sy,..., s, where
1>s1>--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Given n items with sizes sy,..., s, where
1>s1>--->25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

Theorem 23
There is no p-approximation for Bin Packing with p < 3/2 unless

P = NP.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = 3; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

m 15.3 Bin Packing
Harald Racke

Bin Packing

Proof
> In the partition problem we are given positive integers
by,...,by with B = 3; b; even. Can we partition the integers

into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B = 3; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

> A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Proof

> In the partition problem we are given positive integers

by,...,by with B = 3; b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

> A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

» Hence, such an algorithm can solve Partition.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Definition 24

An asymptotic polynomial-time approximation scheme (APTAS) is
a family of algorithms {A¢} along with a constant ¢ such that A
returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Definition 24

An asymptotic polynomial-time approximation scheme (APTAS) is
a family of algorithms {A¢} along with a constant ¢ such that A
returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense to
differentiate between the notion of a PTAS or an APTAS
because of scaling.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Definition 24

An asymptotic polynomial-time approximation scheme (APTAS) is
a family of algorithms {A¢} along with a constant ¢ such that A
returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense to
differentiate between the notion of a PTAS or an APTAS
because of scaling.

> However, we will develop an APTAS for Bin Packing.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Again we can differentiate between small and large items.
Lemma 25

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{{, 1E—YSIZE(I) + 1} bins,
where SIZE(I) = >; s; is the sum of all item sizes.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Again we can differentiate between small and large items.
Lemma 25

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{{, 1E—YSIZE(I) + 1} bins,
where SIZE(I) = >; s; is the sum of all item sizes.

> If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 25

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{{, 1E—YSIZE(I) + 1} bins,
where SIZE(I) = >; s; is the sum of all item sizes.

> If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 25

Any packing of items into { bins can be extended with items of
size at most y s.t. we use only max{{, 1E—YSIZE(I) + 1} bins,
where SIZE(I) = >; s; is the sum of all item sizes.

> If after Greedy we use more than £ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

» This gives the lemma.

m 15.3 Bin Packing
Harald Racke

Choose y = €/2. Then we either use ¥ bins or at most

1
1-¢€/2

-OPT+1<(1+¢€)-0PT+1

bins.

It remains to find an algorithm for the large items.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.

> Order large items according to size.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
> Order large items according to size.

> Let the first k items belong to group 1; the following k items
belong to group 2; etc.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
> Order large items according to size.

> Let the first k items belong to group 1; the following k items
belong to group 2; etc.

» Delete items in the first group;

m 15.3 Bin Packing
Harald Racke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
> Order large items according to size.

> Let the first k items belong to group 1; the following k items
belong to group 2; etc.

» Delete items in the first group;

» Round items in the remaining groups to the size of the
largest item in the group.

m 15.3 Bin Packing
Harald Racke

Linear Grouping

m 15.3 Bin Packing 11.Jul. 2024
Harald Racke

Linear Grouping

m 15.3 Bin Packing 11. Jul. 2024
Harald Racke

Linear Grouping

m 15.3 Bin Packing 11.Jul. 2024
Harald Racke

Linear Grouping

m 15.3 Bin Packing 11.Jul. 2024
Harald Racke

Lemma 26
OPT(I') < OPT(I) < OPT(I') + k

m 15.3 Bin Packing
Harald Racke

Lemma 26
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

> Any bin packing for I gives a bin packing for I’ as follows.

m 15.3 Bin Packing
Harald Racke

Lemma 26
OPT(I') < OPT(I) <OPT{') + k

Proof 1:
> Any bin packing for I gives a bin packing for I’ as follows.

» Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

m 15.3 Bin Packing
Harald Racke

Lemma 26
OPT(I') < OPT(I) <OPT{') + k

Proof 1:

> Any bin packing for I gives a bin packing for I’ as follows.

Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

>

Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

m 15.3 Bin Packing
Harald Racke

Lemma 26
OPT(I') < OPT(I) <OPT{') + k

Proof 1:

> Any bin packing for I gives a bin packing for I’ as follows.

Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

>

Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

m 15.3 Bin Packing
Harald Racke

Lemma 27
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
> Any bin packing for I’ gives a bin packing for I as follows.

m 15.3 Bin Packing
Harald Racke

Lemma 27
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:
> Any bin packing for I’ gives a bin packing for I as follows.
> Pack the items of group 1 into k new bins;

m 15.3 Bin Packing
Harald Racke

Lemma 27
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:

> Any bin packing for I’ gives a bin packing for I as follows.
> Pack the items of group 1 into k new bins;

> Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m 15.3 Bin Packing
Harald Racke

Lemma 27
OPT(I') < OPT(I) < OPT(I') + k

Proof 2:

> Any bin packing for I’ gives a bin packing for I as follows.
> Pack the items of group 1 into k new bins;

> Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m 15.3 Bin Packing
Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = | eSIZE(]) |.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = | eSIZE(]) |.

Then n/k <n/le’n/2] < 4/e? (note that |] > «/2 for « > 1).

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = | eSIZE(]) |.
Then n/k <n/le’n/2] < 4/e? (note that |] > «/2 for « > 1).

Hence, after grouping we have a constant number of piece sizes
(4/€?) and at most a constant number (2/¢€) can fit into any bin.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = | eSIZE(]) |.
Then n/k <n/le’n/2] < 4/e? (note that |] > «/2 for « > 1).

Hence, after grouping we have a constant number of piece sizes
(4/€?) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the previous
Dynamic Programming approach.

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) = en/2.

We set k = | eSIZE(]) |.
Then n/k <n/le’n/2] < 4/e? (note that |] > «/2 for « > 1).

Hence, after grouping we have a constant number of piece sizes
(4/€?) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the previous
Dynamic Programming approach.

> cost (for large items) at most
OPT(I') + k < OPT(I) + €SIZE(I) < (1 + €)OPT(I)

> running time (‘)((%n)4/ez).

Can we do better?

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + ®(log®(SIZE(I))) .

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + ®(log®(SIZE(I))) .

Note that this is usually better than a guarantee of

(1 +¢€)OPT(I) +1 .

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

Change of Notation:

> Group pieces of identical size.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

Change of Notation:
> Group pieces of identical size.

> Let s; denote the largest size, and let b; denote the number
of pieces of size s;.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

Change of Notation:
> Group pieces of identical size.

> Let 57 denote the largest size, and let b; denote the number
of pieces of size s;.
> 5o is second largest size and b> number of pieces of size s;

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

Change of Notation:
> Group pieces of identical size.

> Let 57 denote the largest size, and let b; denote the number
of pieces of size s;.

> 5o is second largest size and b> number of pieces of size s;

> ...

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

Change of Notation:
> Group pieces of identical size.

> Let 57 denote the largest size, and let b; denote the number
of pieces of size s;.

> 5o is second largest size and b> number of pieces of size s;

> s, smallest size and b,, number of pieces of size s;,.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-Sisl.
i

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-Sisl.
i

We call a vector that fulfills the above constraint a configuration.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

Let N be the number of configurations (exponential).

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).

min Z]Jyzlxj

s.t. Vie{l...m} z]}]:l Tjin > b;
Vje{l,...,N} Xj > 0
vje{l,...,N} x; integral

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

How to solve this LP?

later...

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

We can assume that each item has size at least 1/SIZE(I).

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Harmonic Grouping

> Sort items according to size (monotonically decreasing).

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Harmonic Grouping

> Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size of
items in the group is at least 2 (or larger). Then open new
group.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Harmonic Grouping

> Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size of
items in the group is at least 2 (or larger). Then open new

group.
> l.e., G; is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for G»,...,G,_1.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Harmonic Grouping

> Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size of
items in the group is at least 2 (or larger). Then open new

group.
> l.e., G; is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for G»,...,G,_1.

» Only the size of items in the last group G, may sum up to
less than 2.

m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

> Round all items in a group to the size of the largest group
member.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

> Round all items in a group to the size of the largest group
member.

> Delete all items from group G and G,.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

> Round all items in a group to the size of the largest group
member.

> Delete all items from group G and G,.

» For groups Go,...,Gy_1 delete n; — nj_; items.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

> Round all items in a group to the size of the largest group
member.

> Delete all items from group G and G,.
» For groups Go,...,Gy_1 delete n; — nj_; items.

» Observe that n; > nj_;.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Lemma 28
The number of different sizes in I’ is at most SIZE(I) /2.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Lemma 28
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Lemma 28
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)

has total size at least 2.

> Hence, the number of surviving groups is at most SIZE(I) /2.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Lemma 28
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

> Hence, the number of surviving groups is at most SIZE(I) /2.

> All items in a group have the same size in I'.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Lemma 29
The total size of deleted items is at most O (log(SIZE(I))).

Lemma 29
The total size of deleted items is at most O (log(SIZE(I))).

> The total size of items in G; and G, is at most 6 as a group
has total size at most 3.

Lemma 29
The total size of deleted items is at most O (log(SIZE(I))).

> The total size of items in G; and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

Lemma 29
The total size of deleted items is at most O (log(SIZE(I))).

> The total size of items in G; and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.

> [t discards n; — n;_1 pieces of total size at most

)) i 3
ni —ni-1 - Z
ni B

J=ni1+1 J

3

since the average piece size is only 3/n;.

Lemma 29
The total size of deleted items is at most O (log(SIZE(I))).

> The total size of items in G; and G, is at most 6 as a group
has total size at most 3.
» Consider a group G; that has strictly more items than G;_;.
> [t discards n; — n;_1 pieces of total size at most
n; — ny 43
i J=ni_1+1 J
since the average piece size is only 3/n;.

