Duality

How do we get an upper bound to a maximization LP?

max 13a

s.t.

5a
4a
35a

+ + + +

23b

15b <480
4b <160
20b <1190
a,b >0
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Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Note that a lower bound is easy to derive. Every choice of a,b > 0
gives us a lower bound (e.g. a = 12, b = 28 gives us a lower
bound of 800).
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Duality

How do we get an upper bound to a maximization LP?

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b >0

Note that a lower bound is easy to derive. Every choice of a,b > 0
gives us a lower bound (e.g. a = 12, b = 28 gives us a lower
bound of 800).

If you take a conic combination of the rows (multiply the i-th row
with ; > 0) such that >.; v;a;; = ¢; then >.; ¥;b; will be an upper
bound.
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Duality

Definition 2
Let z = max{c’x | Ax < b,x = 0} be a linear program P (called
the primal linear program).
The linear program D defined by
w=min{bTy | ATy = ¢,y =0}

is called the dual problem.
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Duality

Lemma 3
The dual of the dual problem is the primal problem.
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Duality

Lemma 3
The dual of the dual problem is the primal problem.

Proof:

» w=min{bTy | ATy > ¢,y > 0}
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Duality
Lemma 3
The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy >c,y >0}
» w=-max{-bly | -ATy < —c,y =0}
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Duality
Lemma 3
The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy >c,y >0}
» w=-max{-bly | -ATy < —c,y =0}

The dual problem is

» z=-—min{-cIx | -Ax = -b,x > 0}
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Duality

Lemma 3
The dual of the dual problem is the primal problem.

Proof:
» w=min{bTy | ATy >c,y >0}
» w=-max{-bly | -ATy < —c,y =0}

The dual problem is
» z=-—min{-cIx | -Ax = -b,x > 0}

» z=max{cIx | Ax < b,x >0}
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Weak Duality

Let z = max{c'x | Ax < b,x = 0} and
w =min{bTy | ATy = ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

7y is dual feasible, iff y € {y | ATy > ¢,y = 0}.
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Weak Duality

Let z = max{c'x | Ax < b,x = 0} and
w =min{bTy | ATy = ¢,y = 0} be a primal dual pair.

x is primal feasible iff x € {x | Ax < b,x = 0}

7y is dual feasible, iff y € {y | ATy > ¢,y = 0}.

Theorem 4 (Weak Duality)
Let X be primal feasible and let y be dual feasible. Then

cx<z<w<bly .
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Weak Duality
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Weak Duality

ATy >c= %TATY = %T¢
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Weak Duality

ATy >c= xTATY = xTc (X = 0)
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Weak Duality

ATy >c= xTATY = xTc (X = 0)

AX <Db
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Weak Duality

ATy >c = TATY = %Tc (X = 0)

AX <b=>yTAx <9Tb
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Weak Duality

ATy >c = TATY = %Tc (X = 0)

AX <b=yTAX <9Th (¥ = 0)
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Weak Duality

ATy >c = TATY = %Tc (X = 0)
AX <b=yTAX <9Th (¥ = 0)

This gives

o)
=
IA
25
H
N
=
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N
ﬂ
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Weak Duality

ATy >c = TATY = %Tc (X = 0)
AX <b=yTAX <9Th (¥ = 0)

This gives

Since, there exists primal feasible X with ¢’X = z, and dual
feasible ¥ with bT9 = w we get z < w.
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Weak Duality

ATy >c = TATY = %Tc (X = 0)
AX <b=>yTAX <9Th (3 = 0)

This gives

Since, there exists primal feasible X with ¢’X = z, and dual
feasible ¥ with bT9 = w we get z < w.

If P is unbounded then D is infeasible.
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5.2 Simplex and Duality

The following linear programs form a primal dual pair:

z=max{cIx | Ax =b,x > 0}

w=min{bTy | ATy = ¢}

This means for computing the dual of a standard form LP, we do
not have non-negativity constraints for the dual variables.
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Proof

Primal:

max{cix | Ax =b,x = 0}
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Primal:

max{cix | Ax =b,x = 0}
=max{c'x | Ax <b,-Ax < -b,x = 0}
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Proof

Primal:

max{cix | Ax =b,x = 0}
=max{c'x | Ax <b,-Ax < -b,x = 0}

= max{cTx | {_‘Z]x < [_bb},x >0}
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Proof

