Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.
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Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min SE L wix
s.t. VuelU Xiyes,Xi = 1
Vie{l,...,k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy, {f,} be the maximum
frequency.
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Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > % to 1. Set all other x;-values to O.
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Technique 1: Round the LP solution.

Lemma 3
The rounding algorithm gives an f-approximation.
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Technique 1: Round the LP solution.

Lemma 3
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
> We know that >, e, Xx; = 1.
» The sum contains at most f,, < f elements.

» Therefore one of the sets that contain u must have x; > 1/f.
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Technique 1: Round the LP solution.

Lemma 3
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
> We know that >, e, Xx; = 1.
» The sum contains at most f,, < f elements.
» Therefore one of the sets that contain u must have x; > 1/f.

» This set will be selected. Hence, u is covered.
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
> wi < > wilf - xq)

icl i=1
= f - cost(x)
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Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
> wi < > wilf - xq)

iel i=1
= f - cost(x)
<f-OPT.
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal:
min Dliel WiXi
s.t. Vu Zi:ueSi x;i =1
x;i =0
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Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal: Dual:
min Dliel WiXi max 2.uet Yu
S.LVU Diyes, Xi =1 s.t. Vi Xyiyes, Yu < Wi
Xi = yu =0

‘m 12.2 Rounding the Dual
Harald Racke 42/64



Technique 2: Rounding the Dual Solution.

Rounding Algorithm:
Let I denote the index set of sets for which the dual constraint is
tight. This means foralli eI

> yu=w;

uuUeS;
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Technique 2: Rounding the Dual Solution.

Lemma 4
The resulting index set is an f-approximation.
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Technique 2: Rounding the Dual Solution.

Lemma 4
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

> Suppose there is a u that is not covered.
> This means >;,.cs, Yu < w; for all sets S; that contain wu.

» But then y,, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.
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Technique 2: Rounding the Dual Solution.

Proof:
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iel iel u:ues;

‘m 12.2 Rounding the Dual
Harald Racke 45/64



Technique 2: Rounding the Dual Solution.

Proof:
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Technique 2: Rounding the Dual Solution.

Proof:

2wi=2, 2 Yu
iel iel u:ues;

=>Hiel:ueSi} - yu
u

= quyu

‘m 12.2 Rounding the Dual
Harald Racke 45/64



Technique 2: Rounding the Dual Solution.

Proof:

Dwi=> > yu
iel iel u:ues;
=>Hiel:ueSi} - yu
u
Squyu
u

szyu
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Technique 2: Rounding the Dual Solution.

Proof:
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iel iel u:ues;
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u
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u
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Technique 2: Rounding the Dual Solution.

Proof:

Ddwi=> > yu
iel iel u:ues;
=>Hiel:ueSi} - yu
u
Squyu
u
szyu
u

< fcost(x™*)
< f-OPT
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Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

IcrI .

This means I’ is never better than I.
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Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

IcrI .

This means I’ is never better than I.

> Suppose that we take S; in the first algorithm. l.e., i € I.
» This means x; > %

> Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.
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Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

IcrI .

This means I’ is never better than I.

> Suppose that we take S; in the first algorithm. l.e., i € I.
» This means x; > %

> Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

» Hence, the second algorithm will also choose S;.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.
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The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.
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The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u
where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.
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Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

> yu < cost(x*) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.
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Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual
1. v <0
2.1 —O
3: while exists u ¢ UJ;c; S; do
4 increase dual variable 7y, until constraint for some
new set Sy becomes tight
5: I-1u{l}
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Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

I -9

S —8; forall j

while I not a set cover do
ﬂ«—argmmjsqtO 51
I—1Tu{¥}
Si—S8;—-Sp forallj

mU'I-bUJN—'

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.
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Technique 4: The Greedy Algorithm

Lemma 5
Given positive numbers a1, ...,ay, and by,..., by, and
Sc{l,...,k} then

ZIES

; a;
1’1’111’1 = max—
2165 bz bi
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Technique 4: The Greedy Algorithm
Let 1y denote the number of elements that remain at the

beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.
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In the £-th iteration
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min —
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Technique 4: The Greedy Algorithm
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beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

W W
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wi 2jeopT W) OPT
min . < = <
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2.jeopT W OPT OPT

min —— < o <
i 1S5l szOPT|Sj| zjeopT|Sj| Ny
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration
Wi 2. jeopT Wj OPT OPT
min —— < o <
J |SJ| szOPT|Sj| zjeOPT|Sj| ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.
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Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n; = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

Wy 2.jeopT W OPT OPT
min —< < = <
i 1Sl Xjeorr|Sil XjeorrISjI Ny

since an optimal algorithm can cover the remaining 1, elements
with cost OPT.