» Summing over all i that have n; > n; | gives a bound of at
most Ny -1 3

> = < O0(og(SIZE(]))) .

=17

(note that n,, < SIZE(I) since we assume that the size of each

item is at least 1/SIZE(])).

Algorithm 1 BinPack

: if SIZE(I) < 10 then

pack remaining items greedily

: Apply harmonic grouping to create instance I’; pack

discarded items in at most O (log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack |x;] bins in configuration T; for all j; call the
packed instance I;.

6: Let I> be remaining pieces from I’

7: Pack I» via BinPack(I)

w N =

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

OPTLP (11) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

OPTLP (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

> Each piece surviving in I’ can be mapped to a piece in I of no
lesser size. Hence, OPTip(I') < OPTip(I)

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

OPTLP (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

> Each piece surviving in I’ can be mapped to a piece in I of no
lesser size. Hence, OPTip(I') < OPTip(I)

> | x| is feasible solution for I; (even integral).

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

OPTLP (Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

> Each piece surviving in I’ can be mapped to a piece in I of no
lesser size. Hence, OPTip(I') < OPTip(I)

> | x| is feasible solution for I; (even integral).

> xj—|x;] is feasible solution for I>.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.

2. Pieces scheduled because they are in I;.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I;.

3. Pieces in I> are handed down to the next level.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I;.

3. Pieces in I> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into
at most OPTrp many bins.

m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I;.

3. Pieces in I> are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into
at most OPTrp many bins.

Pieces of type 1 are packed into at most
O(og(SIZE(I))) - L

many bins where L is the number of recursion levels.

m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

We can show that SIZE(I>) < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Analysis

We can show that SIZE(I») < SIZE(I)/2. Hence, the number of
recursion levels is only O(log(SIZE(Ioriginal))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

> The total size of items in I> can be at most Z]}]:l xj—Lxj]
which is at most the number of non-zero entries in the
solution to the configuration LP.

m 15.4 Advanced Rounding for Bin Packing
Harald Racke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min Zllexj
Solls Vie{l...m} Z?I:ITJ'I'XJ' > b;
Vje{l,...,N} xj = 0

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min Zllexj
Solls Vie{l...m} Z?I:ITJ'I'XJ' > b;
Vje{l,...,N} xj = 0
Dual
max it yibi
sit. Vjed{l,...,.N} X" Tiyi < 1
Vie{l,..., m} yvi = 0

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.

How do I find a violated constraint?

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.
How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that

> is feasible, i.e.,

m
ZTJ'i-SiSI,
i=1

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.
How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that

> is feasible, i.e.,

Tji-SiSI,

Mz

-
I
—_

» and has a large profit

m
> Tjiyi>1
i=1

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Separation Oracle

Suppose that | am given variable assignment y for the dual.
How do I find a violated constraint?

I have to find a configuration T; = (T}j,..., Tjy) that

> is feasible, i.e.,

Tji-SiSI,

Mz

-
Il
—

» and has a large profit

m
Z Tjiyi >1
i=1

But this is the Knapsack problem.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

Separation Oracle

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max St yibi
s.t. Vjel{l,...,N} Z{ZlTjiyi < 1+¢€
Vie{l,...,m} vi = 0

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + ¢ =1 + ﬁ we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max >t yvibi
s.t. Vjel{l,...,N} Z{ZlTjiyi < 1+¢€
Vie{l,...,m} vi = 0
Primal’
min (1+¢€) Zlle Xj
S.t. Vie{l...m} Eylejin > by
vje{l,...,N} xj = 0

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

Separation Oracle

If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

> Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

Separation Oracle

If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

> Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

> Let DUAL" be DUAL without unused constraints.

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

> Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

> Let DUAL" be DUAL without unused constraints.

» The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

> Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

> Let DUAL" be DUAL without unused constraints.

» The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

> The optimum value for PRIMAL" is at most (1 + €")OPT.

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

> Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL’.

> Let DUAL" be DUAL without unused constraints.

» The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

> The optimum value for PRIMAL" is at most (1 + €")OPT.

» We can compute the corresponding solution in polytime.

This gives that overall we need at most
(1 + €)OPTrp(I) + O(log®(SIZE(I)))

bins.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

This gives that overall we need at most
(1 + €)OPTrp(I) + O(log®(SIZE(I)))

bins.

We can choose €’ = ﬁ as OPT < #items and since we have a fully
polynomial time approximation scheme (FPTAS) for knapsack.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Racke

16.1 MAXSAT

Problem definition:
» 1 Boolean variables

m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Problem definition:
» 1 Boolean variables

» m clauses Cy,...,Cy. For example

C7 =X3V X5V Xg

m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Problem definition:
» 1 Boolean variables

» m clauses Cy,...,Cy. For example

C7 =X3V X5V Xg

> Non-negative weight w; for each clause Cj.

m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Problem definition:
» 1 Boolean variables

» m clauses Cy,...,Cy. For example

C7 =X3V X5V Xg

> Non-negative weight w; for each clause Cj.

» Find an assignment of true/false to the variables sucht that
the total weight of clauses that are satisfied is maximum.

m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Terminology:
> A variable x; and its negation X; are called literals.

m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Terminology:
» A variable x; and its negation X; are called literals.

> Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Terminology:

» A variable x; and its negation X; are called literals.

> Hence, each clause consists of a set of literals (i.e., no

duplications: x; vV x; vV X; is not a clause).

We assume a clause does not contain x; and Xx; for any i.

m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Terminology:
» A variable x; and its negation X; are called literals.

> Hence, each clause consists of a set of literals (i.e., no
duplications: x; vV x; vV X; is not a clause).

> We assume a clause does not contain x; and Xx; for any i.

> x; is called a positive literal while the negation x; is called a
negative literal.

m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Terminology:

>

>

A variable x; and its negation X; are called literals.

Hence, each clause consists of a set of literals (i.e., no
duplications: x; Vv x; vV X; is not a clause).

We assume a clause does not contain x; and Xx; for any i.

x; is called a positive literal while the negation x; is called a
negative literal.

For a given clause C; the number of its literals is called its
length or size and denoted with ;.

m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Terminology:

>

>

A variable x; and its negation X; are called literals.

Hence, each clause consists of a set of literals (i.e., no
duplications: x; Vv x; vV X; is not a clause).

We assume a clause does not contain x; and Xx; for any i.

x; is called a positive literal while the negation x; is called a
negative literal.

For a given clause C; the number of its literals is called its
length or size and denoted with ;.

Clauses of length one are called unit clauses.

m 16.1 MAXSAT
Harald Racke

MAXSAT: Flipping Coins

Set each x; independently to true with probability % (and, hence,
to false with probability %, as well).

m 16.1 MAXSAT
Harald Racke

Define random variable X; with

X = 1 if C; satisfied
771 0 otw.

m 16.1 MAXSAT
Harald Racke

Define random variable X; with

X = 1 if C; satisfied
771 0 otw.

Then the total weight W of satisfied clauses is given by

W = Z‘LUJ'XJ'
J

m 16.1 MAXSAT
Harald Racke

m 16.1 MAXSAT
Harald Racke

E[W]=> wjE[X/]

m 16.1 MAXSAT
Harald Racke

E[W]=> wjE[X/]
J
= ijPr[CJ- is satisified]
J

m 16.1 MAXSAT
Harald Racke

E[W]=> wjE[X/]
J
= ijPr[CJ- is satisified]

= %wj(l - (%)%)

m 16.1 MAXSAT
Harald Racke

E[W]=> wjE[X/]
J
= ijPr[CJ- is satisified]

m 16.1 MAXSAT
Harald Racke

E[W]=> wjE[X/]
J
= ijPr[CJ- is satisified]

= %wj(l - (%)%)
= ;%wj

OPT

=

N | =

m 16.1 MAXSAT
Harald Racke

MAXSAT: LP formulation

> Let for a clause Cj, P; be the set of positive literals and N;
the set of negative literals.

Cj= \/XiV \/)_Ci

lEP]' IENJ'

m 16.1 MAXSAT
Harald Racke

MAXSAT: LP formulation

> Let for a clause Cj, P; be the set of positive literals and N;
the set of negative literals.

Cj= \/XiV \/)_Ci

iEP]' iENj
max 2jw;zj
sit. Vj Diep; ¥i+ Zien;(1—2i) = zj
Vi yi € {0,1}
Vj zZj = 1

m 16.1 MAXSAT
Harald Racke

MAXSAT: Randomized Rounding

Set each x; independently to true with probability y; (and, hence,
to false with probability (1 — y;)).

m 16.1 MAXSAT
Harald Racke

Lemma 30 (Geometric Mean < Arithmetic Mean)
For any nonnegative a1, ...,ay

k 17k Lk
(Hai) SEZai

i=1

m 16.1 MAXSAT
Harald Racke

Definition 31
A function f on an interval I is concave if for any two points s and
v from I and any A € [0, 1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

m 16.1 MAXSAT
Harald Racke

Definition 31
A function f on an interval I is concave if for any two points s and
v from I and any A € [0, 1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 32
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S@A) = f((1-2)0+A1)

for A € [0,1].

m 16.1 MAXSAT
Harald Racke

Definition 31
A function f on an interval I is concave if for any two points s and
v from I and any A € [0, 1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 32
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then
SA) =f(1-2)0+A1)
> (1=2A)f(0) +Af(1)

for A € [0,1].

m 16.1 MAXSAT
Harald Racke

Definition 31
A function f on an interval I is concave if for any two points s and
v from I and any A € [0, 1] we have

SAs+ (1 -2)r) = Af(s)+(1-A)f(r)

Lemma 32
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a+ b. Then

S(A) =f((1-A)0+ A1)
> (1-A)f(0)+Af(1)
=a+Ab

for A € [0,1].