Primal:

max{cix | Ax =b,x = 0}
=max{c'x | Ax <b,-Ax < -b,x = 0}

= max{cTx | {_‘Z]x < [_bb},x >0}

Dual:

min{[b" —b"]y | [AT ~AT]y = ¢,y = 0}
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Proof

Primal:
max{cix | Ax =b,x = 0}

=max{c'x | Ax <b,-Ax < —b,x > 0}

= max{cTx | {_‘Z]x < [_bb},x >0}

Dual:

min{[b" —b"]y | [AT ~AT]y = ¢,y = 0}

= min{[bT -bT] - [§+] ' [AT —AT]. [Jﬁ} >c,y  20,y" > 0}
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Proof

Primal:
max{cix | Ax =b,x = 0}

=max{c'x | Ax <b,-Ax < —b,x > 0}

= max{cTx | {_‘Z]x < [_bb},x >0}

Dual:

min{[b" —b"]y | [AT ~AT]y = ¢,y = 0}

= min{[bT -bT] - [§+] ' [AT —AT]. [ij >c,y  20,y" > 0}

=min{bT-(y+—y‘) ‘AT-()ﬁ—y‘)zc,y‘zO,)ﬁzO}
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Proof

Primal:

max{cix | Ax =b,x = 0}
=max{c'x | Ax <b,-Ax < -b,x = 0}

= max{cTx | {_‘Z]x < [_bb},x >0}

Dual:
min{[b" —b"]y | [AT ~AT]y = ¢,y = 0}
= min{[bT -bT] - [§+] ' [AT —AT] . [ij >c,y 20,y" = 0}

=min{bT-(y+—y‘) ‘AT-(jﬁ—y‘) >c,y =20,y" 20}
min{bTy’ ATy’ > c}
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl —-cfAgta<o
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl—clagta<o

This is equivalent to AT (A1) cp = ¢
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl—clagta<o

This is equivalent to AT (A1) cp = ¢

v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy*
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl—clagta<o

This is equivalent to AT (A1) cp = ¢

v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* _ (AX*)T_')/*
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl—clagta<o

This is equivalent to AT (A1) cp = ¢

v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Apxj)Ty*
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl—clagta<o

This is equivalent to AT (A1) cp = ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Apxj)Ty*

= (Apxi) T (Agh Tcp
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl—clagta<o

This is equivalent to AT (A1) cp = ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (Ax*)Ty* = (Apxj)Ty*

= (Apxi) T (AgHTep = (x)TAL(AgH) T ey
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl—clagta<o

This is equivalent to AT (A1) cp = ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bTy* = (AxH)Ty* = (Apxf) T ¥
= (Apxi) T (AgHTep = (x)TAL(AgH) T ey

=CcC X
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Proof of Optimality Criterion for Simplex
Suppose that we have a basic feasible solution with reduced cost

é=cl—clagta<o

This is equivalent to AT (A1) cp = ¢
v* = (Ag")Tcp is solution to the dual min{b”y|ATy > c}.

bly* = (Ax*)Ty* = (Apxi) Ty
= (Apx)T(AgHTep = (xp)TAL (A Tep
= cTx*

Hence, the solution is optimal.
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5.3 Strong Duality

P =max{cTx | Ax <b,x =0}
na: number of variables, m4: number of constraints

We can put the non-negativity constraints into A (which gives us
unrestricted variables): P = max{cTx | Ax < b}

Ny =MNA, My =MA +NA

Dual D = min{bTy | ATy = ¢,y = 0}.
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5.3 Strong Duality
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The profit vector c lies in the cone generated by the normals for
the hops and the corn constraint (the tight constraints).
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Strong Duality

Theorem 5 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

=w
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Lemma 6 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Then min{f(x) : x € X} exists.

(without proof)
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Lemma 7 (Projection Lemma)

Let X = R™ be a non-empty convex set, and let v ¢ X. Then there
exist x* € X with minimum distance from . Moreover for all

x € X we have (y —x*)T(x —x*) <0.
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Proof of the Projection Lemma
> Define f(x) = ||y — x|

20
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Proof of the Projection Lemma
> Define f(x) =y — x]l.
> We want to apply Weierstrass but X may not be bounded.

20
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Proof of the Projection Lemma
> Define f(x) = ||y — x|
> We want to apply Weierstrass but X may not be bounded.
> X + &. Hence, there exists x’ € X.

