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There are many practically important optimization problems that

are NP-hard.

What can we do?

▶ Heuristics.

▶ Exploit special structure of instances occurring in practise.

▶ Consider algorithms that do not compute the optimal

solution but provide solutions that are close to optimum.
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Definition 3

An α-approximation for an optimization problem is a

polynomial-time algorithm that for all instances of the problem

produces a solution whose value is within a factor of α of the

value of an optimal solution.

11 Introduction to Approximation 11. Jul. 2024

Harald Räcke 40/262



Why approximation algorithms?

▶ We need algorithms for hard problems.

▶ It gives a rigorous mathematical base for studying heuristics.

▶ It provides a metric to compare the difficulty of various

optimization problems.

▶ Proving theorems may give a deeper theoretical

understanding which in turn leads to new algorithmic

approaches.

Why not?

▶ Sometimes the results are very pessimistic due to the fact

that an algorithm has to provide a close-to-optimum solution

on every instance.
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Definition 4

An optimization problem P = (I, sol,m,goal) is in NPO if

▶ x ∈ I can be decided in polynomial time

▶ y ∈ sol(I) can be verified in polynomial time

▶ m can be computed in polynomial time

▶ goal ∈ {min,max}

In other words: the decision problem is there a solution y with

m(x,y) at most/at least z is in NP.
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▶ x is problem instance

▶ y is candidate solution

▶ m∗(x) cost/profit of an optimal solution

Definition 5 (Performance Ratio)

R(x,y) := max

{
m(x,y)
m∗(x)

,
m∗(x)
m(x,y)

}
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Definition 6 (r -approximation)

An algorithm A is an r -approximation algorithm iff

∀x ∈ I : R(x,A(x)) ≤ r ,

and A runs in polynomial time.
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Definition 7 (PTAS)

A PTAS for a problem P from NPO is an algorithm that takes as

input x ∈ I and ϵ > 0 and produces a solution y for x with

R(x,y) ≤ 1+ ϵ .

The running time is polynomial in |x|.

approximation with arbitrary good factor... fast?
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Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the

jobs on n machines such that the MAKESPAN is minimized.
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Definition 8 (FPTAS)

An FPTAS for a problem P from NPO is an algorithm that takes as

input x ∈ I and ϵ > 0 and produces a solution y for x with

R(x,y) ≤ 1+ ϵ .

The running time is polynomial in |x| and 1/ϵ.

approximation with arbitrary good factor... fast!
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Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a

subset of total weight at most W s.t. the profit is maximized.
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Definition 9 (APX – approximable)

A problem P from NPO is in APX if there exist a constant r ≥ 1

and an r -approximation algorithm for P .

constant factor approximation...
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Problems that are in APX

MAXCUT. Given a graph G = (V , E); partition V into two disjoint
pieces A and B s. t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the variables

that satisfies the maximum number of clauses.
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Problems with polylogarithmic approximation guarantees

▶ Set Cover

▶ Minimum Multicut

▶ Sparsest Cut

▶ Minimum Bisection

There is an r -approximation with r ≤ O(logc(|x|)) for some

constant c.

Note that only for some of the above problem a matching lower

bound is known.
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There are really difficult problems!

Theorem 10

For any constant ϵ > 0 there does not exist an

Ω(n1−ϵ)-approximation algorithm for the maximum clique

problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.
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There are weird problems!

Asymmetric k-Center admits an O(log∗n)-approximation.

There is no o(log∗n)-approximation to Asymmetric k-Center

unless NP ⊆ DTIME(nlog log logn).
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Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits

a 4-approximation.

One only says that a problem is APX-hard.
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A crucial ingredient for the design and analysis of approximation

algorithms is a technique to obtain an upper bound (for

maximization problems) or a lower bound (for minimization

problems).

Therefore Linear Programs or Integer Linear Programs play a vital

role in the design of many approximation algorithms.
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Definition 11

An Integer Linear Program or Integer Program is a Linear Program

in which all variables are required to be integral.

Definition 12

A Mixed Integer Program is a Linear Program in which a subset of

the variables are required to be integral.
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Many important combinatorial optimization problems can be

formulated in the form of an Integer Program.

Note that solving Integer Programs in general is NP-complete!
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Set Cover

Given a ground set U , a collection of subsets S1, . . . , Sk ⊆ U ,

where the i-th subset Si has weight/cost wi. Find a collection

I ⊆ {1, . . . , k} such that

∀u ∈ U∃i ∈ I : u ∈ Si (every element is covered)

and ∑
i∈I
wi is minimized.
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Set Cover
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IP-Formulation of Set Cover

min
∑
iwixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

∀i ∈ {1, . . . , k} xi integral
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Vertex Cover

Given a graph G = (V , E) and a weight wv for every node. Find a

vertex subset S ⊆ V of minimum weight such that every edge is

incident to at least one vertex in S.
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IP-Formulation of Vertex Cover

min
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≥ 1

∀v ∈ V xv ∈ {0,1}
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Maximum Weighted Matching

Given a graph G = (V , E), and a weight we for every edge e ∈ E.

Find a subset of edges of maximum weight such that no vertex is

incident to more than one edge.

max
∑
e∈Ewexe

s.t. ∀v ∈ V ∑
e:v∈e xe ≤ 1

∀e ∈ E xe ∈ {0,1}
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Maximum Independent Set

Given a graph G = (V , E), and a weight wv for every node v ∈ V .

Find a subset S ⊆ V of nodes of maximum weight such that no

two vertices in S are adjacent.

max
∑
v∈V wvxv

s.t. ∀e = (i, j) ∈ E xi + xj ≤ 1
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Knapsack

Given a set of items {1, . . . , n}, where the i-th item has weight wi
and profit pi, and given a threshold K. Find a subset

I ⊆ {1, . . . , n} of items of total weight at most K such that the

profit is maximized.

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ K

∀i ∈ {1, . . . , n} xi ∈ {0,1}
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Relaxations

Definition 13

A linear program LP is a relaxation of an integer program IP if any

feasible solution for IP is also feasible for LP and if the objective

values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing xi ∈ [0,1]
instead of xi ∈ {0,1}.
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By solving a relaxation we obtain an upper bound for a

maximization problem and a lower bound for a minimization

problem.
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Relations

Maximization Problems:

OPT(IP) OPT(LP)

OPT(DUAL)ALG(IP) FEASIBLE(DUAL)

0

Minimization Problems:

OPT(IP)OPT(LP)

OPT(DUAL) ALG(IP)FEASIBLE(DUAL)

0
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Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional

values so that we obtain an integral solution.

Set Cover relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ∈ [0,1]

Let fu be the number of sets that the element u is contained in

(the frequency of u). Let f = maxu{fu} be the maximum

frequency.
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Technique 1: Round the LP solution.

Rounding Algorithm:

Set all xi-values with xi ≥ 1
f to 1. Set all other xi-values to 0.
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Technique 1: Round the LP solution.

Lemma 14

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

▶ We know that
∑
i:u∈Si xi ≥ 1.

▶ The sum contains at most fu ≤ f elements.

▶ Therefore one of the sets that contain u must have xi ≥ 1/f .

▶ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 11. Jul. 2024

Harald Räcke 71/262



Technique 1: Round the LP solution.

Lemma 14

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

▶ We know that
∑
i:u∈Si xi ≥ 1.

▶ The sum contains at most fu ≤ f elements.

▶ Therefore one of the sets that contain u must have xi ≥ 1/f .

▶ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 11. Jul. 2024

Harald Räcke 71/262



Technique 1: Round the LP solution.

Lemma 14

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

▶ We know that
∑
i:u∈Si xi ≥ 1.

▶ The sum contains at most fu ≤ f elements.

▶ Therefore one of the sets that contain u must have xi ≥ 1/f .

▶ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 11. Jul. 2024

Harald Räcke 71/262



Technique 1: Round the LP solution.

Lemma 14

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

▶ We know that
∑
i:u∈Si xi ≥ 1.

▶ The sum contains at most fu ≤ f elements.

▶ Therefore one of the sets that contain u must have xi ≥ 1/f .

▶ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 11. Jul. 2024

Harald Räcke 71/262



Technique 1: Round the LP solution.

Lemma 14

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

▶ We know that
∑
i:u∈Si xi ≥ 1.

▶ The sum contains at most fu ≤ f elements.

▶ Therefore one of the sets that contain u must have xi ≥ 1/f .

▶ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 11. Jul. 2024

Harald Räcke 71/262



Technique 1: Round the LP solution.

Lemma 14

The rounding algorithm gives an f -approximation.

Proof: Every u ∈ U is covered.

▶ We know that
∑
i:u∈Si xi ≥ 1.

▶ The sum contains at most fu ≤ f elements.

▶ Therefore one of the sets that contain u must have xi ≥ 1/f .

▶ This set will be selected. Hence, u is covered.

13.1 Deterministic Rounding 11. Jul. 2024

Harald Räcke 71/262



Technique 1: Round the LP solution.

The cost of the rounded solution is at most f ·OPT.

∑
i∈I
wi ≤

k∑
i=1

wi(f · xi)

= f · cost(x)

≤ f ·OPT .
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:

min
∑
i∈Iwixi

s.t. ∀u ∑
i:u∈Si xi ≥ 1

xi ≥ 0

Dual:

max
∑
u∈U yu

s.t. ∀i ∑u:u∈Si yu ≤ wi
yu ≥ 0
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Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

tight. This means for all i ∈ I∑
u:u∈Si

yu = wi
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Technique 2: Rounding the Dual Solution.