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied]

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied] = 1_[(1-yi) 1_[Vi

i€P; ieN;

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied]

[Ta-»o [T

i€P; ieN;

t;
[;, (E 1-y)+ > yi)]
J \iep; iEN;

IA

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied]

[Ta-»o [T

iep; ieN;
r tj
1
< #(2(1—yi)+ > yi)]
B J iEPJ' iGNJ'
= [1-g | 2 it 2 0=
i J \iep; ieN;

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied]

[Ta-»o [T

iep; ieN;
r tj
1
< #(2(1—yi)+ > yi)]
B J iEPJ' iGNJ'
= [1-g | 2 it 2 0=
i J \iep; ieN;

m 16.1 MAXSAT
Harald Racke

The function f(z) =1 — (1 — %)‘) is concave. Hence,

Pr[C; satisfied]

m 16.1 MAXSAT
Harald Racke

The function f(z) =1 — (1 — %)‘) is concave. Hence,

A\ i
Pr[C; satisfied] > 1 — (— ZJ)
Y

m 16.1 MAXSAT
Harald Racke

The function f(z) =1 — (1 — %)‘) is concave. Hence,

A\ i
Pr[C; satisfied] > 1 — (— ZJ)
Y

[olea)]

m 16.1 MAXSAT
Harald Racke

The function f(z) =1 — (1 — %)f is concave. Hence,

i
Pr[C; satisfied] > 1 — (1 - ZJ)
t;

[i-(-2)° =

’ -1 z -2 .
f(z) = —7[1 - ?] < 0 for z € [0, 1]. Therefore, f is
concave.

m 16.1 MAXSAT
Harald Racke

m 16.1 MAXSAT
Harald Racke

E[W] = > w;Pr[C; is satisfied]
J

m 16.1 MAXSAT
Harald Racke

E[W] = > w;Pr[C; is satisfied]
J

> %wjzj [1 - (1 - {}j)gi]

m 16.1 MAXSAT
Harald Racke

E[W] = > w;Pr[C; is satisfied]

J
1\
Zsz'Zj |:1— (1—#>]
Jj J
1
> (1_E>OPT'

m 16.1 MAXSAT
Harald Racke

MAXSAT: The better of two

Theorem 33
Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a %-approximation.

m 16.1 MAXSAT
Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wi,W2}]

m 16.1 MAXSAT
Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[AW) + 1ws]

m 16.1 MAXSAT
Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[AW) + 1ws]

3zma- () 3z (-0))

m 16.1 MAXSAT
Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[AW) + 1ws]

sswa-(-2) iz (-0))
pels(-(-0))2 0-0))

3
> for all integers

[\

(N~

m 16.1 MAXSAT
Harald Racke

Let W) be the value of randomized rounding and W> the value
obtained by coin flipping.

E[max{Wy, Wz}]
> E[AW) + 1ws]

sswa-(-2) iz (-0))
pels(-(-0))2 0-0))

3
> for all integers

[\

(N~

%

| w

m 16.1 MAXSAT
Harald Racke

0.9

0.8

0.7

0.6

0.5

f)

—— randomized rounding

m Harald Racke

—— flipping coins
——— average
s s
4 5 6
£
16.1 MAXSAT

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

m 16.1 MAXSAT
Harald Racke

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

We could define a function f:[0,1] — [0,1] and set x; to true
with probability f(y;).

m 16.1 MAXSAT
Harald Racke

MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <4%!

m 16.1 MAXSAT
Harald Racke

MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-47% < f(x) <4%!

Theorem 34
Rounding the LP-solution with a function f of the above form
gives a %-approximation.

m 16.1 MAXSAT
Harald Racke

0.5

4x—1
——1-4

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied]

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied] = [[(1= f(») [] fO)

icP; ieN;

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied] = [[(1= f(») [] fO)

icP; ieN;
< l_[47Vi n 4Yi—1
iGPj iGNj

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied] = [[(1= f(») [] fO)

icP; ieN;
< l_[47Vi n 4Yi—1
iGPj iGNj

_ 4*(Ziepj Yit2ien; (1->i))

m Harald Racke

16.1 MAXSAT

Pr

[Cj not satisfied] = [| (1 — f(») [] FOi)

icP; ieN;
< l_[47Vi n 4Yi—1
iGPj iGNj

_ 4*(Ziepj Yit2ien; (1->i))

< 4%

m Harald Racke

16.1 MAXSAT

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

m 16.1 MAXSAT
Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied]

m 16.1 MAXSAT
Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied] = 1 — 472

m 16.1 MAXSAT
Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .

m 16.1 MAXSAT
Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,

Pr[C; satisfied] =1 —47%/ > %zj .

m 16.1 MAXSAT
Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W]

m 16.1 MAXSAT
Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied]
J

m 16.1 MAXSAT
Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ
J

m 16.1 MAXSAT
Harald Racke

The function g(z) =1 — 477 is concave on [0, 1]. Hence,
Pr[C; satisfied] =1 —47%/ > %zj .
Therefore,

E[W] = > w;Pr[C; satisfied] ZszJ > iOPT
J

m 16.1 MAXSAT
Harald Racke

Can we do better?

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 35 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 35 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 35 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Note that an integrality gap only holds for one specific ILP
formulation.

Lemma 36
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3.
max 2 jWw;zj
st Vj iep; ¥i+ Zien;(L=2i) = zj
Vi yi € {0,1}
v j zj < 1

m 16.1 MAXSAT
Harald Racke

Lemma 36
Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3.
max 2 jWw;zj
st Vj iep; ¥i+ Zien;(L=2i) = zj
Vi yi € {0,1}
v j z; < 1

Consider: (x1 vV x2) A (X1 VX2) A(X]VX2) A (X1 VX2)
> any solution can satisfy at most 3 clauses
> we can set y1 = y» = 1/2 in the LP; this allows to set
Zl=22=23=24=1

> hence, the LP has value 4.

m 16.1 MAXSAT
Harald Racke

MaxCut

MaxCut
Given a weighted graph G = (V,E,w), w(v) > 0, partition the
vertices into two parts. Maximize the weight of edges between

the parts.

Trivial 2-approximation

m 16.2 MAXCUT
Harald Racke

Semidefinite Programming

max / min 2.i,j CijXij
s.t. Vk 2ijk@dijkXij = bk
Vi, j Xij = Xji

X = (x4j) is psd.

> linear objective, linear constraints

> we can constrain a square matrix of variables to be
symmetric positive semidefinite

: Note that wlog. we can assume that all variables appear in this matrix. Suppose 1
:we have a non-negative scalar z and want to express something like :
I

p Zij ajjkXij +z = Dby i
1

, where x;; are variables of the positive semidefinite matrix. We can add z as a
. - . . |

| diagonal entry xyp, and additionally introduce constraints xp, = 0 and x,.p = 0. |

Vector Programming

max / min > cij(vivj)
st. Vk Yiicaikwiv)) = by
Vi € R"™

> variables are vectors in n-dimensional space
> objective functions and constraints are linear in inner
products of the vectors

This is equivalent!

m 16.2 MAXCUT
Harald Racke

Fact [without proof]
We (essentially) can solve Semidefinite Programs in polynomial
time...

m 16.2 MAXCUT
Harald Racke

Quadratic Programs

Quadratic Program for MaxCut:

max %Zi,jwij(l_yiyj)

This is exactly MaxCut!

m 16.2 MAXCUT
Harald Racke

Semidefinite Relaxation

max 2Zuwu(l ok vJ)
Vi vitvi = 1
Vi Vi € R"

> this is clearly a relaxation

> the solution will be vectors on the unit sphere

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

» Choose a random vector » such that v/||v | is uniformly
distributed on the unit sphere.

> If riv; > 0 set y; = 1 else set y; = —1

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

Choose the i-th coordinate 7; as a Gaussian with mean 0 and
variance 1, i.e., r; ~ N(0,1).

Density function:
ex2/2

(x) = ——
P =

Rounding the SDP-Solution

Choose the i-th coordinate 7; as a Gaussian with mean 0 and
variance 1, i.e., r; ~ N(0,1).

Density function:

px) = %exz/z
Then
Priv = (xX1,...,Xn)]
— (JZLTr)"eX%/Z LeXPI2 L X2 dxy - .. dxy,
_ Wz)ne%w%h-m% dx; - ... dxn

Hence the probability for a point only depends on its distance to
the origin.

Rounding the SDP-Solution

Fact
The projection of » onto two unit vectors e¢; and e are

independent and are normally distributed with mean 0 and
variance 1 iff e; and e» are orthogonal.

Note that this is clear if ¢; and e, are standard basis vectors.

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

Corollary

If we project ¥ onto a hyperplane its normalized projection
" /lr"1]) is uniformly distributed on the unit circle within the
hyperplane.