20
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Proof of the Projection Lemma
> Define f(x) =y — x]l.
> We want to apply Weierstrass but X may not be bounded.
> X + &. Hence, there exists x’ € X.
» Define X' = {x € X | ||y — x|l <y —x'[|}. This set is closed
and bounded.

20
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Proof of the Projection Lemma

Define f(x) = [y — x|

> We want to apply Weierstrass but X may not be bounded.

> X + &. Hence, there exists x’ € X.

» Define X' = {x € X | ||y — x|l <y —x'[|}. This set is closed
and bounded.

Applying Weierstrass gives the existence.

v

v
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Proof of the Projection Lemma (continued)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy = x*|1%
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.

Letting € — 0 gives the result.
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Theorem 8 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: alx = o}

where a € R™, o € R that separates y from X. (a’y < «;
alx = « for all x € X)
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Proof of the Hyperplane Lemma

> Let x* € X be closest point to v in X.

JH={x]alx =&}
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Proof of the Hyperplane Lemma
> Let x* € X be closest point to v in X.

> By previous lemma (v — x*)T(x —x*) <0 forall x € X.

JH={x]alx =&}
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Proof of the Hyperplane Lemma
> Let x* € X be closest point to v in X.
> By previous lemma (v — x*)T(x —x*) <0 forall x € X.

» Choose a = (x* —y)and x = alx*.
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Proof of the Hyperplane Lemma

> Let x* € X be closest point to v in X.

> By previous lemma (v — x*)T(x —x*) <0 forall x € X.
» Choose a = (x* —y)and x = alx*.
>

Forx € X :al(x —x*) = 0, and, hence, a’x > «.
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Proof of the Hyperplane Lemma
> Let x* € X be closest point to v in X.
By previous lemma (v — x*)T(x — x*) < 0 for all x € X.
Choose a = (x* —y) and @ = al x*.
Forx € X :al(x —x*) = 0, and, hence, a’x > «.

Also,a’y =al(x* —a) =« - |lal? < «
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Lemma 9 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R*"withAx =b, x>0
2. 3y e R with ATy =0,bTy <0
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Lemma 9 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx = b, x =0
2. 3y e R with ATy =0,bTy <0
Assume X satisfies 1. and y satisfies 2. Then

0>yTh=yTAx >0
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Lemma 9 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx =b,x >0
2. 3y e R with ATy =0,bTy <0

Assume X satisfies 1. and y satisfies 2. Then

0>yTh=yTAx >0

Hence, at most one of the statements can hold.
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Farkas Lemma

o
X

X xa

X A1

If b is not in the cone generated by the columns of A, there exists
a hyperplane y that separates b from the cone.



Proof of Farkas Lemma
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Now, assume that 1. does not hold.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
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We want to show that there is y with ATy > 0, bTy < 0.
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Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy > 0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.
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Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy > 0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy > 0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy > 0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0. Hence, yTA > 0 as we can choose x
arbitrarily large.



Lemma 10 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy >0,bTy <0,y =0
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Lemma 10 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy >0,bTy <0,y =0

Rewrite the conditions:

1. dx € R™ with [AI]-[?}=b,sz,szO

AT
2. Hyemeith[I]yzO,bTy<0
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Proof of Strong Duality

P: z =max{cIx | Ax < b,x = 0}

D: w=min{bTy |ATy > ¢,y =0}

Theorem 11 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e., P
and D are non-empty). Then

zZ=Ww .
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Proof of Strong Duality
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Proof of Strong Duality

z < w: follows from weak duality
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Proof of Strong Duality

w: follows from weak duality

N
IA

zZ=Ww:
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Proof of Strong Duality

w: follows from weak duality

N
IA

z > w:
We show z < o implies w < «.
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Proof of Strong Duality

w: follows from weak duality

N
IA

z > w:
We show z < o implies w < «.

dx € R"
s.t. Ax < b
—-cI'x < -«
x = 0
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < o implies w < «.

dx € R" dy e R"™;v e R
s.t. Ax < b st. ATy —cv = 0
—-cI'x < -« bTy —axv < 0
x > 0 y, v = 0
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < o implies w < «.

dx € R" dy e R"™;v e R
s.t. Ax < b st. ATy —cv = 0
—-cI'x < -« bTy —axv < 0
x > 0 y, v = 0