Lemma 15

The resulting index set is an f -approximation.

Proof:

Every u ∈ U is covered.

▶ Suppose there is a u that is not covered.

▶ This means
∑
u:u∈Si yu < wi for all sets Si that contain u.

▶ But then yu could be increased in the dual solution without

violating any constraint. This is a contradiction to the fact

that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution.

Proof:

∑
i∈I
wi

=
∑
i∈I

∑
u:u∈Si

yu

=
∑
u
|{i ∈ I : u ∈ Si}| ·yu

≤
∑
u
fuyu

≤ f
∑
u
yu

≤ fcost(x∗)

≤ f ·OPT
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Let I denote the solution obtained by the first rounding algorithm

and I′ be the solution returned by the second algorithm. Then

I ⊆ I′ .

This means I′ is never better than I.

▶ Suppose that we take Si in the first algorithm. I.e., i ∈ I.
▶ This means xi ≥ 1

f .

▶ Because of Complementary Slackness Conditions the

corresponding constraint in the dual must be tight.

▶ Hence, the second algorithm will also choose Si.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that

it is necessary to solve the LP. The following method also gives an

f -approximation without solving the LP.

For estimating the cost of the solution we only required two

properties.

1. The solution is dual feasible and, hence,∑
u
yu ≤ cost(x∗) ≤ OPT

where x∗ is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is

tight.

Of course, we also need that I is a cover.
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Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual
1: y ← 0

2: I ← ∅
3: while exists u ∉

⋃
i∈I Si do

4: increase dual variable yu until constraint for some

new set Sℓ becomes tight

5: I ← I ∪ {ℓ}
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Technique 4: The Greedy Algorithm

Algorithm 1 Greedy
1: I ← ∅
2: Ŝj ← Sj for all j
3: while I not a set cover do

4: ℓ ← arg minj:Ŝj≠0
wj
|Ŝj|

5: I ← I ∪ {ℓ}
6: Ŝj ← Ŝj − Sℓ for all j

In every round the Greedy algorithm takes the set that covers

remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still

uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Lemma 16

Given positive numbers a1, . . . , ak and b1, . . . , bk, and

S ⊆ {1, . . . , k} then

min
i

ai
bi
≤
∑
i∈S ai∑
i∈S bi

≤ max
i

ai
bi
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Technique 4: The Greedy Algorithm

Let nℓ denote the number of elements that remain at the

beginning of iteration ℓ. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the ℓ-th iteration

min
j

wj
|Ŝj|

≤
∑
j∈OPTwj∑
j∈OPT |Ŝj|

= OPT∑
j∈OPT |Ŝj|

≤ OPT
nℓ

since an optimal algorithm can cover the remaining nℓ elements

with cost OPT.

Let Ŝj be a subset that minimizes this ratio. Hence,

wj/|Ŝj| ≤ OPT
nℓ

.

13.4 Greedy 11. Jul. 2024

Harald Räcke 82/262



Technique 4: The Greedy Algorithm

Let nℓ denote the number of elements that remain at the

beginning of iteration ℓ. n1 = n = |U| and ns+1 = 0 if we need s
iterations.

In the ℓ-th iteration

min
j

wj
|Ŝj|
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= OPT∑
j∈OPT |Ŝj|
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Technique 4: The Greedy Algorithm

Adding this set to our solution means nℓ+1 = nℓ − |Ŝj|.

wj ≤
|Ŝj|OPT

nℓ
= nℓ −nℓ+1

nℓ
·OPT

13.4 Greedy 11. Jul. 2024

Harald Räcke 83/262



Technique 4: The Greedy Algorithm

Adding this set to our solution means nℓ+1 = nℓ − |Ŝj|.
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Technique 4: The Greedy Algorithm

∑
j∈I
wj

≤
s∑
ℓ=1

nℓ −nℓ+1

nℓ
·OPT

≤ OPT
s∑
ℓ=1

(
1
nℓ

+ 1
nℓ − 1

+ · · · + 1
nℓ+1 + 1

)

= OPT
n∑
i=1

1
i

= Hn ·OPT ≤ OPT(lnn+ 1) .
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Technique 4: The Greedy Algorithm

A tight example:

1 1
2

1
3

1
4

1 + ϵ

1
n−1

1
n−2

1
n−3

1
n
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Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set Sj uniformly at random with probability 1− xj (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover

remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.

Otherwise, repeat the whole algorithm.
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Probability that u ∈ U is not covered (in one round):

Pr[u not covered in one round]

=
∏

j:u∈Sj
(1− xj) ≤

∏
j:u∈Sj

e−xj

= e−
∑
j:u∈Sj xj ≤ e−1 .

Probability that u ∈ U is not covered (after ℓ rounds):

Pr[u not covered after ℓ round] ≤ 1

eℓ
.
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Pr[∃u ∈ U not covered after ℓ round]

= Pr[u1 not covered∨ u2 not covered∨ . . .∨ un not covered]

≤
∑
i

Pr[ui not covered after ℓ rounds] ≤ ne−ℓ .

Lemma 17

With high probability O(logn) rounds suffice.

With high probability:

For any constant α the number of rounds is at most O(logn) with

probability at least 1−n−α.
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Proof: We have

Pr[#rounds ≥ (α+ 1) lnn] ≤ ne−(α+1) lnn = n−α .
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Expected Cost

▶ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost] ≤ (α+1) lnn·cost(LP)+(n·OPT)n−α = O(lnn)·OPT

13.5 Randomized Rounding 11. Jul. 2024

Harald Räcke 90/262



Expected Cost

▶ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost]

≤ (α+1) lnn·cost(LP)+(n·OPT)n−α = O(lnn)·OPT

13.5 Randomized Rounding 11. Jul. 2024

Harald Räcke 90/262



Expected Cost

▶ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost] ≤ (α+1) lnn·cost(LP)+(n·OPT)n−α

= O(lnn)·OPT

13.5 Randomized Rounding 11. Jul. 2024

Harald Räcke 90/262



Expected Cost

▶ Version A.

Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover

simply take for each element u the cheapest set that

contains u.

E[cost] ≤ (α+1) lnn·cost(LP)+(n·OPT)n−α = O(lnn)·OPT

13.5 Randomized Rounding 11. Jul. 2024

Harald Räcke 90/262



Expected Cost

▶ Version B.
Repeat for s = (α+ 1) lnn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =

Pr[success] · E[cost | success]

+ Pr[no success] · E[cost | no success]

This means

E[cost | success]

= 1
Pr[succ.]

(
E[cost]− Pr[no success] · E[cost | no success]

)
≤ 1

Pr[succ.]
E[cost] ≤ 1

1−n−α (α+ 1) lnn · cost(LP)

≤ 2(α+ 1) lnn ·OPT

for n ≥ 2 and α ≥ 1.
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Randomized rounding gives an O(logn) approximation. The

running time is polynomial with high probability.

Theorem 18 (without proof)

There is no approximation algorithm for set cover with

approximation guarantee better than 1
2 logn unless NP has

quasi-polynomial time algorithms (algorithms with running time

2poly(logn)).
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Integrality Gap

The integrality gap of the SetCover LP is Ω(logn).

▶ n = 2k − 1

▶ Elements are all vectors x⃗ over GF[2] of length k (excluding

zero vector).

▶ Every vector y⃗ defines a set as follows

Sy⃗ := {x⃗ | x⃗T y⃗ = 1}

▶ each set contains 2k−1 vectors; each vector is contained in

2k−1 sets

▶ xi = 1
2k−1 = 2

n+1 is fractional solution.
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Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Ω(logn).
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Techniques:

▶ Deterministic Rounding

▶ Rounding of the Dual

▶ Primal Dual

▶ Greedy

▶ Randomized Rounding

▶ Local Search

▶ Rounding Data + Dynamic Programming
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Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j ∈ {1, . . . , n} has processing time pj.
Schedule the jobs on m identical parallel machines such that the

Makespan (finishing time of the last job) is minimized.

min L
s.t. ∀machines i

∑
j pj · xj,i ≤ L

∀jobs j
∑
i xj,i ≥ 1

∀i, j xj,i ∈ {0,1}

Here the variable xj,i is the decision variable that describes

whether job j is assigned to machine i.
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Lower Bounds on the Solution

Let for a given schedule Cj denote the finishing time of machine

j, and let Cmax be the makespan.

Let C∗max denote the makespan of an optimal solution.

Clearly

C∗max ≥ max
j
pj

as the longest job needs to be scheduled somewhere.
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Lower Bounds on the Solution

The average work performed by a machine is 1
m
∑
j pj.

Therefore,

C∗max ≥
1
m

∑
j
pj
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Local Search

A local search algorithm successively makes certain small

(cost/profit improving) changes to a solution until it does not find

such changes anymore.

It is conceptionally very different from a Greedy algorithm as a

feasible solution is always maintained.

Sometimes the running time is difficult to prove.
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Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to

move it to another machine. If there is such a move that reduces

the makespan, perform the switch.

REPEAT
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Local Search Analysis

Let ℓ be the job that finishes last in the produced schedule.