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

> if the normalized projection falls into the shaded region, v;
and v; are rounded to different values

> this happens with probability 0/

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

> contribution of edge (i, j) to the SDP-relaxation:

%wij(l - Uij)

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

> contribution of edge (i, j) to the SDP-relaxation:

%wiJ-(l - Uij)

> (expected) contribution of edge (i, j) to the rounded
instance w;; arccos(viv;)/m

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

> contribution of edge (i, j) to the SDP-relaxation:

%wiJ-(l - Uij)

> (expected) contribution of edge (i, j) to the rounded
instance w;; arccos(viv;)/m

> ratio is at most

2 arccos(x)

> 0.878
xe[-1,1] (1 — x)

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

1 I
— %arccos(x)
1
— 5(1 -X)
0.75
0.5
0.25
0
-1 -0.5 0 0.5

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

2
1.5
1
0.5
——ratio(x)
—0.878
0 [
-1 -0.5 0 0.5

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

Theorem 37

Given the unique games conjecture, there is no x-approximation
for the maximum cut problem with constant

2 arccos(x)

x> m
xel-1,1] 1(1 — x)

unless P = NP.

m 16.2 MAXCUT
Harald Racke

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min Si1 wiXi
s.t. VueU iyes,Xi =
Vie{l,..., k} xXi =

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min S wixg
s.t. VuelU iyes;Xi = 1
Vie{l,..., k} x;i = 0
Dual Formulation:
max Duecu Yu
s.t. Vie{l,...,k} Dyues,Yu < wj
Yu =2 0

17.1 Primal Dual Revisited

m Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:

> Start with y = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:

> Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:

> Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible

> |dentify an element e that is not covered in current primal
integral solution.

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:

> Start with v = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be
infeasible).

» While x not feasible

> |dentify an element e that is not covered in current primal
integral solution.

> Increase dual variable y, until a dual constraint becomes
tight (maybe increase by 0!).

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Algorithm:

> Start with v = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> |dentify an element e that is not covered in current primal
integral solution.
> Increase dual variable y, until a dual constraint becomes
tight (maybe increase by 0!).
> If this is the constraint for set S set x; = 1 (add this set to
your solution).

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

‘m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

> For every set S; with x; = 1 we have

D Ve =wj

EESJ'

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

> For every set S; with x; = 1 we have

D Ve =wj

EGSJ'

> Hence our cost is

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

> For every set S; with x; = 1 we have

D Ve =wj

EGSJ'

> Hence our cost is

2. WiX;
J

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

> For every set S; with x; = 1 we have

D Ve =wj

EGSJ'
> Hence our cost is

ZwJXJ =22 Ve

Jj e€Ss;

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

> For every set S; with x; = 1 we have

D Ve =wj

EGSJ'
> Hence our cost is

zwm—z > ye—Zl{J e €St - ve

Jj e€Ss;

m 17.1 Primal Dual Revisited
Harald Racke

Repetition: Primal Dual for Set Cover

Analysis:

> For every set S; with x; = 1 we have

D Ve =wj

EGSJ'

> Hence our cost is

zwm—z > ye—Zl{J e €St - ve

Jj e€Ss;

<f > ¥e<f OPT

m 17.1 Primal Dual Revisited
Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

m 17.1 Primal Dual Revisited
Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

QES]'

m 17.1 Primal Dual Revisited
Harald Racke

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj > 0= Z Ye = Wj

QES]'

If we would also fulfill dual slackness conditions

YVe>0= > xj=1

Jees;

then the solution would be optimal!!l

m 17.1 Primal Dual Revisited
Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

m 17.1 Primal Dual Revisited
Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

YVe>0=1< > x;<f

Jie€Ss;

m 17.1 Primal Dual Revisited
Harald Racke

We don’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=1< > xj<f

Jees;

This is sufficient to show that the solution is an f-approximation.

m 17.1 Primal Dual Revisited
Harald Racke

Suppose we have a primal/dual pair

min 2.j CjX;j max
s.t. Vi Zj: aijxj = b; s.t. Vj
Vj X; = 0 Vi

ibiyi
2. aijYi
Vi

IA

%

17.1 Primal Dual Revisited

m Harald Racke

Suppose we have a primal/dual pair

min 2.j CjX;j max >.ibiy;
s.t. Vi zj: aijxj = b; s.t. Vi aijyi =
Vj X; = 0 Vi Yi =

and solutions that fulfill approximate slackness conditions:

\Y%
Q|-

XJ'>0:ZGL1'J'_’)/1' CJ'

1

IA

yi>022ainj Bbi

J

m 17.1 Primal Dual Revisited
Harald Racke

Then

2. X
J

m 17.1 Primal Dual Revisited
Harald Racke

Then

2. X
J

m 17.1 Primal Dual Revisited
Harald Racke

Then right hand side of j-th
dual constraint
[

D i

J

m 17.1 Primal Dual Revisited
Harald Racke

Then

Z_ CjiXj|=

J

2| 2 i | Xi

m 17.1 Primal Dual Revisited
Harald Racke

Then

D.cixjl= ad | Xaiyi| x;
J J i
O(Z Zainj Yi

i J

m 17.1 Primal Dual Revisited
Harald Racke

Then

D.cixjl= ad | Xaiyi| x;
J J i
O(Z Zainj Yi

i \j
<aB- > biyi
i

m 17.1 Primal Dual Revisited
Harald Racke

Then

2. X
J

< 0(2 (Zaijyi X
Jj i

imal cost o Z Z aijx;j | vi

1

J
<«p- Zbiyi

i
dual objective

m 17.1 Primal Dual Revisited
Harald Racke

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

We can encode this as an instance of Set Cover

> Each vertex can be viewed as a set that contains some cycles.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

We can encode this as an instance of Set Cover
> Each vertex can be viewed as a set that contains some cycles.

> However, this encoding gives a Set Cover instance of
non-polynomial size.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

We can encode this as an instance of Set Cover
> Each vertex can be viewed as a set that contains some cycles.
> However, this encoding gives a Set Cover instance of
non-polynomial size.
» The O(logn)-approximation for Set Cover does not help us
to get a good solution.

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Let € denote the set of all cycles (where a cycle is identified by its
set of vertices)

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Let € denote the set of all cycles (where a cycle is identified by its
set of vertices)

Primal Relaxation:

min D WyXy
st. VCel€ D,ccxy = 1
Yv Xy =
Dual Formulation:
max 2.cecYc
st. YvEV DcrypecYe < wy
vC ye = 0

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:

> Startwithx =0and ¥y =0

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:
> Startwithx =0and ¥y =0

> While there is a cycle C that is not covered (does not contain
a chosen vertex).

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:

> Startwithx =0and ¥y =0

> While there is a cycle C that is not covered (does not contain
a chosen vertex).
> Increase y¢ until dual constraint for some vertex v becomes
tight.

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:
> Startwithx =0and ¥y =0
> While there is a cycle C that is not covered (does not contain
a chosen vertex).

> Increase y¢ until dual constraint for some vertex v becomes
tight.
> setx, =1.

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Then

Z Wy Xy
v

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Then

Zwvxv —Z Z YcXv

vV CwveC

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Then

Zwvxvzz Z YcXv
v

vV CwveC

>, 2. e

veSCveC

where S is the set of vertices we choose.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Then

Zwvxvzz Z YcXv
v

vV CwveC

=2 2
veSCveC

=2 1SnCl- e
&

where S is the set of vertices we choose.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Then

Zwvxvzz Z YcXv
v

vV CwveC

=2 2
veSCveC

=2 1SnCl- e
&

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this
is unrealistic.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Algorithm 1 FeedbackVertexSet

1:
2:
3:
4.

N @ &

vy <0
x <0
while exists cycle C in G do
increase yc until thereis v € C s.t. Y c.pec Ve = Wy
Xy =1
remove v from G
repeatedly remove vertices of degree 1 from G

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm chooses
at most one vertex from P.

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

Theorem 38

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O(logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

yc>0=|SNC| <0O(logn) .

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R™" find a shortest path between s and t
w.r.t. edge-weights c.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R* find a shortest path between s and t
w.r.t. edge-weights c.

min >ecle)xe
st. VSES Dess)Xe = 1
VecE xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgecsis)Vs =< cle)
vsSes ys = 0

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Primal Dual for Shortest Path

The Dual:
max 2.5 Vs
st. Ve€E Jgecsis)Vs =< cle)
vsSes ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Primal Dual for Shortest Path

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Algorithm 1 PrimalDualShortestPath

vy <0

F—0o

while there is no s-t path in (V,F) do
Let C be the connected component of (V,F) con-
taining s

5: Increase yc until there is an edge ¢’ € 6(C) such

that Xs.ere5(s) Vs = c(e).

6: F—Fu{e}

: Let P be an s-t path in (V,F)

8: return P

A w N =

N

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Lemma 39
At each point in time the set F forms a tree.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Lemma 39
At each point in time the set F forms a tree.

Proof:

> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Lemma 39
At each point in time the set F forms a tree.

Proof:
> In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.
> Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

m 17.3 Primal Dual for Shortest Path
Harald Racke

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

D=2 > s

ecP ecP S:eed(S)

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

M
o
o
[
s
I

> 2. s

ecP ecP S:eed(S)

S PSS - ys .
S:seStgS

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

D=2 > s

ecP ecP S:eed(S)

= > PN -ys .
S:seStgS

If we can show that ys > 0 implies [P N 6(S)| =1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

dee=> > s

ecP ecP S:eed(S)

= > PN -ys .
S:seStgS

If we can show that ys > 0 implies [P N 6(S)| =1 gives

Z c(e) = Zyg < OPT

ecP S

by weak duality.

Hence, we find a shortest path.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

If 6(S) contains two edges from P then there must exist a
subpath P’ of P that starts and ends with a vertex from S (and all
interior vertices are not in §).

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

If 6(S) contains two edges from P then there must exist a
subpath P’ of P that starts and ends with a vertex from S (and all
interior vertices are not in §).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

m 17.3 Primal Dual for Shortest Path
Harald Racke

If 6(S) contains two edges from P then there must exist a
subpath P’ of P that starts and ends with a vertex from S (and all
interior vertices are not in §).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

m 17.3 Primal Dual for Shortest Path
Harald Racke

If 6(S) contains two edges from P then there must exist a
subpath P’ of P that starts and ends with a vertex from S (and all
interior vertices are not in §).