From the definition of o« we know that the first system is
infeasible; hence the second must be feasible.
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Proof of Strong Duality

dy e R"™;v e R

st. ATy —cv = 0
by —axv < 0
y, v = 0
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Proof of Strong Duality

dy e R"™;v e R

st. ATy —cv = 0
bTy —ov < 0
y,v = 0

If the solution y,v has v = 0 we have that

dy e R™
s.t. ATy = 0
bTy < 0
y = 0

is feasible.
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Proof of Strong Duality

dy e R"™;v e R

st. ATy —cv = 0
bTy —ov < 0
y,v = 0

If the solution y,v has v = 0 we have that

dy e R™
s.t. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.
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Proof of Strong Duality
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

m 5.3 Strong Duality
Harald Racke 38/53



Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both v and v) s.t. v = 1.

m 5.3 Strong Duality
Harald Racke 38/53



Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both v and v) s.t. v = 1.

Then v is feasible for the dual but b7y < «. This means that

w < K.
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Fundamental Questions

Definition 12 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ceQm xe Q. Does there exist x € Q"
st. Ax =b,x=0,cl'x>=a?

Questions:
> Is LP in NP?
» Is LP in co-NP? yes!
» Is LPin P?
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Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).
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Fundamental Questions

Definition 12 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ceQm xe Q. Does there exist x € Q"
st. Ax=b,x>0,cTx > o?

Questions:
» Is LP in NP?
» Is LP in co-NP? yes!
» Is LP in P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).
> We can prove this by providing an optimal basis for the dual.
> A verifier can check that the associated dual solution fulfills
all dual constraints and that it has dual cost < «.
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Complementary Slackness

Lemma 13
Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy = ¢;y = 0} has
solution y*.

1. Ifx;f‘ > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than xJ’.k = 0.
3. If y/ > 0 then the i-th constraint in P is tight.
4

. If the i-th constraint in P is not tight than v = 0.
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Complementary Slackness

Lemma 13

Assume a linear program P = max{c’x | Ax < b;x = 0} has
solution x* and its dual D = min{bTy | ATy = ¢;y = 0} has
solution y*.

1.

If we say that a variable x (v}) has slack |fx >0 >0), (e,
the corresponding varlable restriction is not tlght) and a contraint

Ifx;f‘ > 0 then the j-th constraint in D is tight.

2. If the j-th constraint in D is not tight than x;k = 0.
3.
4. If the i-th constraint in P is not tight than y; = 0.

If v} > 0 then the i-th constraint in P is tight.

has slack if it is not tight, then the above says that for a

primal-dual solution pair it is not possible that a constraint and

its corresponding (dual) variable has slack.
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cI'x* < y*TAx* < bTy*
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cI'x* < y*TAx* < bTy*

Because of strong duality we then get

cTx* = y*T Ax* = pTo*

This gives e.g.

DvTA-chxf=0
J
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Proof: Complementary Slackness
Analogous to the proof of weak duality we obtain

cIx* < p*TAx* < bTy*
Because of strong duality we then get
CTX* — y*TAx* — bTy*

This gives e.g.

>yTa- cT)J-x;k =0

J
From the constraint of the dual it follows that ¥ A > ¢T. Hence
the left hand side is a sum over the product of non-negative
numbers. Hence, if e.g. (yTA - cT); > 0 (the j-th constraint in
the dual is not tight) then x; = 0 (2.). The result for (1./3./4.)
follows similarly.
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Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b

s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190

a,b =0



Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13
15C + 4H + 20M = 23
C,HM =0



Interpretation of Dual Variables

> Brewer: find mix of ale and beer that maximizes profits

max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

> Entrepeneur: buy resources from brewer at minimum cost
C, H, M: unit price for corn, hops and malt.

min 480C + 160H + 1190M
s.t. 5C + 4H + 35M =13
15C + 4H + 20M > 23
C,H M =0

Note that brewer won’t sell (at least not all) if e.g.
5C +4H + 35M < 13 as then brewing ale would be advantageous.



Interpretation of Dual Variables

Marginal Price:

» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
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Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by ¢, £g,
and &y, respectively.
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Interpretation of Dual Variables

Marginal Price:
» How much money is the brewer willing to pay for additional
amount of Corn, Hops, or Malt?
> We are interested in the marginal price, i.e., what happens if
we increase the amount of Corn, Hops, and Malt by ¢, £g,
and &y, respectively.
The profit increases to max{c’x | Ax < b + &;x = 0}. Because of
strong duality this is equal to

min (b7 +el)y
s.t. ATy
y

vV v
=)
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; &;y/".
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; siyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.

> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
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Interpretation of Dual Variables

If € is “small” enough then the optimum dual solution y* might
not change. Therefore the profit increases by >; siyi*.

Therefore we can interpret the dual variables as marginal prices.

Note that with this interpretation, complementary slackness
becomes obvious.
> If the brewer has slack of some resource (e.g. corn) then he
is not willing to pay anything for it (corresponding dual
variable is zero).
> [f the dual variable for some resource is non-zero, then an
increase of this resource increases the profit of the brewer.
Hence, it makes no sense to have left-overs of this resource.
Therefore its slack must be zero.
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Example

O
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Example
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Example

max 13a + 23b

N P s.t. 5a+ 15b + sc =480
4a + 4b + Sp =160
35a + 20b + sm = 1190
b, S ,Sh,Sm=0

a

bger

-qi ale

The change in profit when increasing hops by one unit is

= cfAgley.
e
y*



Of course, the previous argument about the increase in the primal
objective only holds for the non-degenerate case.

If the optimum basis is degenerate then increasing the supply of
one resource may not allow the objective value to increase.
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Flows

Definition 14
An (s,1)-flow in a (complete) directed graph G = (V,V X V,c) is a
function f : V XV — Rjj that satisfies

1. For each edge (x, y)

0<fxy <cCxy .

(capacity constraints)
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Flows

Definition 14
An (s,1)-flow in a (complete) directed graph G = (V,V X V,c) is a
function f: V X V — Ry that satisfies

1. For each edge (x, y)

0<fxy <cCxy .

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .

(flow conservation constraints)
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Flows

Definition 15
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -
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Flows

Definition 15
The value of an (s, t)-flow f is defined as

val(f) = Zfsx - fos .

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max Dz fsz =22 fas
s.t. Y(z,w) eV xV Tw 8 Cw Yy
Vw st >, fow—2-fwz: = 0 Pw
Jfow = O
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LP-Formulation of Maxflow

max 2z Sz =22 Szs
st. V(z,w)eVxV Tow £ Cow ow
Vw #s,t X, fow—2zfwz = 0 Pw
fzw = O
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Ssy (¥ £5,8): 145y +1py = 1
Joes (52 32 8, ) ¢ 10xs—1py = =1
Sfiy (¥ #=5,t): 181y +1lpy =2 O
Sxt (x #5,0): 105 —1px > 0
Sfot: 145, > 1
Sis: 10 > -1
Lscy > 0
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LP-Formulation of Maxflow

min
s.t.

Sy (X, ¥ = 5,t):

> (xy) Exylxy

Ssy (¥ #=5,t): 14— 1+
Jxs (x #s,t): 10y s—1px+
Sty (¥ =5,0): 14— O+
fxt (x #58,t): 10y —1px+
fst: 10— 1+
fts : l‘gts_ 0+

1xy—1px+1py

Ipy
1
Ipy
0
0
1

‘exy

vV IV IV IV IV IV IV

2

S O O © O o o O

m Harald Racke

5.5 Computing Duals

50/53



LP-Formulation of Maxflow

min
s.t.

Sy (X, ¥ = 5,t):
Ssy (v #5,0):
fxs (x =5s,t):
Jiy (v =5,8):
fxt (x =5s,t):
Soe:

Sts:

> (xy) Exylxy

18xy—1px+1py =

105 — ps+1lpy

HWxs—1px+ ps
141y— pi+lp,
Wxt—1px+ pi
Wsi— ps+ pr
Wis— pe+ ps

Uxy

vV IV IV IV IV IV

2

S O O © O O o O

with p =0 and p; = 1.
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Oy = 0
Ps = 1
pt = 0
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.
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LP-Formulation of Maxflow

min Z(xy) Cxylxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pe = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

m 5.5 Computing Duals
Harald Racke 52/53



LP-Formulation of Maxflow

min Z(xy) Cxylxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pe = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < {x, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) > d(x,t) < #Xy +d(y,t)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a cut
in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a cut
in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.

m 5.5 Computing Duals
Harald Racke 53/53



	Duality
	Weak Duality
	Simplex and Duality
	Strong Duality
	Interpretation of Dual Variables
	Computing Duals