Let Sℓ be its start time, and let Cℓ be its completion time.

Note that every machine is busy before time Sℓ, because

otherwise we could move the job ℓ and hence our schedule would

not be locally optimal.
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We can split the total processing time into two intervals one from

0 to Sℓ the other from Sℓ to Cℓ.

The interval [Sℓ, Cℓ] is of length pℓ ≤ C∗max.

During the first interval [0, Sℓ] all processors are busy, and,

hence, the total work performed in this interval is

m · Sℓ ≤
∑
j≠ℓ

pj .

Hence, the length of the schedule is at most

pℓ +
1
m

∑
j≠ℓ

pj = (1− 1
m
)pℓ +

1
m

∑
j
pj ≤ (2− 1

m
)C∗max
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A Tight Example

pℓ ≈ Sℓ +
Sℓ

m− 1

ALG
OPT

= Sℓ + pℓ
pℓ

≈ 2+ 1
m−1

1+ 1
m−1

= 2− 1
m

pℓ

pℓ

Sℓ



A Greedy Strategy

List Scheduling:

Order all processes in a list. When a machine runs empty assign

the next yet unprocessed job to it.

Alternatively:

Consider processes in some order. Assign the i-th process to the

least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the

local optimally condition of our local search algorithm. Hence,

these also give 2-approximations.
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A Greedy Strategy

Lemma 19

If we order the list according to non-increasing processing times

the approximation guarantee of the list scheduling strategy

improves to 4/3.
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Proof:

▶ Let p1 ≥ · · · ≥ pn denote the processing times of a set of

jobs that form a counter-example.

▶ Wlog. the last job to finish is n (otw. deleting this job gives

another counter-example with fewer jobs).

▶ If pn ≤ C∗max/3 the previous analysis gives us a schedule

length of at most

C∗max + pn ≤
4
3
C∗max .

Hence, pn > C∗max/3.

▶ This means that all jobs must have a processing time

> C∗max/3.

▶ But then any machine in the optimum schedule can handle at

most two jobs.

▶ For such instances Longest-Processing-Time-First is optimal.
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▶ But then any machine in the optimum schedule can handle at

most two jobs.

▶ For such instances Longest-Processing-Time-First is optimal.
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When in an optimal solution a machine can have at most 2 jobs

the optimal solution looks as follows.

p1 p2 p3 p4 p5 p6 p7

p8p9p10p11p12p13p14
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▶ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

▶ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

▶ Let pA and pB be the other job scheduled on A and B,

respectively.

▶ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

▶ Repeat the above argument for the remaining machines.

14.2 Greedy 11. Jul. 2024

Harald Räcke 108/262



▶ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

▶ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

▶ Let pA and pB be the other job scheduled on A and B,

respectively.

▶ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

▶ Repeat the above argument for the remaining machines.

14.2 Greedy 11. Jul. 2024

Harald Räcke 108/262



▶ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

▶ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

▶ Let pA and pB be the other job scheduled on A and B,

respectively.

▶ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

▶ Repeat the above argument for the remaining machines.

14.2 Greedy 11. Jul. 2024

Harald Räcke 108/262



▶ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

▶ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

▶ Let pA and pB be the other job scheduled on A and B,

respectively.

▶ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

▶ Repeat the above argument for the remaining machines.

14.2 Greedy 11. Jul. 2024

Harald Räcke 108/262



▶ We can assume that one machine schedules p1 and pn (the

largest and smallest job).

▶ If not assume wlog. that p1 is scheduled on machine A and

pn on machine B.

▶ Let pA and pB be the other job scheduled on A and B,

respectively.

▶ p1 +pn ≤ p1 +pA and pA +pB ≤ p1 +pA, hence scheduling

p1 and pn on one machine and pA and pB on the other,

cannot increase the Makespan.

▶ Repeat the above argument for the remaining machines.

14.2 Greedy 11. Jul. 2024

Harald Räcke 108/262



Tight Example

▶ 2m+ 1 jobs

▶ 2 jobs with length 2m,2m− 2, . . . ,m+ 1 (2m− 2 jobs in

total)

▶ 3 jobs of length m
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15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1, . . . , n}, where the i-th item has weight

wi ∈ N and profit pi ∈ N, and given a threshold W . Find a subset

I ⊆ {1, . . . , n} of items of total weight at most W such that the

profit is maximized (we can assume each wi ≤ W ).

max
∑n
i=1 pixi

s.t.
∑n
i=1wixi ≤ W

∀i ∈ {1, . . . , n} xi ∈ {0,1}
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15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1: A(1)← [(0,0), (p1,w1)]
2: for j ← 2 to n do

3: A(j)← A(j − 1)
4: for each (p,w) ∈ A(j − 1) do

5: if w +wj ≤ W then

6: add (p + pj ,w +wj) to A(j)
7: remove dominated pairs from A(j)
8: return max(p,w)∈A(n) p

The running time is O(n ·min{W,P}), where P =∑i pi is the

total profit of all items. This is only pseudo-polynomial.
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15 Rounding Data + Dynamic Programming

Definition 20

An algorithm is said to have pseudo-polynomial running time if

the running time is polynomial when the numerical part of the

input is encoded in unary.
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15 Rounding Data + Dynamic Programming

▶ Let M be the maximum profit of an element.

▶ Set µ := ϵM/n.

▶ Set p′i := ⌊pi/µ⌋ for all i.
▶ Run the dynamic programming algorithm on this revised

instance.

Running time is at most

O(nP ′) = O
(
n
∑
i p

′
i

)
= O

(
n
∑
i

⌊ pi
ϵM/n

⌋)
≤ O

(n3

ϵ

)
.
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15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be

an optimum set of items.∑
i∈S
pi

≥ µ
∑
i∈S
p′i

≥ µ
∑
i∈O

p′i

≥
∑
i∈O

pi − |O|µ

≥
∑
i∈O

pi −nµ

=
∑
i∈O

pi − ϵM

≥ (1− ϵ)OPT .
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Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑
j≠ℓ

pj + pℓ

where ℓ is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C

∗
max then LPT is

optimal this gave a 4/3-approximation.

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 115/262



Scheduling Revisited

The previous analysis of the scheduling algorithm gave a

makespan of
1
m

∑
j≠ℓ

pj + pℓ

where ℓ is the last job to complete.

Together with the obervation that if each pi ≥ 1
3C

∗
max then LPT is

optimal this gave a 4/3-approximation.

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 115/262



15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

pj ≤ 1
km

∑
i pi

Idea:

1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,

always assigning the next job to the least loaded machine.
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We still have a cost of

1
m

∑
j≠ℓ

pj + pℓ

where ℓ is the last job (this only requires that all machines are

busy before time Sℓ).

If ℓ is a long job, then the schedule must be optimal, as it consists

of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

pℓ ≤
∑
j pj/(mk)

which is at most C∗max/k.
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Hence we get a schedule of length at most(
1+ 1

k

)
C∗max

There are at most km long jobs. Hence, the number of

possibilities of scheduling these jobs on m machines is at most

mkm, which is constant if m is constant. Hence, it is easy to

implement the algorithm in polynomial time.

Theorem 21

The above algorithm gives a polynomial time approximation

scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = ⌈1
ϵ ⌉.
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How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1+ 1
k)T or

certifies that no schedule of length at most T exists (assume

T ≥ 1
m
∑
j pj).

We partition the jobs into long jobs and short jobs:

▶ A job is long if its size is larger than T/k.

▶ Otw. it is a short job.
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▶ We round all long jobs down to multiples of T/k2.

▶ For these rounded sizes we first find an optimal schedule.

▶ If this schedule does not have length at most T we conclude

that also the original sizes don’t allow such a schedule.

▶ If we have a good schedule we extend it by adding the short

jobs according to the LPT rule.
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After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at most(
1+ 1

k

)
T .

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 121/262



After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at most(
1+ 1

k

)
T .

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 121/262



After the first phase the rounded sizes of the long jobs assigned

to a machine add up to at most T .

There can be at most k (long) jobs assigned to a machine as otw.

their rounded sizes would add up to more than T (note that the

rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k2 going from

rounded sizes to original sizes gives that the Makespan is at most(
1+ 1

k

)
T .

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 121/262



During the second phase there always must exist a machine with

load at most T , since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the

new load is at most

T + T
k
≤
(
1+ 1

k

)
T .
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Running Time for scheduling large jobs: There should not be a

job with rounded size more than T as otw. the problem becomes

trivial.

Hence, any large job has rounded size of i
k2T for i ∈ {k, . . . , k2}.

Therefore the number of different inputs is at most nk2

(described by a vector of length k2 where, the i-th entry describes

the number of jobs of size i
k2T ). This is polynomial.

The schedule/configuration of a particular machine x can be

described by a vector of length k2 where the i-th entry describes

the number of jobs of rounded size i
k2T assigned to x. There are

only (k+ 1)k2
different vectors.

This means there are a constant number of different machine

configurations.
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Let OPT(n1, . . . , nk2) be the number of machines that are required

to schedule input vector (n1, . . . , nk2) with Makespan at most T .

If OPT(n1, . . . , nk2) ≤ m we can schedule the input.

We have

OPT(n1, . . . , nk2)

=


0 (n1, . . . , nk2) = 0
1+ min

(s1,...,sk2 )∈C
OPT(n1 − s1, . . . , nk2 − sk2) (n1, . . . , nk2) ⪈ 0

∞ otw.

where C is the set of all configurations.