When we increased ys, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

m 17.3 Primal Dual for Shortest Path
Harald Racke

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R* on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

m 17.4 Steiner Forest
Harald Racke

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R* on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

min 2 cle)xe
s.t. VScV:SeS;forsomei .55 Xe = 1
VecE xe € {0,1}

m 17.4 Steiner Forest
Harald Racke

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k, and a cost function c : E — R* on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

min 2 cle)xe
s.t. VScV:SeS;forsomei .55 Xe = 1
VecE xe € {0,1}

Here S; contains all sets S such thats; € Sand t; ¢ S.

m 17.4 Steiner Forest
Harald Racke

max 2S:distSes; Vs
s.t. VeeE Dsecs(s)Ys =< cle)
ys = 0

A

The difference to the dual of the shortest path problem is that we
have many more variables (sets for which we can generate a moat
of non-zero width).

‘m 17.4 Steiner Forest
Harald Racke

Algorithm 1 FirstTry

1y <0

2. F—g

3: while not all s;-t; pairs connected in F do

4: Let C be some connected component of (V, F) such
that |C n {s;,t;}| = 1 for some 1.

5: Increase y¢ until there is an edge ¢’ € 6(C) s.t.
2.5eSe'es(s) VS = Ce’

6: F—Fu{e}

7: return |J; P;

‘m 17.4 Steiner Forest
Harald Racke

‘m 17.4 Steiner Forest
Harald Racke

Secle)=> > s

ecF ecF S:eed(S)

‘m 17.4 Steiner Forest
Harald Racke

dee)=> > ys—ZI(S (S)NFl-ys .

ecF ecF S:eed(S)

‘m 17.4 Steiner Forest
Harald Racke

dee)=> > ys—ZI(S (S)NFl-ys .

ecF ecF S:eed(S)

‘m 17.4 Steiner Forest
Harald Racke

doeler=2 > ys—Zlé(S)mFl s .

ecF ecF S:eed(S)

If we show that ys > 0 implies that [6(S) N F| < o we are in good
shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, v1,..., Uk.

‘m 17.4 Steiner Forest
Harald Racke

doeler=2 > ys—Zlé(S)mFl s .

ecF ecF S:eed(S)

If we show that ys > 0 implies that [6(S) N F| < o we are in good
shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, v1,..., Uk.

» The i-th pair is vg-v;.

‘m 17.4 Steiner Forest
Harald Racke

dDceey=> > y5_2|5(5)m1:| Vs .

ecF ecF S:ecdH(S)

If we show that ys > 0 implies that [6(S) N F| < o we are in good
shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, v1,..., Uk.
» The i-th pair is vg-v;.

» The first component C could be {vg}.

‘m 17.4 Steiner Forest
Harald Racke

dDceey=> > y5_2|5(5)m1:| Vs .

ecF ecF S:ecdH(S)

If we show that ys > 0 implies that [6(S) N F| < o we are in good
shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, v1,..., Uk.
» The i-th pair is vg-v;.
» The first component C could be {vg}.
> We only set yyy,; = 1. All other dual variables stay 0.

‘m 17.4 Steiner Forest
Harald Racke

dDceey=> > y5_2|5(5)m1:| Vs .

ecF ecF S:ecdH(S)

If we show that ys > 0 implies that [6(S) N F| < o we are in good
shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, v1,..., Uk.
» The i-th pair is vg-v;.
» The first component C could be {vg}.
> We only set yyy,; = 1. All other dual variables stay 0.
» The final set F contains all edges {vo,v;},i=1,...,k.

‘m 17.4 Steiner Forest
Harald Racke

dDceey=> > y5_2|5(5)m1:| Vs .

ecF ecF S:ecdH(S)

If we show that ys > 0 implies that [6(S) N F| < o we are in good
shape.

However, this is not true:
» Take a complete graph on k + 1 vertices vg, v1,..., Uk.
» The i-th pair is vg-v;.
» The first component C could be {vg}.
> We only set yyy,; = 1. All other dual variables stay 0.
» The final set F contains all edges {vo,v;},i=1,...,k.
> Vi > 0but|[6({vo}) NF| =k

‘m 17.4 Steiner Forest
Harald Racke

Algorithm 1 SecondTry
y—0;F 240
while not all s;-t; pairs connected in F do
{—4+1
Let € be set of all connected components C of (V,F)
such that |C N {s;, t;}| = 1 for some 1.
Increase y¢ for all C € € uniformly until for some edge
ep €6(C), C' € Cs.t. Ygope5(5) VS = Cey
6: F — Fu {eyp}
7. FF —«F
8: for k — £ downto 1 do // reverse deletion
9
0
1

2 BN I

vl

if [’ — ey is feasible solution then
remove ey from F’

: return F’

‘m 17.4 Steiner Forest
Harald Racke

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges in
any order.

‘m 17.4 Steiner Forest
Harald Racke

Example

ty

o,

o,

b

$3

m Harald Racke

17.4 Steiner Forest

Example

‘m 17.4 Steiner Forest
Harald Racke

Example

m Harald Racke

17.4 Steiner Forest

Example

m 17.4 Steiner Forest
Harald Racke

Example

(5

‘m 17.4 Steiner Forest
Harald Racke

Example

m 17.4 Steiner Forest 11.Jul. 2024
Harald Racke

Example

m 17.4 Steiner Forest 11.Jul. 2024
Harald Racke

Example

€

m 17.4 Steiner Forest 11.Jul. 2024
Harald Racke

Example

m 17.4 Steiner Forest 11.Jul. 2024
Harald Racke

Example

m 17.4 Steiner Forest 11.Jul. 2024
Harald Racke

Example

Example

Example

Example

Example

Example

Example

Example

Lemma 40
For any C in any iteration of the algorithm

> I8(C)nF'| < 2|¢C]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...

‘m 17.4 Steiner Forest
Harald Racke

2, Ce

ecF’

‘m 17.4 Steiner Forest
Harald Racke

2. =2 2 s

ecF’ ecF’ S:eed(S)

‘m 17.4 Steiner Forest
Harald Racke

Dce=D> D> ys=>IFn&S)- s .

ecF’ ecF’ S:eed(S) S

‘m 17.4 Steiner Forest
Harald Racke

dDece=> > yS—ZIF NS(S)|

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

‘m 17.4 Steiner Forest
Harald Racke

Sce= > > ys=DIF 8- s .

ecF’ ecF’ S:eed(S) S

We want to show that

DIF NS -ys=<2> ys
S S

» In the i-th iteration the increase of the left-hand side is

e > IFFns0)]
ceC

and the increase of the right hand side is 2¢|C|.

‘m 17.4 Steiner Forest
Harald Racke

D= > ys—Z|Fﬁ5(5)| Vs .

ecF’ ecF’ S:eed(S)

We want to show that

DIF NS -ys=<2> ys
S S

» In the i-th iteration the increase of the left-hand side is

€ > IFFnés0)]
ceC

and the increase of the right hand side is 2¢|C|.

» Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

‘m 17.4 Steiner Forest
Harald Racke

Lemma 41
For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

‘m 17.4 Steiner Forest
Harald Racke

Lemma 41
For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

‘m 17.4 Steiner Forest
Harald Racke

Lemma 41

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

> Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

m 17.4 Steiner Forest
Harald Racke

Lemma 41

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

> Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

> Let H=F —Fj.

‘m 17.4 Steiner Forest
Harald Racke

Lemma 41

For any set of connected components C in any iteration of the
algorithm

> 18(C)nF'| < 2(C]
ceC

Proof:

» At any point during the algorithm the set of edges forms a
forest (why?).

> Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

> Let H=F —Fj.

> All edges in H are necessary for the solution.

m 17.4 Steiner Forest
Harald Racke

> Contract all edges in F; into single vertices V.

‘m 17.4 Steiner Forest
Harald Racke

> Contract all edges in F; into single vertices V.

> We can consider the forest H on the set of vertices V'.

‘m 17.4 Steiner Forest
Harald Racke

> Contract all edges in F; into single vertices V.
> We can consider the forest H on the set of vertices V'.

> Let deg(v) be the degree of a vertex v € V' within this forest.

‘m 17.4 Steiner Forest
Harald Racke

> Contract all edges in F; into single vertices V.
> We can consider the forest H on the set of vertices V.
> Let deg(v) be the degree of a vertex v € V' within this forest.

> Color avertex v € V' red if it corresponds to a component from €
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

m 17.4 Steiner Forest
Harald Racke

> Contract all edges in F; into single vertices V.
> We can consider the forest H on the set of vertices V.
> Let deg(v) be the degree of a vertex v € V' within this forest.

> Color avertex v € V' red if it corresponds to a component from €
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

> We have

?
> deg(v) = > |8(C)nF'| <2|C| =2|R|
vER ceC

m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.

‘m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.
» Then

‘m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.
» Then

> deg(v)

VER

‘m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

‘m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.
» Then
>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(|R| + |B|) — 2|B]|

‘m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.
» Then
>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(|R| + |Bl) — 2|B| = 2|R]|

‘m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.
» Then
>, deg(v) = > deg(v) - > deg(v)

VER veERUB vVEB

< 2(|R| + |Bl) — 2|B| = 2|R]|

> Every blue vertex with non-zero degree must have degree at
least two.