Let §j be a subset that minimizes this ratio. Hence,

& OPT
wj/ISJ-I < ng -
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Technique 4: The Greedy Algorithm

Adding this set to our solution means ny,; = ny — |§j|.
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Technique 4: The Greedy Algorithm

Adding this set to our solution means ny,; = ny — |§j|.

B IS;IOPT  nyp—ny,,
oy ny

- OPT

wj
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Technique 4: The Greedy Algorithm

D, wj

Jjel
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Technique 4: The Greedy Algorithm

1 1 1
L\ ny—1 Nnpq +1
1
i
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Technique 4: The Greedy Algorithm

Sw;< S ML opr
jel -
< OPT > (1 -
o \e g - 1
|
=OPT > —
i=1 t

= H, -OPT < OPT(Inn + 1) .

+7
Npyp +1

)

12.4 Greedy
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Technique 4: The Greedy Algorithm

A tight example:

! !
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Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).
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Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.
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Technique 5: Randomized Rounding

One round of randomized rounding:
Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= 1_[ (1-xj)

j:’I/LESj
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]

= ]_[ (1-xj) < 1_[ e Xi

j:’I/LESj j:uESj
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:uESj

_ e* Zj:ueSj Xj
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:’I/LESj j:uESj

*Zj:ueS' X

=e it <et
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Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] Q=-xp) =< [] e
j:uESj j:uESj

= Yjues; X

it <l

=e

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < ol
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Pr[3u € U not covered after £ round]
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= Pr[u; not covered V u»> not covered V ...V u, not covered]
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Pr[3u € U not covered after £ round]
= Pr[u; not covered V u»> not covered V ...V u, not covered]

< ZPr[ui not covered after £ rounds]
i
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 6
With high probability O (logn) rounds suffice.
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Pr[3u € U not covered after £ round]

= Pr[u; not covered V u»> not covered V ...V u, not covered]
< ZPr[ui not covered after £ rounds] < ne ! |
i

Lemma 6
With high probability O (logn) rounds suffice.

With high probability:

For any constant « the number of rounds is at most O (logn) with
probability at least 1 — n~%.
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Proof: We have

Pr[#rounds > (x + 1)Inn] < ne~(®+n _ -
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Expected Cost

> Version A.
Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover

simply take for each element u the cheapest set that
contains u.
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Expected Cost

> Version A.

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover

simply take for each element u the cheapest set that
contains u.
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Expected Cost

> Version A.

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n~«
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Expected Cost

> Version A.

Repeat for s = (¢ + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (ax+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] =
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Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

‘m 12.5 Randomized Rounding
Harald Racke 60/64



Expected Cost

> Version B.
Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

1
= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1
= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

1
= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]

1 1
< mlf[cost] < m(a +1)Inn - cost(LP)

<2(x+1)Inn - OPT
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Expected Cost

> Version B.

Repeat for s = (& + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]
1

= 7(E[C08t] — Pr[no success] - E[cost | no success])
Pr[succ.]
1 1
< Prlsucc]” <t e+ Dnn- LP
< Prisucc.] [cost] < : _ni‘x(our YInn - cost(LP)
<2(x+1)Inn - OPT

form=2and x> 1.
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Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.
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Randomized rounding gives an @ (logn) approximation. The
running time is polynomial with high probability.

Theorem 7 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
gpoly(logn) )
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Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

v

n=2k-1
> Elements are all vectors X over GF[2] of length k (excluding
zero vector).

> Every vector y defines a set as follows

Sy ={x|xTy =1}

> each set contains 2K~1 vectors; each vector is contained in
2k=1 sets

> Xxi= 2%1 = ﬁ is fractional solution.
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Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Q(logn).
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Techniques:

» Deterministic Rounding
Rounding of the Dual
Primal Dual
Greedy
Randomized Rounding

Local Search

vV vV v v v Y

Rounding Data + Dynamic Programming
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