Given a set of cities  $(\{1, ..., n\})$  and a symmetric matrix  $C = (c_{ij})$ ,  $c_{ij} \ge 0$  that specifies for every pair  $(i, j) \in [n] \times [n]$  the cost for travelling from city i to city j. Find a permutation  $\pi$  of the cities such that the round-trip cost

$$C_{\pi(1)\pi(n)} + \sum_{i=1}^{n-1} C_{\pi(i)\pi(i+1)}$$

is minimized.



#### Theorem 3

There does not exist an  $O(2^n)$ -approximation algorithm for TSP.

#### Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP.
- If Configure 6 then sets on the order of the sets of the 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost <... Otw. any tour has cost strictly larger than <???
- An OSS approximation algorithm could decide bow these cases. Hence, cannot exist unless (2000).



Theorem 3

There does not exist an  $O(2^n)$ -approximation algorithm for TSP.

#### Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP. If (2001) 400 then set up to n000 obsc set (2004) 10 This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost 1. Otw. any tour has cost strictly larger than 2005.
- An ODP sapproximation algorithm could decide bow these cases. Hence, cannot exist unless (2000).



#### Theorem 3

There does not exist an  $O(2^n)$ -approximation algorithm for TSP.

#### Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP.
- ▶ If  $(i, j) \notin E$  then set  $c_{ij}$  to  $n2^n$  otw. set  $c_{ij}$  to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than n2<sup>n</sup>.
- An  $O(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.



#### Theorem 3

There does not exist an  $O(2^n)$ -approximation algorithm for TSP.

#### Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP.
- ▶ If  $(i, j) \notin E$  then set  $c_{ij}$  to  $n2^n$  otw. set  $c_{ij}$  to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than n2<sup>n</sup>.
- An  $O(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.



#### Theorem 3

There does not exist an  $O(2^n)$ -approximation algorithm for TSP.

#### Hamiltonian Cycle:

For a given undirected graph G = (V, E) decide whether there exists a simple cycle that contains all nodes in G.

- Given an instance to HAMPATH we create an instance for TSP.
- ▶ If  $(i, j) \notin E$  then set  $c_{ij}$  to  $n2^n$  otw. set  $c_{ij}$  to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than n2<sup>n</sup>.

An  $O(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.



#### Theorem 3

There does not exist an  $O(2^n)$ -approximation algorithm for TSP.

#### Hamiltonian Cycle:

- Given an instance to HAMPATH we create an instance for TSP.
- ▶ If  $(i, j) \notin E$  then set  $c_{ij}$  to  $n2^n$  otw. set  $c_{ij}$  to 1. This instance has polynomial size.
- There exists a Hamiltonian Path iff there exists a tour with cost n. Otw. any tour has cost strictly larger than n2<sup>n</sup>.
- An  $\mathcal{O}(2^n)$ -approximation algorithm could decide btw. these cases. Hence, cannot exist unless P = NP.



### **Gap Introducing Reduction**



#### **Reduction from Hamiltonian cycle to TSP**

- instance that has Hamiltonian cycle is mapped to TSP instance with small cost
- otherwise it is mapped to instance with large cost
- $\Rightarrow$  there is no  $2^n/n$ -approximation for TSP

#### **PCP theorem: Approximation View**

#### Theorem 4 (PCP Theorem A)

There exists  $\epsilon > 0$  for which there is gap introducing reduction between 3SAT and MAX3SAT.



### **PCP theorem: Proof System View**

#### **Definition 5 (NP)**

A language  $L \in NP$  if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

- [ $x \in L$ ] completeness There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".
- [*x* ∉ *L*] soundness For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for  $x \notin L$  does not make a difference (why?).



### **PCP theorem: Proof System View**

#### **Definition 5 (NP)**

A language  $L \in NP$  if there exists a polynomial time, deterministic verifier V (a Turing machine), s.t.

- [ $x \in L$ ] completeness There exists a proof string y, |y| = poly(|x|), s.t. V(x, y) = "accept".
- [ $x \notin L$ ] soundness For any proof string y, V(x, y) = "reject".

Note that requiring |y| = poly(|x|) for  $x \notin L$  does not make a difference (why?).



An Oracle Turing Machine M is a Turing machine that has access to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle  $\pi_{TSP}$  would allow M to write a TSP-instance x on a special oracle tape and obtain the answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query complexity, i.e., how often the machine queries the oracle.

For a proof string y,  $\pi_y$  is an oracle that upon given an index i returns the *i*-th character  $y_i$  of y.



Non-adaptive means that e.g. the second proof-bit read by the verifier may not depend on the value of the first bit.

#### **Definition 6 (PCP)**

A language  $L \in PCP_{C(n),S(n)}(r(n),q(n))$  if there exists a polynomial time, non-adaptive, randomized verifier V, s.t.

- $[x \in L]$  There exists a proof string y, s.t.  $V^{\pi_y}(x) =$ "accept" with probability  $\geq c(n)$ .
- $[x \notin L]$  For any proof string *y*,  $V^{\pi_y}(x) =$  "accept" with probability ≤ *s*(*n*).

The verifier uses at most  $\mathcal{O}(r(n))$  random bits and makes at most  $\mathcal{O}(q(n))$  oracle queries.