‘m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

vVER veERUB vVEB

2(IR| + |Bl) — 2|B| = 2|R|

A

> Every blue vertex with non-zero degree must have degree at
least two.

> Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

‘m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

vVER veERUB veB

<2(IRI + |B]) — 2|B| = 2|R|

A

> Every blue vertex with non-zero degree must have degree at
least two.
> Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.
> But this means that the cluster corresponding to b must
separate a source-target pair.

‘m 17.4 Steiner Forest
Harald Racke

> Suppose that no node in B has degree one.
» Then

>, deg(v) = > deg(v) - > deg(v)

vVER veERUB veB

<2(IRI + |B]) — 2|B| = 2|R|

A

> Every blue vertex with non-zero degree must have degree at
least two.

> Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

> But this means that the cluster corresponding to b must
separate a source-target pair.

> But then it must be a red node.

m 17.4 Steiner Forest
Harald Racke

Traveling Salesman

Given a set of cities ({1,...,n}) and a symmetric matrix C = (¢;;),
¢ij = 0 that specifies for every pair (i, j) € [n] x [n] the cost for
travelling from city i to city j. Find a permutation 11 of the cities
such that the round-trip cost

n-1

Cn()m(n) + Z Crr(i)m(i+1)
i=1

is minimized.

‘m 18 Hardness of Approximation
Harald Racke

Traveling Salesman

Theorem 42
There does not exist an O (2")-approximation algorithm for TSP.

‘m 18 Hardness of Approximation
Harald Racke

Traveling Salesman
Theorem 42

There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

‘m 18 Hardness of Approximation
Harald Racke

Traveling Salesman

Theorem 42
There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there

exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

‘m 18 Hardness of Approximation
Harald Racke

Traveling Salesman

Theorem 42
There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

> If (i,j) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

m 18 Hardness of Approximation
Harald Racke

Traveling Salesman

Theorem 42
There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

> If (i,j) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

> There exists a Hamiltonian Path iff there exists a tour with
cost . Otw. any tour has cost strictly larger than n2™".

m 18 Hardness of Approximation
Harald Racke

Traveling Salesman

Theorem 42
There does not exist an O (2"™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

> If (i,j) ¢ E then set ¢;; to n2" otw. set ¢;; to 1. This
instance has polynomial size.

> There exists a Hamiltonian Path iff there exists a tour with
cost . Otw. any tour has cost strictly larger than n2™".

> An O(2™)-approximation algorithm could decide btw. these
cases. Hence, cannot exist unless P = NP.

m 18 Hardness of Approximation
Harald Racke

Gap Introducing Reduction

HAM TSP
Reduction from Hamiltonian cycle to TSP

> instance that has Hamiltonian cycle is mapped to TSP
instance with small cost

> otherwise it is mapped to instance with large cost
» — there is no 2"/n-approximation for TSP

PCP theorem: Approximation View

Theorem 43 (PCP Theorem A)
There exists € > 0 for which there is gap introducing reduction
between 3SAT and MAX3SAT.

 The standard formula- -ﬂ

.tlon of the PCP theo-
,rem looks very differ-
1 ent but the above theo-
: rem is equivalent. Orig-

| |naIIy, the PCP theorem , 3SAT MAX3SAT

| is a result about mterac _____________________________
| tive proof systems and I | Here the goal of the MAX3SAT-problem is to|

| 'its importance to hard-| ! maX|m|ze the fraction of satisfied clauses. The

| ness of approximation is | ' above theorem implies that we cannot approxi- :

somewhat a side effect. | | | mate MAX3SAT with a ratio better than 1 — e. |

PCP theorem: Proof System View

Definition 44 (NP)
A language L € NP if there exists a polynomial time, deterministic
verifier V (a Turing machine), s.t.

[x € L] completeness
There exists a proof string y, |v| = poly(|x]),
s.t. V(x,y) = “accept”.

[x ¢ L] soundness
For any proof string v, V(x,y) = “reject”.

‘m 18 Hardness of Approximation
Harald Racke

PCP theorem: Proof System View

Definition 44 (NP)
A language L € NP if there exists a polynomial time, deterministic
verifier V (a Turing machine), s.t.

[x € L] completeness
There exists a proof string y, |v| = poly(|x]),
s.t. V(x,y) = “accept”.

[x ¢ L] soundness
For any proof string v, V(x,y) = “reject”.

Note that requiring |y | = poly(|x|) for x ¢ L does not make a
difference (why?).

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access
to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle 1r7sp would allow M to
write a TSP-instance x on a special oracle tape and obtain the
answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query
complexity, i.e., how often the machine queries the oracle.

For a proof string y, 11, is an oracle that upon given an index i
returns the i-th character y; of y.

m 18 Hardness of Approximation
Harald Racke

! Non-adaptive means that e.g. the second !

Probabilistic CheCkabIe PrOOfS | proof-bit read by the verifier may not de- .

: pend on the value of the first bit. :

Definition 45 (PCP)
A language L € PCP.(y) s(n) (¥ (n),q(n)) if there exists a
polynomial time, non-adaptive, randomized verifier V, s.t.

[x € L] There exists a proof string y, s.t. V™ (x) =
“accept” with probability > c(n).

[x ¢ L] For any proof string v, V™™ (x) = “accept” with
probability < s(n).

The verifier uses at most @ (v (n)) random bits and makes at most
O(q(n)) oracle queries.

) Note that the proof itself does not count towards the input of the verifier. The verifier has to write '
| the number of a bit- position it wants to read onto a special tape, and then the correspondmg |
| bit from the proof is returned to the verifier. The proof may only be exponentially long, as a |
| polynomlal time verifier cannot address longer proofs.

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1.
Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.
s(n) = 1/2. Probability of accepting a wrong proof.

¥ (n) is called the randomness complexity, i.e., how many random
bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» P =PCP(0,0)

m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs
» P =PCP(0,0)

verifier without randomness and proof access is deterministic
algorithm

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is deterministic
algorithm

» PCP(logn,0) <P

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is deterministic
algorithm

» PCP(logn,0) <P

we can simulate O (logn) random bits in deterministic,
polynomial time

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is deterministic
algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) <P

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is deterministic
algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) <P
we can simulate short proofs in polynomial time

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is deterministic
algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) <P
we can simulate short proofs in polynomial time

> PCP(poly(n),0) = coRP Z P

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» P =PCP(0,0)
verifier without randomness and proof access is deterministic
algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) <P
we can simulate short proofs in polynomial time

> PCP(poly(n),0) = coRP Z P
by definition; coRP is randomized polytime with one sided
error (positive probability of accepting NO-instance)

‘m 18 Hardness of Approximation
Harald Racke

| RP = coRP = P is a commonly believed '

PrObabiliStiC ChECkable PrOOfS | conjecture. RP stands for randomized !
I polynomlal time (with a non-zero proba- .
» P =PCP(0,0) | bility of rejecting a YES-instance). ;

verifier without randomness and proof access is deterministic
algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) <P
we can simulate short proofs in polynomial time

> PCP(poly(n),0) = coRP Z P
by definition; coRP is randomized polytime with one sided
error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP
by definition; NP-verifier does not use randomness and asks
polynomially many queries

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP
by definition; NP-verifier does not use randomness and asks
polynomially many queries

» PCP(logn,poly(n)) < NP
NP-verifier can simulate O (logn) random bits

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP
by definition; NP-verifier does not use randomness and asks
polynomially many queries

» PCP(logn,poly(n)) < NP
NP-verifier can simulate O (logn) random bits

?
» PCP(poly(n),0) = coRP gl NP

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP
by definition; NP-verifier does not use randomness and asks
polynomially many queries

» PCP(logn,poly(n)) < NP
NP-verifier can simulate O (logn) random bits
21
» PCP(poly(n),0) = coRP < NP

» NP c PCP(logn,1)
hard part of the PCP-theorem

‘m 18 Hardness of Approximation
Harald Racke

PCP theorem: Proof System View

Theorem 46 (PCP Theorem B)
NP = PCP(logn, 1)

m 18 Hardness of Approximation
Harald Racke

Probabilistic Proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (Go, G1) (two graphs with n-nodes)

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Proof for Graph Nonlsomorphism

GNl is the language of pairs of non-isomorphic graphs
Verifier gets input (Go, G1) (two graphs with n-nodes)

It expects a proof of the following form:
» For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills
Go=H = P[H]=0
Gi=H = P[H]=1
Go,G1 # H = P[H] = arbitrary

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

> take graph Gj and apply a random permutation to obtain a
labeled graph H

» check whether P[H] =D

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

> take graph Gj and apply a random permutation to obtain a
labeled graph H

» check whether P[H] =D

If Go # G then by using the obvious proof the verifier will always
accept.

‘m 18 Hardness of Approximation
Harald Racke

Probabilistic Proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

> take graph Gj and apply a random permutation to obtain a
labeled graph H

» check whether P[H] =D

If Go # G then by using the obvious proof the verifier will always
accept.

If Go = G1 a proof only accepts with probability 1/2.
» suppose T(Gg) = G

> if we accept for b = 1 and permutation 7rang We reject for
b = 0 and permutation Trang o T

‘m 18 Hardness of Approximation
Harald Racke

Version B = Version A

> For 3SAT there exists a verifier that uses clogn random bits,
reads g = O(1) bits from the proof, has completeness 1 and
soundness 1/2.

‘m 18 Hardness of Approximation
Harald Racke

Version B = Version A

> For 3SAT there exists a verifier that uses clogn random bits,
reads g = O(1) bits from the proof, has completeness 1 and
soundness 1/2.