Hence, the running time is roughly (k+ 1)k2nk2 ≈ (nk)k2
.
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We can turn this into a PTAS by choosing k = ⌈1/ϵ⌉ and using

binary search. This gives a running time that is exponential in

1/ϵ.

Can we do better?

Scheduling on identical machines with the goal of minimizing

Makespan is a strongly NP-complete problem.

Theorem 22

There is no FPTAS for problems that are strongly NP-hard.
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▶ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
▶ We set k := ⌈2nq(n)⌉ ≥ 2 OPT

▶ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

▶ But this means that the algorithm computes the optimal

solution as the optimum is integral.

▶ This means we can solve problem instances if processing

times are polynomially bounded

▶ Running time is O(poly(n, k)) = O(poly(n))
▶ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 126/262



▶ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
▶ We set k := ⌈2nq(n)⌉ ≥ 2 OPT

▶ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

▶ But this means that the algorithm computes the optimal

solution as the optimum is integral.

▶ This means we can solve problem instances if processing

times are polynomially bounded

▶ Running time is O(poly(n, k)) = O(poly(n))
▶ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 126/262



▶ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
▶ We set k := ⌈2nq(n)⌉ ≥ 2 OPT

▶ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

▶ But this means that the algorithm computes the optimal

solution as the optimum is integral.

▶ This means we can solve problem instances if processing

times are polynomially bounded

▶ Running time is O(poly(n, k)) = O(poly(n))
▶ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 126/262



▶ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
▶ We set k := ⌈2nq(n)⌉ ≥ 2 OPT

▶ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

▶ But this means that the algorithm computes the optimal

solution as the optimum is integral.

▶ This means we can solve problem instances if processing

times are polynomially bounded

▶ Running time is O(poly(n, k)) = O(poly(n))
▶ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 126/262



▶ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
▶ We set k := ⌈2nq(n)⌉ ≥ 2 OPT

▶ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

▶ But this means that the algorithm computes the optimal

solution as the optimum is integral.

▶ This means we can solve problem instances if processing

times are polynomially bounded

▶ Running time is O(poly(n, k)) = O(poly(n))
▶ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 126/262



▶ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
▶ We set k := ⌈2nq(n)⌉ ≥ 2 OPT

▶ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

▶ But this means that the algorithm computes the optimal

solution as the optimum is integral.

▶ This means we can solve problem instances if processing

times are polynomially bounded

▶ Running time is O(poly(n, k)) = O(poly(n))
▶ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 126/262



▶ Suppose we have an instance with polynomially bounded

processing times pi ≤ q(n)
▶ We set k := ⌈2nq(n)⌉ ≥ 2 OPT

▶ Then

ALG ≤
(
1+ 1

k

)
OPT ≤ OPT+1

2

▶ But this means that the algorithm computes the optimal

solution as the optimum is integral.

▶ This means we can solve problem instances if processing

times are polynomially bounded

▶ Running time is O(poly(n, k)) = O(poly(n))
▶ For strongly NP-complete problems this is not possible

unless P=NP

15.2 Scheduling Revisited 11. Jul. 2024

Harald Räcke 126/262



More General
Let OPT(n1, . . . , nA) be the number of machines that are required to
schedule input vector (n1, . . . , nA) with Makespan at most T
(A: number of different sizes).

If OPT(n1, . . . , nA) ≤m we can schedule the input.

OPT(n1, . . . , nA)

=


0 (n1, . . . , nA) = 0
1+ min

(s1,...,sA)∈C
OPT(n1 − s1, . . . , nA − sA) (n1, . . . , nA) ⪈ 0

∞ otw.

where C is the set of all configurations.

|C| ≤ (B + 1)A, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)AnA) because the dynamic
programming table has just nA entries.
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Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 23

There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

15.3 Bin Packing 11. Jul. 2024

Harald Räcke 128/262



Bin Packing

Given n items with sizes s1, . . . , sn where

1 > s1 ≥ · · · ≥ sn > 0 .

Pack items into a minimum number of bins where each bin can

hold items of total size at most 1.

Theorem 23

There is no ρ-approximation for Bin Packing with ρ < 3/2 unless

P = NP.

15.3 Bin Packing 11. Jul. 2024

Harald Räcke 128/262



Bin Packing

Proof

▶ In the partition problem we are given positive integers

b1, . . . , bn with B =∑i bi even. Can we partition the integers

into two sets S and T s.t.∑
i∈S
bi =

∑
i∈T

bi ?

▶ We can solve this problem by setting si := 2bi/B and asking

whether we can pack the resulting items into 2 bins or not.

▶ A ρ-approximation algorithm with ρ < 3/2 cannot output 3

or more bins when 2 are optimal.

▶ Hence, such an algorithm can solve Partition.
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Bin Packing

Definition 24

An asymptotic polynomial-time approximation scheme (APTAS) is

a family of algorithms {Aϵ} along with a constant c such that Aϵ
returns a solution of value at most (1+ ϵ)OPT+ c for

minimization problems.

▶ Note that for Set Cover or for Knapsack it makes no sense to

differentiate between the notion of a PTAS or an APTAS

because of scaling.

▶ However, we will develop an APTAS for Bin Packing.
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Bin Packing

Again we can differentiate between small and large items.

Lemma 25

Any packing of items into ℓ bins can be extended with items of

size at most γ s.t. we use only max{ℓ, 1
1−γ SIZE(I)+ 1} bins,

where SIZE(I) =∑i si is the sum of all item sizes.

▶ If after Greedy we use more than ℓ bins, all bins (apart from

the last) must be full to at least 1− γ.

▶ Hence, r(1− γ) ≤ SIZE(I) where r is the number of

nearly-full bins.

▶ This gives the lemma.
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Choose γ = ϵ/2. Then we either use ℓ bins or at most

1
1− ϵ/2 ·OPT+ 1 ≤ (1+ ϵ) ·OPT+ 1

bins.

It remains to find an algorithm for the large items.
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Bin Packing

Linear Grouping:

Generate an instance I′ (for large items) as follows.

▶ Order large items according to size.

▶ Let the first k items belong to group 1; the following k items

belong to group 2; etc.

▶ Delete items in the first group;

▶ Round items in the remaining groups to the size of the

largest item in the group.
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Linear Grouping
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Lemma 26

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 1:

▶ Any bin packing for I gives a bin packing for I′ as follows.

▶ Pack the items of group 2, where in the packing for I the

items for group 1 have been packed;

▶ Pack the items of groups 3, where in the packing for I the

items for group 2 have been packed;

▶ . . .
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Lemma 27

OPT(I′) ≤ OPT(I) ≤ OPT(I′)+ k

Proof 2:

▶ Any bin packing for I′ gives a bin packing for I as follows.

▶ Pack the items of group 1 into k new bins;

▶ Pack the items of groups 2, where in the packing for I′ the

items for group 2 have been packed;

▶ . . .
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Assume that our instance does not contain pieces smaller than

ϵ/2. Then SIZE(I) ≥ ϵn/2.

We set k = ⌊ϵSIZE(I)⌋.

Then n/k ≤ n/⌊ϵ2n/2⌋ ≤ 4/ϵ2 (note that ⌊α⌋ ≥ α/2 for α ≥ 1).

Hence, after grouping we have a constant number of piece sizes

(4/ϵ2) and at most a constant number (2/ϵ) can fit into any bin.

We can find an optimal packing for such instances by the previous

Dynamic Programming approach.

▶ cost (for large items) at most

OPT(I′)+ k ≤ OPT(I)+ ϵSIZE(I) ≤ (1+ ϵ)OPT(I)

▶ running time O((2
ϵn)

4/ϵ2).
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Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ϵ)OPT(I)+ 1 .

15.4 Advanced Rounding for Bin Packing 11. Jul. 2024

Harald Räcke 138/262



Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ϵ)OPT(I)+ 1 .

15.4 Advanced Rounding for Bin Packing 11. Jul. 2024

Harald Räcke 138/262



Can we do better?

In the following we show how to obtain a solution where the

number of bins is only

OPT(I)+O(log2(SIZE(I))) .

Note that this is usually better than a guarantee of

(1+ ϵ)OPT(I)+ 1 .

15.4 Advanced Rounding for Bin Packing 11. Jul. 2024

Harald Räcke 138/262



Configuration LP

Change of Notation:

▶ Group pieces of identical size.

▶ Let s1 denote the largest size, and let b1 denote the number

of pieces of size s1.

▶ s2 is second largest size and b2 number of pieces of size s2;

▶ . . .
▶ sm smallest size and bm number of pieces of size sm.
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Configuration LP

A possible packing of a bin can be described by an m-tuple

(t1, . . . , tm), where ti describes the number of pieces of size si.
Clearly, ∑

i
ti · si ≤ 1 .

We call a vector that fulfills the above constraint a configuration.
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Configuration LP

Let N be the number of configurations (exponential).

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

∀j ∈ {1, . . . ,N} xj integral
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How to solve this LP?

later...
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We can assume that each item has size at least 1/SIZE(I).
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Harmonic Grouping

▶ Sort items according to size (monotonically decreasing).

▶ Process items in this order; close the current group if size of

items in the group is at least 2 (or larger). Then open new

group.