> fix x and r:

‘m 18 Hardness of Approximation
Harald Racke

Version B = Version A

> For 3SAT there exists a verifier that uses clogn random bits,
reads g = O(1) bits from the proof, has completeness 1 and
soundness 1/2.

> fix x and r:

input proof bits

—_—
X, ‘Ile,...,Tqu

4

computation

fX,T(Trjly-- g vTrjq)
b
reject accept

‘m 18 Hardness of Approximation
Harald Racke

Version B = Version A

> transform Boolean formula fx , into 3SAT formula Cy
(constant size, variables are proof bits)

‘m 18 Hardness of Approximation
Harald Racke

Version B = Version A

> transform Boolean formula fx , into 3SAT formula Cy
(constant size, variables are proof bits)

» consider 3SAT formula Cyx = A\, Cx»

‘m 18 Hardness of Approximation
Harald Racke

Version B = Version A

> transform Boolean formula fx , into 3SAT formula Cy
(constant size, variables are proof bits)

» consider 3SAT formula Cx = A, Cx

[x € L1 There exists proof string y, s.t. all formulas Cx
evaluate to 1. Hence, all clauses in C, satisfied.

‘m 18 Hardness of Approximation
Harald Racke

Version B = Version A

> transform Boolean formula fx , into 3SAT formula Cy
(constant size, variables are proof bits)

» consider 3SAT formula Cx = A, Cx

[x € L1 There exists proof string y, s.t. all formulas Cx
evaluate to 1. Hence, all clauses in C, satisfied.

[x ¢ L] For any proof string y, at most 50% of formulas
Cxr evaluate to 1. Since each contains only a
constant number of clauses, a constant fraction
of clauses in Cy are not satisfied.

m 18 Hardness of Approximation
Harald Racke

Version B = Version A

> transform Boolean formula fx , into 3SAT formula Cy
(constant size, variables are proof bits)

» consider 3SAT formula Cx = A, Cx
[x € L1 There exists proof string y, s.t. all formulas Cx
evaluate to 1. Hence, all clauses in C, satisfied.

[x ¢ L] For any proof string y, at most 50% of formulas
Cxr evaluate to 1. Since each contains only a
constant number of clauses, a constant fraction
of clauses in Cy are not satisfied.

> this means we have gap introducing reduction

m 18 Hardness of Approximation
Harald Racke

Version A = Version B

We show: Version A = NP < PCP; ;_¢(logn,1).

Version A = Version B

We show: Version A = NP < PCP; ;_¢(logn,1).

given L € NP we build a PCP-verifier for L

Version A = Version B

We show: Version A = NP < PCP; 1_¢(logn,1).
given L € NP we build a PCP-verifier for L

Verifier:

> 3SAT is NP-complete; map instance x for L into 3SAT
instance Iy, s.t. I, satisfiable iff x € L

Version A = Version B

We show: Version A = NP < PCP; 1_¢(logn,1).
given L € NP we build a PCP-verifier for L

Verifier:

> 3SAT is NP-complete; map instance x for L into 3SAT
instance Iy, s.t. I, satisfiable iff x € L

» map I, to MAX3SAT instance Cyx (PCP Thm. Version A)

Version A = Version B

We show: Version A = NP < PCP; 1_¢(logn,1).
given L € NP we build a PCP-verifier for L

Verifier:

> 3SAT is NP-complete; map instance x for L into 3SAT
instance Iy, s.t. I, satisfiable iff x € L

» map I, to MAX3SAT instance Cyx (PCP Thm. Version A)

> interpret proof as assignment to variables in Cy

Version A = Version B

We show: Version A = NP < PCP; 1_¢(logn,1).
given L € NP we build a PCP-verifier for L

Verifier:

> 3SAT is NP-complete; map instance x for L into 3SAT
instance Iy, s.t. I, satisfiable iff x € L

» map I, to MAX3SAT instance Cyx (PCP Thm. Version A)
> interpret proof as assignment to variables in Cy

» choose random clause X from Cy

Version A = Version B

We show: Version A = NP < PCP; 1_¢(logn,1).
given L € NP we build a PCP-verifier for L

Verifier:

> 3SAT is NP-complete; map instance x for L into 3SAT
instance Iy, s.t. I, satisfiable iff x € L
map I, to MAX3SAT instance Cyx (PCP Thm. Version A)
interpret proof as assignment to variables in Cx

choose random clause X from Cy

vV v.v VY

query variable assignment o for X;

Version A = Version B

We show: Version A = NP < PCP; 1_¢(logn,1).

given L € NP we build a PCP-verifier for L

Verifier:

>

vV v.v. v Y

3SAT is NP-complete; map instance x for L into 3SAT
instance Iy, s.t. I, satisfiable iff x € L

map I, to MAX3SAT instance Cyx (PCP Thm. Version A)
interpret proof as assignment to variables in Cx
choose random clause X from Cy

query variable assignment o for X;

accept if X(0) = true otw. reject

Version A = Version B

[x € L] There exists proof string 7y, s.t. all clauses in Cy
evaluate to 1. In this case the verifier returns 1.

[x ¢ L] For any proof string y, at most a (1 — €)-fraction
of clauses in Cy evaluate to 1. The verifier will
reject with probability at least €.

To show Theorem B we only need to run this verifier a constant
number of times to push rejection probability above 1/2.

m 18 Hardness of Approximation
Harald Racke

Label Cover

Input:
> bipartite graph G = (V1, V2, E)
label sets Ly, L>

v

v

for every edge (u,v) € E a relation Ry, < L1 X L that
describe assignments that make the edge happy.

> maximize number of happy edges

Ly = {m,m0,m}
,0), (m,0), (m,0)}

Ly = {0,0,0,0,0}

IThe label cover problem also has its origin in proof systems. It encodes a 2PR1 .
. (2 prover 1 round system). Each side of the graph corresponds to a prover. An!

edge is a query consisting of a question for prover 1 and prover 2. If the answers |
| ' are consistent the verifer accepts otw. it rejects.]

Label Cover

> an instance of label cover is (dy,d»)-reqular if every vertex in
Ly has degree d; and every vertex in Ly has degree d>.

> if every vertex has the same degree d the instance is called
d-regular

‘m 18 Hardness of Approximation
Harald Racke

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

corresponding graph:

|x1v5¢2vx3| |x4vx2vi3| |21vx2vfc4

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

corresponding graph:

|x1v5¢2vx3| |x4vx2vi3| |)‘clvx2vic4

label sets: L1 = {T,F}3,L> = {T,F} (T=true, F=false)

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

corresponding graph:

|x1vx2vx3| |x4vx2v5r3| |)‘clvx2vic4

label sets: L1 = {T,F}3,L> = {T,F} (T=true, F=false)

relation: Ry, = {((uj, uj, ug), u;)}, where the clause C is over
variables x;, xj, x, and assignment (u;, uj, uy) satisfies C

MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2 VX3)A(Xg4VX2VX3)A(X1V X2V Xyg)

IThe verifier accepts if the la-!

corresponding graph: 'beIIlng (assignment to vari- |
1 ables in clauses at the top +
Fiveavxs] [avxevz| [Fivxevz] ; assignment to variables at the ! '

' bottom) causes the clause to |
| evaluate to true and is consis-
tent i.e., the assignment ofI

"" :e.g. X4 at the bottom is the:
1 same as the assignment given |

@ @ @ @ to x4 in the labelling of theI
1 clause.]

label sets: Ly = {T,F}3,L, = {T,F} (T=true, F=false)
relation: Ry, = {((uj, uj, ug), u;)}, where the clause C is over
variables x;, x, X and assignment (u;, uj, uy) satisfies C

R ={((F,F,F),F),((F,T,F),F), (F,F, T),T), (F, T,T),T),
«r,1,7),1),(T,T,F),F), (T,F,F), F)}

MAX E3SAT via Label Cover

Lemma 47
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

‘m 18 Hardness of Approximation
Harald Racke

MAX E3SAT via Label Cover

Lemma 47
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

» for V, use the setting of the assignment that satisfies k
clauses

‘m 18 Hardness of Approximation
Harald Racke

MAX E3SAT via Label Cover

Lemma 47
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

» for V, use the setting of the assignment that satisfies k
clauses

> for satisfied clauses in V; use the corresponding assignment
to the clause-variables (gives 3k happy edges)

‘m 18 Hardness of Approximation
Harald Racke

MAX E3SAT via Label Cover

Lemma 47
If we can satisfy k out of m clauses in ¢ we can make at least
3k + 2(m — k) edges happy.

Proof:

» for V, use the setting of the assignment that satisfies k
clauses

> for satisfied clauses in V; use the corresponding assignment
to the clause-variables (gives 3k happy edges)

» for unsatisfied clauses flip assignment of one of the
variables; this makes one incident edge unhappy (gives
2(m — k) happy edges)

m 18 Hardness of Approximation
Harald Racke

MAX E3SAT via Label Cover

Lemma 48
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

‘m 18 Hardness of Approximation
Harald Racke

MAX E3SAT via Label Cover

Lemma 48
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.

Proof:
> the labeling of nodes in V> gives an assignment

‘m 18 Hardness of Approximation
Harald Racke

MAX E3SAT via Label Cover

Lemma 48
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) =2m + k edges happy.

Proof:
> the labeling of nodes in V> gives an assignment

> every unsatisfied clause in this assignment cannot be
assigned a label that satisfies all 3 incident edges

‘m 18 Hardness of Approximation
Harald Racke

MAX E3SAT via Label Cover

Lemma 48
If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) =2m + k edges happy.

Proof:
> the labeling of nodes in V> gives an assignment

> every unsatisfied clause in this assignment cannot be
assigned a label that satisfies all 3 incident edges

» hence at most 3m — (m — k) = 2m + k edges are happy

‘m 18 Hardness of Approximation
Harald Racke

Hardness for Label Cover

We cannot distinguish between the following two cases
» all 3m edges can be made happy

> at most 2m + (1 —e)m = (3 — €)m out of the 3m edges can
be made happy

‘m 18 Hardness of Approximation
Harald Racke

' Here € > 0 is the constant from PCP The- |

Hardness for Label Cover "orem A.

We cannot distinguish between the following two cases
» all 3m edges can be made happy

> at most 2m + (1 —e)m = (3 — €)m out of the 3m edges can
be made happy

Hence, we cannot obtain an approximation constant « > %

‘m 18 Hardness of Approximation
Harald Racke

(3, 5)-regular instances

Theorem 49

There is a constant p s.t. MAXE3SAT is hard to approximate with
a factor of p even if restricted to instances where a variable
appears in exactly 5 clauses.

‘m 18 Hardness of Approximation
Harald Racke

(3, 5)-regular instances

Theorem 49

There is a constant p s.t. MAXE3SAT is hard to approximate with
a factor of p even if restricted to instances where a variable
appears in exactly 5 clauses.

Then our reduction has the following properties:
> the resulting Label Cover instance is (3, 5)-regular
> it is hard to approximate for a constant «x < 1

> given a label £; for x there is at most one label ¥» for y that
makes edge (x,y) happy (uniqueness property)

m 18 Hardness of Approximation
Harald Racke

(3, 5)-regular instances

The previous theorem can be obtained with a series of
gap-preserving reductions:

> MAX3SAT < MAX3SAT(< 29)

> MAX3SAT(< 29) < MAX3SAT(<5)
> MAX3SAT(< 5) < MAX3SAT(=5)
> MAX3SAT(= 5) < MAXE3SAT(=5)

Here MAX3SAT (< 29) is the variant of MAX3SAT in which a
variable appears in at most 29 clauses. Similar for the other
problems.

‘m 18 Hardness of Approximation
Harald Racke

| . We take the (3, 5)-regular instance. We make 3 copies of
Reg ular instances every clause vertex and 5 copies of every variable vertex. '
:Then we add edges between clause vertex and variable |
|vertex iff the clause contains the variable. This increases |
i | the size by a constant factor. The gap instance can stlll !
i either only satisfy a constant fraction of the edges or ally !
I edges The uniqueness property still holds for the new!
!instance.
Theorem 50 R .
There is a constant x < 1 such if there is an x-approximation

algorithm for Label Cover on 15-regular instances than P=NP.

Given a label ¢, for x € V there is at most one label £, for y that
makes (x,y) happy. (uniqueness property)

m 18 Hardness of Approximation
Harald Racke

Parallel Repetition

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance
probability of a wrong proof (or as here: a pair of wrong proofs)
one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a
single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several
rounds in parallel and hope that the acceptance probability of
wrong proofs goes down.

m 18 Hardness of Approximation
Harald Racke

Parallel Repetition

Given Label Cover instance I with G = (V1, V>, E), label sets L;
and L, we construct a new instance I’;

>V =VE=Vix---xV
> Vi=VE=Vax---x Vo
> L =If=L; x---xIL;
> Ly=Lk=Lyx---xL
» E'=EK=Ex---xE

An edge ((x1,...,Xxk), (O)’1,...,Yk)) whose end-points are labelled
by (£5,...,¢%) and (£7,...,07) is happy if (£X,07) € Ry, , for
all 1.

‘m 18 Hardness of Approximation
Harald Racke

Parallel Repetition

m 18 Hardness of Approximation
Harald Racke

Parallel Repetition

If I is regular than also I'.

‘m 18 Hardness of Approximation
Harald Racke

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?

> Suppose we have labelling /1, {» that satisfies just an
«-fraction of edges in I.

‘m 18 Hardness of Approximation
Harald Racke

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?
> Suppose we have labelling /1, {» that satisfies just an
«-fraction of edges in I.
> We transfer this labelling to instance I':
vertex (x1,...,xx) gets label (£1(x1),...,¢1(xk)),
vertex (y1,..., vk) gets label (£o(y1),...,02(Vi)).

‘m 18 Hardness of Approximation
Harald Racke

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?
> Suppose we have labelling /1, {» that satisfies just an
«-fraction of edges in I.
> We transfer this labelling to instance I':
vertex (x1,...,xx) gets label (£1(x1),...,¢1(xk)),
vertex (y1,..., vk) gets label (£o(y1),...,02(Vi)).

» How many edges are happy?

‘m 18 Hardness of Approximation
Harald Racke

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?
> Suppose we have labelling /1, {» that satisfies just an
«-fraction of edges in I.

> We transfer this labelling to instance I':
vertex (x1,...,xx) gets label (£1(x1),...,¢1(xk)),
vertex (y1,..., vk) gets label (£o(y1),...,02(Vi)).
» How many edges are happy?
only (x|E])k out of |E|*!11 (just an «* fraction)

‘m 18 Hardness of Approximation
Harald Racke

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?

> Suppose we have labelling /1, {» that satisfies just an
«-fraction of edges in I.

> We transfer this labelling to instance I':
vertex (x1,...,xx) gets label (£1(x1),...,¢1(xk)),
vertex (y1,..., vk) gets label (£o(y1),...,02(Vi)).
» How many edges are happy?
only (x|E])k out of |E|*!11 (just an «* fraction)
Does this always work?

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

Non interactive agreement:
» Two provers A and B

» The verifier generates two random bits b4, and bg, and
sends one to A and one to B.

> Each prover has to answer one of Ay, Ay, By, B; with the
meaning Ao := prover A has been given a bit with value 0.

> The provers win if they give the same answer and if the
answer is correct.

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
0 0
1 1

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 0
1 1

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
Ap O 0 Ao
1 1

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
Ap O 0 Bo
1 1

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
Ap O 0 A
1 1

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 0
1 1 Ao

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 0
1 1 By

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 0
1 1 A

‘m 18 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 0
1 1

Regardless what we do 50% of edges are unhappy!

‘m 18 Hardness of Approximation
Harald Racke

1 For the first game/coordinate the | |
Cou nter Exam ple | provers give an answer of the form ' 1
'“A has received...” (Ag or A1) and!
i for the second an answer of the |

In the repeated game the provers can ! form “B has received...” (B or By). !

also win with probability 1/2: ! If the answer a prover has to give 1
1is about himself a prover can an-|
A B | swer correctly. If the answer to be 1

i given is about the other prover the |
0,0 Ay, B0| same bit is returned. This means |
' e.g. Prover B answers A; for the :
I first game iff in the second game I

| | he receives a 1-bit.
' By this method the provers aI !
Ao, Bo 0,1 1,0 Ao, B :ways win if Prover A gets the same .
i i bit in the first game as Prover Bin! 1
:the second game. This happens:
1 with probability 1/2. |
A1,B 1,0 0,1 AlyBl This strategy is not possible for |
!'the provers if the game is repeated !
|sequent|ally How should prover.
B know (for her answer in the first '
1,1 Ay, B1 game) which bit she is going to re- |
1 ceive in the second game? .

Ag,By 0,0

A1,B1 1,1

Boosting

Theorem 51
There is a constant ¢ > 0 such if OPT(I) = |E|(1 —) then

ck
OPT(I') < |E"|(1 — 6)sL where L = |Li| + |L>| denotes total
number of labels in I.

‘m 18 Hardness of Approximation
Harald Racke

Boosting

Theorem 51
There is a constant ¢ > 0 such if OPT(I) = |E|(1 —) then

ck
OPT(I') < |E"|(1 — 6)sL where L = |Li| + |L>| denotes total
number of labels in I.

proof is highly non-trivial

‘m 18 Hardness of Approximation
Harald Racke

Hardness of Label Cover

Theorem 52
There are constants ¢ > 0, 6 < 1 s.t. for any k we cannot
distinguish regular instances for Label Cover in which either
» OPT(I) = |E|, or
> OPT(I) = |E|(1 —)k

unless each problem in NP has an algorithm running in time
O(nO(k)).

Corollary 53
There is no x-approximation for Label Cover for any constant «.

‘m 18 Hardness of Approximation
Harald Racke

! Here the verifier reads exactly three bits :
Advanced PCP Theorem | from the proof. Not O(3) bits.]

I
[

Theorem 54
For any positive constant € > 0, it is the case that
NP < PCP1_¢,1/2+¢(logn, 3). Moreover, the verifier just reads

three bits from the proof, and bases its decision only on the parity
of these bits.

It is NP-hard to approximate a MAXE3LIN problem by a factor
better than 1/2 + 6, for any constant §.

It is NP-hard to approximate MAX3SAT better than 7/8 + §, for
any constant é.

‘m 18 Hardness of Approximation
Harald Racke

	Approximation Algorithms
	Introduction to Approximation
	Integer Programs
	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

	Scheduling on Identical Machines
	Local Search
	Greedy

	Rounding Data + Dynamic Programming
	Knapsack
	Scheduling Revisited
	Bin Packing
	Advanced Rounding for Bin Packing

	Randomized Rounding
	MAXSAT
	MAXCUT

	Primal Dual Techniques
	Primal Dual Revisited
	Feedback Vertex Set for Undirected Graphs
	Primal Dual for Shortest Path
	Steiner Forest

	Hardness of Approximation