▶ I.e., G1 is the smallest cardinality set of largest items s.t.

total size sums up to at least 2. Similarly, for G2, . . . , Gr−1.

▶ Only the size of items in the last group Gr may sum up to

less than 2.
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Harmonic Grouping

From the grouping we obtain instance I′ as follows:

▶ Round all items in a group to the size of the largest group

member.

▶ Delete all items from group G1 and Gr .

▶ For groups G2, . . . , Gr−1 delete ni −ni−1 items.

▶ Observe that ni ≥ ni−1.
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Lemma 28

The number of different sizes in I′ is at most SIZE(I)/2.

▶ Each group that survives (recall that G1 and Gr are deleted)

has total size at least 2.

▶ Hence, the number of surviving groups is at most SIZE(I)/2.

▶ All items in a group have the same size in I′.
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Lemma 29

The total size of deleted items is at most O(log(SIZE(I))).

▶ The total size of items in G1 and Gr is at most 6 as a group

has total size at most 3.

▶ Consider a group Gi that has strictly more items than Gi−1.

▶ It discards ni −ni−1 pieces of total size at most

3
ni −ni−1

ni
≤

ni∑
j=ni−1+1

3
j

since the average piece size is only 3/ni.
▶ Summing over all i that have ni > ni−1 gives a bound of at

most nr−1∑
j=1

3
j
≤ O(log(SIZE(I))) .

(note that nr ≤ SIZE(I) since we assume that the size of each

item is at least 1/SIZE(I)).
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Algorithm 1 BinPack

1: if SIZE(I) < 10 then

2: pack remaining items greedily

3: Apply harmonic grouping to create instance I′; pack

discarded items in at most O(log(SIZE(I))) bins.

4: Let x be optimal solution to configuration LP

5: Pack ⌊xj⌋ bins in configuration Tj for all j; call the

packed instance I1.

6: Let I2 be remaining pieces from I′

7: Pack I2 via BinPack(I2)
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Analysis

OPTLP(I1)+OPTLP(I2) ≤ OPTLP(I′) ≤ OPTLP(I)

Proof:

▶ Each piece surviving in I′ can be mapped to a piece in I of no

lesser size. Hence, OPTLP(I′) ≤ OPTLP(I)
▶ ⌊xj⌋ is feasible solution for I1 (even integral).

▶ xj − ⌊xj⌋ is feasible solution for I2.
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Analysis

Each level of the recursion partitions pieces into three types

1. Pieces discarded at this level.

2. Pieces scheduled because they are in I1.

3. Pieces in I2 are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into

at most OPTLP many bins.

Pieces of type 1 are packed into at most

O(log(SIZE(I))) · L

many bins where L is the number of recursion levels.
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Analysis

We can show that SIZE(I2) ≤ SIZE(I)/2. Hence, the number of

recursion levels is only O(log(SIZE(Ioriginal))) in total.

▶ The number of non-zero entries in the solution to the

configuration LP for I′ is at most the number of constraints,

which is the number of different sizes (≤ SIZE(I)/2).

▶ The total size of items in I2 can be at most
∑N
j=1 xj − ⌊xj⌋

which is at most the number of non-zero entries in the

solution to the configuration LP.
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How to solve the LP?

Let T1, . . . , TN be the sequence of all possible configurations (a

configuration Tj has Tji pieces of size si).
In total we have bi pieces of size si.

Primal

min
∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0

Dual
max

∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1

∀i ∈ {1, . . . ,m} yi ≥ 0
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Separation Oracle
Suppose that I am given variable assignment y for the dual.

How do I find a violated constraint?

I have to find a configuration Tj = (Tj1, . . . , Tjm) that

▶ is feasible, i.e.,
m∑
i=1

Tji · si ≤ 1 ,

▶ and has a large profit

m∑
i=1

Tjiyi > 1

But this is the Knapsack problem.
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Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is

violated with 1+ ϵ′ = 1+ ϵ
1−ϵ we find it, since we can obtain at

least (1− ϵ) of the optimal profit.

The solution we get is feasible for:

Dual′

max
∑m
i=1yibi

s.t. ∀j ∈ {1, . . . ,N} ∑m
i=1 Tjiyi ≤ 1+ ϵ′

∀i ∈ {1, . . . ,m} yi ≥ 0

Primal′

min (1+ ϵ′)∑N
j=1 xj

s.t. ∀i ∈ {1 . . .m} ∑N
j=1 Tjixj ≥ bi

∀j ∈ {1, . . . ,N} xj ≥ 0
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Separation Oracle
If the value of the computed dual solution (which may be

infeasible) is z then

OPT ≤ z ≤ (1+ ϵ′)OPT

How do we get good primal solution (not just the value)?

▶ The constraints used when computing z certify that the

solution is feasible for DUAL′.
▶ Suppose that we drop all unused constraints in DUAL. We

will compute the same solution feasible for DUAL′.
▶ Let DUAL′′ be DUAL without unused constraints.

▶ The dual to DUAL′′ is PRIMAL where we ignore variables for

which the corresponding dual constraint has not been used.

▶ The optimum value for PRIMAL′′ is at most (1+ ϵ′)OPT.

▶ We can compute the corresponding solution in polytime.
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This gives that overall we need at most

(1+ ϵ′)OPTLP(I)+O(log2(SIZE(I)))

bins.

We can choose ϵ′ = 1
OPT as OPT ≤ #items and since we have a fully

polynomial time approximation scheme (FPTAS) for knapsack.
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16.1 MAXSAT

Problem definition:

▶ n Boolean variables

▶ m clauses C1, . . . , Cm. For example

C7 = x3 ∨ x̄5 ∨ x̄9

▶ Non-negative weight wj for each clause Cj.
▶ Find an assignment of true/false to the variables sucht that

the total weight of clauses that are satisfied is maximum.
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16.1 MAXSAT

Terminology:

▶ A variable xi and its negation x̄i are called literals.

▶ Hence, each clause consists of a set of literals (i.e., no

duplications: xi ∨ xi ∨ x̄j is not a clause).

▶ We assume a clause does not contain xi and x̄i for any i.
▶ xi is called a positive literal while the negation x̄i is called a

negative literal.

▶ For a given clause Cj the number of its literals is called its

length or size and denoted with ℓj.
▶ Clauses of length one are called unit clauses.
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MAXSAT: Flipping Coins

Set each xi independently to true with probability 1
2 (and, hence,

to false with probability 1
2 , as well).
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Define random variable Xj with

Xj =
{

1 if Cj satisfied

0 otw.

Then the total weight W of satisfied clauses is given by

W =
∑
j
wjXj
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MAXSAT: LP formulation

▶ Let for a clause Cj, Pj be the set of positive literals and Nj
the set of negative literals.

Cj =
∨
i∈Pj

xi ∨
∨
i∈Nj

x̄i

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1
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MAXSAT: Randomized Rounding

Set each xi independently to true with probability yi (and, hence,

to false with probability (1−yi)).
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Lemma 30 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a1, . . . , ak k∏
i=1

ai

1/k

≤ 1
k

k∑
i=1

ai
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Definition 31

A function f on an interval I is concave if for any two points s and

r from I and any λ ∈ [0,1] we have

f(λs + (1− λ)r) ≥ λf(s)+ (1− λ)f(r)

Lemma 32

Let f be a concave function on the interval [0,1], with f(0) = a
and f(1) = a+ b. Then

f(λ) = f((1− λ)0+ λ1)

≥ (1− λ)f(0)+ λf(1)
= a+ λb

for λ ∈ [0,1].
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Pr[Cj not satisfied]

=
∏
i∈Pj

(1−yi)
∏
i∈Nj

yi

≤
 1
ℓj

 ∑
i∈Pj

(1−yi)+
∑
i∈Nj

yi



ℓj

=
1− 1

ℓj

 ∑
i∈Pj

yi +
∑
i∈Nj

(1−yi)


ℓj

≤
(

1− zj
ℓj

)ℓj
.
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The function f(z) = 1− (1− z
ℓ )
ℓ is concave. Hence,

Pr[Cj satisfied]

≥ 1−
(

1− zj
ℓj

)ℓj

≥
1−

(
1− 1

ℓj

)ℓj · zj .

f ′′(z) = −ℓ−1
ℓ

[
1− z

ℓ

]ℓ−2 ≤ 0 for z ∈ [0,1]. Therefore, f is

concave.
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E[W]

=
∑
j
wjPr[Cj is satisfied]

≥
∑
j
wjzj

1−
(

1− 1
ℓj

)ℓj
≥
(

1− 1
e

)
OPT .
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MAXSAT: The better of two

Theorem 33

Choosing the better of the two solutions given by randomized

rounding and coin flipping yields a 3
4 -approximation.
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Let W1 be the value of randomized rounding and W2 the value

obtained by coin flipping.

E[max{W1,W2}]

≥ E[1
2W1 + 1

2W2]

≥ 1
2

∑
j
wjzj

1−
(

1− 1
ℓj

)ℓj+ 1
2

∑
j
wj

(
1−

(
1
2

)ℓj)

≥
∑
j
wjzj

 1
2

1−
(

1− 1
ℓj

)ℓj+ 1
2

(
1−

(
1
2

)ℓj)
︸ ︷︷ ︸

≥ 3
4 for all integers



≥ 3
4

OPT
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MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability

that a variable is set to 1/true was exactly the value of the

corresponding variable in the linear program.

We could define a function f : [0,1]→ [0,1] and set xi to true

with probability f(yi).
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MAXSAT: Nonlinear Randomized Rounding

Let f : [0,1]→ [0,1] be a function with

1− 4−x ≤ f(x) ≤ 4x−1

Theorem 34

Rounding the LP-solution with a function f of the above form

gives a 3
4 -approximation.
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Pr[Cj not satisfied]

=
∏
i∈Pj

(1− f(yi))
∏
i∈Nj

f(yi)

≤
∏
i∈Pj

4−yi
∏
i∈Nj

4yi−1

= 4
−(∑i∈Pj yi+∑i∈Nj (1−yi))

≤ 4−zj
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The function g(z) = 1− 4−z is concave on [0,1]. Hence,

Pr[Cj satisfied] ≥ 1− 4−zj ≥ 3
4
zj .

Therefore,

E[W] =
∑
j
wjPr[Cj satisfied] ≥ 3

4

∑
j
wjzj ≥ 3

4
OPT
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Can we do better?

Not if we compare ourselves to the value of an optimum

LP-solution.

Definition 35 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all

instances of the problem of the value of an optimal IP-solution to

the value of an optimal solution to its linear programming

relaxation.

Note that the integrality is less than one for maximization

problems and larger than one for minimization problems (of

course, equality is possible).

Note that an integrality gap only holds for one specific ILP

formulation.
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Lemma 36

Our ILP-formulation for the MAXSAT problem has integrality gap

at most 3
4 .

max
∑
jwjzj

s.t. ∀j ∑
i∈Pj yi +

∑
i∈Nj(1−yi) ≥ zj

∀i yi ∈ {0,1}
∀j zj ≤ 1

Consider: (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x1 ∨ x̄2)∧ (x̄1 ∨ x̄2)
▶ any solution can satisfy at most 3 clauses

▶ we can set y1 = y2 = 1/2 in the LP; this allows to set

z1 = z2 = z3 = z4 = 1

▶ hence, the LP has value 4.
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MaxCut

MaxCut

Given a weighted graph G = (V , E,w), w(v) ≥ 0, partition the

vertices into two parts. Maximize the weight of edges between

the parts.

Trivial 2-approximation
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Semidefinite Programming

max /min
∑
i,j cijxij

s.t. ∀k ∑
i,j,k aijkxij = bk

∀i, j xij = xji
X = (xij) is psd.

▶ linear objective, linear constraints

▶ we can constrain a square matrix of variables to be

symmetric positive semidefinite

Note that wlog. we can assume that all variables appear in this matrix. Suppose
we have a non-negative scalar z and want to express something like∑

ij aijkxij + z = bk
where xij are variables of the positive semidefinite matrix. We can add z as a
diagonal entry xℓℓ, and additionally introduce constraints xℓr = 0 and xrℓ = 0.



Vector Programming

max /min
∑
i,j cij(vtivj)

s.t. ∀k ∑
i,j,k aijk(vtivj) = bk

vi ∈ Rn

▶ variables are vectors in n-dimensional space

▶ objective functions and constraints are linear in inner

products of the vectors

This is equivalent!
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Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial

time...
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Quadratic Programs

Quadratic Program for MaxCut:

max 1
2

∑
i,jwij(1−yiyj)

∀i yi ∈ {−1,1}

This is exactly MaxCut!
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Semidefinite Relaxation

max 1
2

∑
i,jwij(1− vtivj)

∀i vtivi = 1

∀i vi ∈ Rn

▶ this is clearly a relaxation

▶ the solution will be vectors on the unit sphere
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Rounding the SDP-Solution

▶ Choose a random vector r such that r/∥r∥ is uniformly

distributed on the unit sphere.

▶ If r tvi > 0 set yi = 1 else set yi = −1
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Rounding the SDP-Solution

Choose the i-th coordinate ri as a Gaussian with mean 0 and

variance 1, i.e., ri ∼N (0,1).

Density function:

ϕ(x) = 1√
2π

ex
2/2

Then

Pr[r = (x1, . . . , xn)]

= 1(√
2π

)n ex2
1/2 · ex2

2/2 · . . . · ex2
n/2 dx1 · . . . · dxn

= 1(√
2π

)n e 1
2 (x

2
1+...+x2

n) dx1 · . . . · dxn

Hence the probability for a point only depends on its distance to

the origin.
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Rounding the SDP-Solution

Fact

The projection of r onto two unit vectors e1 and e2 are

independent and are normally distributed with mean 0 and

variance 1 iff e1 and e2 are orthogonal.

Note that this is clear if e1 and e2 are standard basis vectors.

16.2 MAXCUT 11. Jul. 2024

Harald Räcke 187/262



Rounding the SDP-Solution

Corollary

If we project r onto a hyperplane its normalized projection

(r ′/∥r ′∥) is uniformly distributed on the unit circle within the

hyperplane.
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Rounding the SDP-Solution

vivj

r ′/∥r ′∥
θ

θ

θ

▶ if the normalized projection falls into the shaded region, vi
and vj are rounded to different values

▶ this happens with probability θ/π
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Rounding the SDP-Solution

▶ contribution of edge (i, j) to the SDP-relaxation:

1
2
wij

(
1− vtivj

)

▶ (expected) contribution of edge (i, j) to the rounded

instance wij arccos(vtivj)/π
▶ ratio is at most

min
x∈[−1,1]

2 arccos(x)
π(1− x) ≥ 0.878
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Rounding the SDP-Solution
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Rounding the SDP-Solution
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Rounding the SDP-Solution

Theorem 37

Given the unique games conjecture, there is no α-approximation

for the maximum cut problem with constant

α > min
x∈[−1,1]

2 arccos(x)
π(1− x)

unless P = NP.
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Repetition: Primal Dual for Set Cover

Primal Relaxation:

min
∑k
i=1wixi

s.t. ∀u ∈ U ∑
i:u∈Si xi ≥ 1

∀i ∈ {1, . . . , k} xi ≥ 0

Dual Formulation:

max
∑
u∈U yu

s.t. ∀i ∈ {1, . . . , k} ∑
u:u∈Si yu ≤ wi

yu ≥ 0
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Repetition: Primal Dual for Set Cover

Algorithm:

▶ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

▶ While x not feasible
▶ Identify an element e that is not covered in current primal

integral solution.
▶ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
▶ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).
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Repetition: Primal Dual for Set Cover

Analysis:

▶ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

▶ Hence our cost is

∑
j
wjxj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT
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Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0 ⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0 ⇒
∑

j:e∈Sj
xj = 1

then the solution would be optimal!!!
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We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0 ⇒ 1 ≤
∑

j:e∈Sj
xj ≤ f

This is sufficient to show that the solution is an f -approximation.

17.1 Primal Dual Revisited 11. Jul. 2024

Harald Räcke 198/262



We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0 ⇒ 1 ≤
∑

j:e∈Sj
xj ≤ f

This is sufficient to show that the solution is an f -approximation.

17.1 Primal Dual Revisited 11. Jul. 2024

Harald Räcke 198/262



We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0 ⇒ 1 ≤
∑

j:e∈Sj
xj ≤ f

This is sufficient to show that the solution is an f -approximation.

17.1 Primal Dual Revisited 11. Jul. 2024

Harald Räcke 198/262



Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i ∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j ∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0 ⇒
∑
i
aijyi ≥ 1

α
cj

yi > 0 ⇒
∑
j
aijxj ≤ βbi
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Then

∑
j
cjxj

≤ α
∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi
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primal cost

right hand side of j-th
dual constraint
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dual objective
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Feedback Vertex Set for Undirected Graphs

▶ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

▶ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.
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We can encode this as an instance of Set Cover

▶ Each vertex can be viewed as a set that contains some cycles.

▶ However, this encoding gives a Set Cover instance of

non-polynomial size.

▶ The O(logn)-approximation for Set Cover does not help us

to get a good solution.
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Let C denote the set of all cycles (where a cycle is identified by its

set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C
∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈CyC

s.t. ∀v ∈ V ∑
C :v∈C yC ≤ wv

∀C yC ≥ 0
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If we perform the previous dual technique for Set Cover we get

the following:

▶ Start with x = 0 and y = 0

▶ While there is a cycle C that is not covered (does not contain
a chosen vertex).

▶ Increase yC until dual constraint for some vertex v becomes
tight.

▶ set xv = 1.
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Then ∑
v
wvxv

=
∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.
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Algorithm 1 FeedbackVertexSet
1: y ← 0

2: x ← 0

3: while exists cycle C in G do

4: increase yC until there is v ∈ C s.t.
∑
C :v∈C yC = wv

5: xv = 1

6: remove v from G
7: repeatedly remove vertices of degree 1 from G
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Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses

at most one vertex from P .
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Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get a 2α-approximation.

Theorem 38

In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0 ⇒ |S ∩ C| ≤ O(logn) .
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Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S ∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}
Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.
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Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in
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Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 11. Jul. 2024

Harald Räcke 211/262



Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 11. Jul. 2024

Harald Räcke 211/262



Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 11. Jul. 2024

Harald Räcke 211/262



Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

17.3 Primal Dual for Shortest Path 11. Jul. 2024

Harald Räcke 211/262



Algorithm 1 PrimalDualShortestPath
1: y ← 0

2: F ← ∅
3: while there is no s-t path in (V , F) do

4: Let C be the connected component of (V , F) con-

taining s
5: Increase yC until there is an edge e′ ∈ δ(C) such

that
∑
S:e′∈δ(S)yS = c(e′).

6: F ← F ∪ {e′}
7: Let P be an s-t path in (V , F)
8: return P
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Lemma 39

At each point in time the set F forms a tree.

Proof:

▶ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

▶ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.
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∑
e∈P

c(e)

=
∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P

c(e) =
∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.
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If δ(S) contains two edges from P then there must exist a

subpath P ′ of P that starts and ends with a vertex from S (and all

interior vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.
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Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a cost function c : E → R+ on the edges. Find a

subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k} there

is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.
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max
∑
S : ∃i s.t. S ∈ Si yS

s.t. ∀e ∈ E ∑
S:e∈δ(S)yS ≤ c(e)

yS ≥ 0

The difference to the dual of the shortest path problem is that we

have many more variables (sets for which we can generate a moat

of non-zero width).
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Algorithm 1 FirstTry
1: y ← 0

2: F ← ∅
3: while not all si-ti pairs connected in F do

4: Let C be some connected component of (V , F) such

that |C ∩ {si, ti}| = 1 for some i.
5: Increase yC until there is an edge e′ ∈ δ(C) s.t.∑

S∈Si:e′∈δ(S)yS = ce′
6: F ← F ∪ {e′}
7: return

⋃
i Pi
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∑
e∈F

c(e)

=
∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

▶ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
▶ The i-th pair is v0-vi.
▶ The first component C could be {v0}.
▶ We only set y{v0} = 1. All other dual variables stay 0.

▶ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

▶ y{v0} > 0 but |δ({v0})∩ F| = k.
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Algorithm 1 SecondTry

1: y ← 0; F ← ∅; ℓ ← 0

2: while not all si-ti pairs connected in F do

3: ℓ ← ℓ + 1

4: Let C be set of all connected components C of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC for all C ∈ C uniformly until for some edge

eℓ ∈ δ(C′), C′ ∈ C s.t.
∑
S:eℓ∈δ(S)yS = ceℓ

6: F ← F ∪ {eℓ}
7: F ′ ← F
8: for k← ℓ downto 1 do // reverse deletion

9: if F ′ − ek is feasible solution then

10: remove ek from F ′

11: return F ′
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The reverse deletion step is not strictly necessary this way. It

would also be sufficient to simply delete all unnecessary edges in

any order.
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Example
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Lemma 40

For any C in any iteration of the algorithm∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

This means that the number of times a moat from C is crossed in

the final solution is at most twice the number of moats.

Proof: later...
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∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

▶ In the i-th iteration the increase of the left-hand side is

ϵ
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ϵ|C|.
▶ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.
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Lemma 41

For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

▶ At any point during the algorithm the set of edges forms a

forest (why?).

▶ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

▶ Let H = F ′ − Fi.
▶ All edges in H are necessary for the solution.
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▶ Contract all edges in Fi into single vertices V ′.

▶ We can consider the forest H on the set of vertices V ′.

▶ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

▶ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

▶ We have

∑
v∈R

deg(v) ≥
∑
C∈C

|δ(C)∩ F ′| ?≤ 2|C| = 2|R|
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▶ Suppose that no node in B has degree one.

▶ Then

∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

▶ Every blue vertex with non-zero degree must have degree at
least two.

▶ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

▶ But this means that the cluster corresponding to b must
separate a source-target pair.

▶ But then it must be a red node.
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Traveling Salesman

Given a set of cities ({1, . . . , n}) and a symmetric matrix C = (cij),
cij ≥ 0 that specifies for every pair (i, j) ∈ [n]× [n] the cost for

travelling from city i to city j. Find a permutation π of the cities

such that the round-trip cost

cπ(1)π(n) +
n−1∑
i=1

cπ(i)π(i+1)

is minimized.

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 228/262



Traveling Salesman

Theorem 42

There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

▶ Given an instance to HAMPATH we create an instance for TSP.

▶ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

▶ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than n2n.

▶ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 229/262



Traveling Salesman

Theorem 42

There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

▶ Given an instance to HAMPATH we create an instance for TSP.

▶ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

▶ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than n2n.

▶ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 229/262



Traveling Salesman

Theorem 42

There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

▶ Given an instance to HAMPATH we create an instance for TSP.

▶ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

▶ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than n2n.

▶ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .
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Gap Introducing Reduction

yes

no

value ≤ n

value > 2n

gap

HAM TSP

Reduction from Hamiltonian cycle to TSP

▶ instance that has Hamiltonian cycle is mapped to TSP

instance with small cost

▶ otherwise it is mapped to instance with large cost

▶ =⇒ there is no 2n/n-approximation for TSP



PCP theorem: Approximation View

Theorem 43 (PCP Theorem A)

There exists ϵ > 0 for which there is gap introducing reduction

between 3SAT and MAX3SAT.

yes

no

1

≤ 1− ε

gap

3SAT MAX3SAT

Here the goal of the MAX3SAT-problem is to
maximize the fraction of satisfied clauses. The
above theorem implies that we cannot approxi-
mate MAX3SAT with a ratio better than 1− ϵ.

The standard formula-
tion of the PCP theo-
rem looks very differ-
ent but the above theo-
rem is equivalent. Orig-
inally, the PCP theorem
is a result about interac-
tive proof systems and
its importance to hard-
ness of approximation is
somewhat a side effect.



PCP theorem: Proof System View

Definition 44 (NP)

A language L ∈ NP if there exists a polynomial time, deterministic

verifier V (a Turing machine), s.t.

[x ∈ L] completeness

There exists a proof string y, |y| = poly(|x|),
s.t. V(x,y) = “accept”.

[x ∉ L] soundness

For any proof string y, V(x,y) = “reject”.

Note that requiring |y| = poly(|x|) for x ∉ L does not make a

difference (why?).
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Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access

to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle πTSP would allow M to

write a TSP-instance x on a special oracle tape and obtain the

answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query

complexity, i.e., how often the machine queries the oracle.

For a proof string y, πy is an oracle that upon given an index i
returns the i-th character yi of y.
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Probabilistic Checkable Proofs

Definition 45 (PCP)

A language L ∈ PCPc(n),s(n)(r(n), q(n)) if there exists a

polynomial time, non-adaptive, randomized verifier V , s.t.

[x ∈ L] There exists a proof string y, s.t. Vπy (x) =
“accept” with probability ≥ c(n).

[x ∉ L] For any proof string y, Vπy (x) = “accept” with

probability ≤ s(n).

The verifier uses at most O(r(n)) random bits and makes at most

O(q(n)) oracle queries.

Note that the proof itself does not count towards the input of the verifier. The verifier has to write
the number of a bit-position it wants to read onto a special tape, and then the corresponding
bit from the proof is returned to the verifier. The proof may only be exponentially long, as a
polynomial time verifier cannot address longer proofs.

Non-adaptive means that e.g. the second
proof-bit read by the verifier may not de-
pend on the value of the first bit.



Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1.

Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.

s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random

bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.
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Probabilistic Checkable Proofs

▶ P = PCP(0,0)
verifier without randomness and proof access is deterministic

algorithm

▶ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

▶ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

▶ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

RP = coRP = P is a commonly believed
conjecture. RP stands for randomized
polynomial time (with a non-zero proba-
bility of rejecting a YES-instance).
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Probabilistic Checkable Proofs

▶ PCP(0,poly(n)) = NP

by definition; NP-verifier does not use randomness and asks

polynomially many queries

▶ PCP(logn,poly(n)) ⊆ NP

NP-verifier can simulate O(logn) random bits

▶ PCP(poly(n),0) = coRP
?!⊆ NP

▶ NP ⊆ PCP(logn,1)
hard part of the PCP-theorem
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PCP theorem: Proof System View

Theorem 46 (PCP Theorem B)

NP = PCP(logn,1)
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Probabilistic Proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G0, G1) (two graphs with n-nodes)

It expects a proof of the following form:

▶ For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills

G0 ≡ H =⇒ P[H] = 0

G1 ≡ H =⇒ P[H] = 1

G0, G1 � H =⇒ P[H] = arbitrary
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Probabilistic Proof for Graph NonIsomorphism

Verifier:

▶ choose b ∈ {0,1} at random

▶ take graph Gb and apply a random permutation to obtain a

labeled graph H
▶ check whether P[H] = b

If G0 � G1 then by using the obvious proof the verifier will always

accept.

If G0 ≡ G1 a proof only accepts with probability 1/2.

▶ suppose π(G0) = G1

▶ if we accept for b = 1 and permutation πrand we reject for

b = 0 and permutation πrand ◦π
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Version B =⇒ Version A

▶ For 3SAT there exists a verifier that uses c logn random bits,

reads q = O(1) bits from the proof, has completeness 1 and

soundness 1/2.

▶ fix x and r :

input

x, r
proof bits

πj1 , . . . , πjq

computation

fx,r (πj1 , . . . , πjq)

reject accept

0 1

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 241/262



Version B =⇒ Version A

▶ For 3SAT there exists a verifier that uses c logn random bits,

reads q = O(1) bits from the proof, has completeness 1 and

soundness 1/2.

▶ fix x and r :

input

x, r
proof bits

πj1 , . . . , πjq

computation

fx,r (πj1 , . . . , πjq)

reject accept

0 1

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 241/262



Version B =⇒ Version A

▶ For 3SAT there exists a verifier that uses c logn random bits,

reads q = O(1) bits from the proof, has completeness 1 and

soundness 1/2.

▶ fix x and r :

input

x, r
proof bits

πj1 , . . . , πjq

computation

fx,r (πj1 , . . . , πjq)

reject accept

0 1

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 241/262



Version B =⇒ Version A

▶ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

▶ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

▶ this means we have gap introducing reduction

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 242/262



Version B =⇒ Version A

▶ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

▶ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

▶ this means we have gap introducing reduction

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 242/262



Version B =⇒ Version A

▶ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

▶ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

▶ this means we have gap introducing reduction

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 242/262



Version B =⇒ Version A

▶ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

▶ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

▶ this means we have gap introducing reduction

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 242/262



Version B =⇒ Version A

▶ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

▶ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

▶ this means we have gap introducing reduction

18 Hardness of Approximation 11. Jul. 2024

Harald Räcke 242/262



Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ϵ(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

▶ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
▶ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

▶ interpret proof as assignment to variables in Cx
▶ choose random clause X from Cx
▶ query variable assignment σ for X;

▶ accept if X(σ) = true otw. reject
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Version A =⇒ Version B

[x ∈ L] There exists proof string y, s.t. all clauses in Cx
evaluate to 1. In this case the verifier returns 1.

[x ∉ L] For any proof string y, at most a (1− ϵ)-fraction

of clauses in Cx evaluate to 1. The verifier will

reject with probability at least ϵ.

To show Theorem B we only need to run this verifier a constant

number of times to push rejection probability above 1/2.
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Label Cover

Input:

▶ bipartite graph G = (V1, V2, E)
▶ label sets L1, L2

▶ for every edge (u,v) ∈ E a relation Ru,v ⊆ L1 × L2 that

describe assignments that make the edge happy.

▶ maximize number of happy edges

1 2 3 4

1 2 3 4 5

L1 = { , , , }

L2 = { , , , , }

Re = {( , ), ( , ), ( , )}

The label cover problem also has its origin in proof systems. It encodes a 2PR1
(2 prover 1 round system). Each side of the graph corresponds to a prover. An
edge is a query consisting of a question for prover 1 and prover 2. If the answers
are consistent the verifer accepts otw. it rejects.



Label Cover

▶ an instance of label cover is (d1, d2)-regular if every vertex in

L1 has degree d1 and every vertex in L2 has degree d2.

▶ if every vertex has the same degree d the instance is called

d-regular
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MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

The verifier accepts if the la-
belling (assignment to vari-
ables in clauses at the top +
assignment to variables at the
bottom) causes the clause to
evaluate to true and is consis-
tent, i.e., the assignment of
e.g. x4 at the bottom is the
same as the assignment given
to x4 in the labelling of the
clause.
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MAX E3SAT via Label Cover

Lemma 47

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

▶ for V2 use the setting of the assignment that satisfies k
clauses

▶ for satisfied clauses in V1 use the corresponding assignment

to the clause-variables (gives 3k happy edges)

▶ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)
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MAX E3SAT via Label Cover

Lemma 48

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

▶ the labeling of nodes in V2 gives an assignment

▶ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

▶ hence at most 3m− (m− k) = 2m+ k edges are happy
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Hardness for Label Cover

We cannot distinguish between the following two cases

▶ all 3m edges can be made happy

▶ at most 2m+ (1− ϵ)m = (3− ϵ)m out of the 3m edges can

be made happy

Hence, we cannot obtain an approximation constant α > 3−ϵ
3 .

Here ϵ > 0 is the constant from PCP The-
orem A.
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(3, 5)-regular instances

Theorem 49

There is a constant ρ s.t. MAXE3SAT is hard to approximate with

a factor of ρ even if restricted to instances where a variable

appears in exactly 5 clauses.

Then our reduction has the following properties:

▶ the resulting Label Cover instance is (3,5)-regular

▶ it is hard to approximate for a constant α < 1

▶ given a label ℓ1 for x there is at most one label ℓ2 for y that

makes edge (x,y) happy (uniqueness property)
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(3, 5)-regular instances

The previous theorem can be obtained with a series of

gap-preserving reductions:

▶ MAX3SAT ≤ MAX3SAT(≤ 29)
▶ MAX3SAT(≤ 29) ≤ MAX3SAT(≤ 5)
▶ MAX3SAT(≤ 5) ≤ MAX3SAT(= 5)
▶ MAX3SAT(= 5) ≤ MAXE3SAT(= 5)

Here MAX3SAT(≤ 29) is the variant of MAX3SAT in which a

variable appears in at most 29 clauses. Similar for the other

problems.
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Regular instances

Theorem 50

There is a constant α < 1 such if there is an α-approximation

algorithm for Label Cover on 15-regular instances than P=NP.

Given a label ℓ1 for x ∈ V1 there is at most one label ℓ2 for y that

makes (x,y) happy. (uniqueness property)

We take the (3,5)-regular instance. We make 3 copies of
every clause vertex and 5 copies of every variable vertex.
Then we add edges between clause vertex and variable
vertex iff the clause contains the variable. This increases
the size by a constant factor. The gap instance can still
either only satisfy a constant fraction of the edges or all
edges. The uniqueness property still holds for the new
instance.
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Parallel Repetition

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance

probability of a wrong proof (or as here: a pair of wrong proofs)

one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a

single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several

rounds in parallel and hope that the acceptance probability of

wrong proofs goes down.
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Parallel Repetition

Given Label Cover instance I with G = (V1, V2, E), label sets L1

and L2 we construct a new instance I′:
▶ V ′1 = Vk1 = V1 × · · · × V1

▶ V ′2 = Vk2 = V2 × · · · × V2

▶ L′1 = Lk1 = L1 × · · · × L1

▶ L′2 = Lk2 = L2 × · · · × L2

▶ E′ = Ek = E × · · · × E
An edge ((x1, . . . , xk), (y1, . . . , yk)) whose end-points are labelled

by (ℓx1 , . . . , ℓ
x
k ) and (ℓy1 , . . . , ℓ

y
k ) is happy if (ℓxi , ℓ

y
i ) ∈ Rxi,yi for

all i.
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Parallel Repetition

If I is regular than also I′.

If I has the uniqueness property than also I′.

Did the gap increase?

▶ Suppose we have labelling ℓ1, ℓ2 that satisfies just an

α-fraction of edges in I.
▶ We transfer this labelling to instance I′:

vertex (x1, . . . , xk) gets label (ℓ1(x1), . . . , ℓ1(xk)),
vertex (y1, . . . , yk) gets label (ℓ2(y1), . . . , ℓ2(yk)).

▶ How many edges are happy?

only (α|E|)k out of |E|k!!! (just an αk fraction)

Does this always work?
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Counter Example

Non interactive agreement:

▶ Two provers A and B
▶ The verifier generates two random bits bA, and bB, and

sends one to A and one to B.

▶ Each prover has to answer one of A0, A1, B0, B1 with the

meaning A0 := prover A has been given a bit with value 0.

▶ The provers win if they give the same answer and if the

answer is correct.
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Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

Regardless what we do 50% of edges are unhappy!
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Counter Example

In the repeated game the provers can

also win with probability 1/2:

0,0

0,1

1,0

1,1

0,0

1,0

0,1

1,1

0,0

0,1

1,0

1,1

0,0

1,0

0,1

1,1

A B

A0, B0

A0, B0

A0, B0

A0, B0

A1, B1

A1, B1

A1, B1

A1, B1

For the first game/coordinate the
provers give an answer of the form
“A has received...” (A0 or A1) and
for the second an answer of the
form “B has received...” (B0 or B1).

If the answer a prover has to give
is about himself a prover can an-
swer correctly. If the answer to be
given is about the other prover the
same bit is returned. This means
e.g. Prover B answers A1 for the
first game iff in the second game
he receives a 1-bit.

By this method the provers al-
ways win if Prover A gets the same
bit in the first game as Prover B in
the second game. This happens
with probability 1/2.

This strategy is not possible for
the provers if the game is repeated
sequentially. How should prover
B know (for her answer in the first
game) which bit she is going to re-
ceive in the second game?



Boosting

Theorem 51

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial
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Hardness of Label Cover

Theorem 52

There are constants c > 0, δ < 1 s.t. for any k we cannot

distinguish regular instances for Label Cover in which either

▶ OPT(I) = |E|, or

▶ OPT(I) = |E|(1− δ)ck
unless each problem in NP has an algorithm running in time

O(nO(k)).

Corollary 53

There is no α-approximation for Label Cover for any constant α.
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Advanced PCP Theorem
Here the verifier reads exactly three bits
from the proof. Not O(3) bits.

Theorem 54

For any positive constant ϵ > 0, it is the case that

NP ⊆ PCP1−ϵ,1/2+ϵ(logn,3). Moreover, the verifier just reads

three bits from the proof, and bases its decision only on the parity

of these bits.

It is NP-hard to approximate a MAXE3LIN problem by a factor

better than 1/2+ δ, for any constant δ.

It is NP-hard to approximate MAX3SAT better than 7/8+ δ, for

any constant δ.
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