Note that the proof itself does not count towards the input of the verifier. The verifier has to write the number of a bit-position it wants to read onto a special tape, and then the corresponding bit from the proof is returned to the verifier. The proof may only be exponentially long, as a polynomial time verifier cannot address longer proofs.

c(n) is called the completeness. If not specified otw. c(n) = 1. Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw. s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.



### $\blacktriangleright P = PCP(0, 0)$

RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

verifier without randomness and proof access is deterministic algorithm

#### ▶ PCP( $\log n, 0$ ) ⊆ P

we can simulate (0.05)(20) random bits in deterministic, polynomial time

#### $\blacktriangleright \text{ PCP}(0, \log n) \subseteq P$

we can simulate short proofs in polynomial time

## • $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$

by definition; cold is randomized polytime with one sided error (positive probability of accepting NO-instance)



RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

### $\blacktriangleright P = PCP(0,0)$

verifier without randomness and proof access is deterministic algorithm

▶ PCP(log  $n, 0) \subseteq P$ 

we can simulate (2005) 12 random bits in deterministic, polynomial time

 $\blacktriangleright \text{ PCP}(0, \log n) \subseteq \text{P}$ 

we can simulate short proofs in polynomial time

•  $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$ 

by definition; collid is randomized polytime with one sided error (positive probability of accepting NO-instance)



RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

#### $\blacktriangleright P = PCP(0,0)$

verifier without randomness and proof access is deterministic algorithm

▶  $PCP(\log n, 0) \subseteq P$ 

we can simulate  $O(\log n)$  random bits in deterministic, polynomial time

 $\blacktriangleright \operatorname{PCP}(0, \log n) \subseteq \operatorname{P}$ 

we can simulate short proofs in polynomial time

•  $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$ 

by definition; coll: is randomized polytime with one sided error (positive probability of accepting NG-instance)



RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

 $\blacktriangleright P = PCP(0,0)$ 

verifier without randomness and proof access is deterministic algorithm

▶  $PCP(\log n, 0) \subseteq P$ 

we can simulate  $O(\log n)$  random bits in deterministic, polynomial time

 $\blacktriangleright \text{ PCP}(0, \log n) \subseteq \text{P}$ 

short proofs in polynomial times

•  $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$ 

by definition; cold is randomized polytime with one sided
error (positive probability of accepting NO-instance)



RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

 $\blacktriangleright P = PCP(0,0)$ 

verifier without randomness and proof access is deterministic algorithm

▶  $PCP(\log n, 0) \subseteq P$ 

we can simulate  $O(\log n)$  random bits in deterministic, polynomial time

▶  $PCP(0, \log n) \subseteq P$ 

we can simulate short proofs in polynomial time

•  $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$ 

by definition; cold-is randomized polytime with one sided error (positive probability of accepting NG-instance)



RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

 $\blacktriangleright P = PCP(0, 0)$ 

verifier without randomness and proof access is deterministic algorithm

▶  $PCP(\log n, 0) \subseteq P$ 

we can simulate  $O(\log n)$  random bits in deterministic, polynomial time

▶  $PCP(0, \log n) \subseteq P$ 

we can simulate short proofs in polynomial time

•  $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$ 

by definition; codel is randomized polytime with one sided error (positive probability of accepting NO-instance)



RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

 $\blacktriangleright P = PCP(0, 0)$ 

verifier without randomness and proof access is deterministic algorithm

▶  $PCP(\log n, 0) \subseteq P$ 

we can simulate  $O(\log n)$  random bits in deterministic, polynomial time

▶  $PCP(0, \log n) \subseteq P$ 

we can simulate short proofs in polynomial time

•  $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$ 

by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)



RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

 $\blacktriangleright P = PCP(0, 0)$ 

verifier without randomness and proof access is deterministic algorithm

▶  $PCP(\log n, 0) \subseteq P$ 

we can simulate  $O(\log n)$  random bits in deterministic, polynomial time

▶  $PCP(0, \log n) \subseteq P$ 

we can simulate short proofs in polynomial time

•  $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$ 

by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)



RP = coRP = P is a commonly believed conjecture. RP stands for randomized polynomial time (with a non-zero probability of rejecting a YES-instance).

 $\blacktriangleright P = PCP(0, 0)$ 

verifier without randomness and proof access is deterministic algorithm

▶  $PCP(\log n, 0) \subseteq P$ 

we can simulate  $O(\log n)$  random bits in deterministic, polynomial time

 $\blacktriangleright \operatorname{PCP}(0, \log n) \subseteq \operatorname{P}$ 

we can simulate short proofs in polynomial time

•  $PCP(poly(n), 0) = coRP \stackrel{?!}{=} P$ 

by definition; coRP is randomized polytime with one sided error (positive probability of accepting NO-instance)



#### • PCP(0, poly(n)) = NP

by definition; NP-verifier does not use randomness and asks polynomially many queries

- PCP(log n, poly(n)) ⊆ NP NP-verifier can simulate O(log n) random bits
- ▶ PCP(poly(n), 0) = coRP  $\stackrel{?!}{\subseteq}$  NP
- NP ⊆ PCP(log n, 1) hard part of the PCP-theorem



#### $\blacktriangleright PCP(0, poly(n)) = NP$

by definition; NP-verifier does not use randomness and asks polynomially many queries

•  $PCP(\log n, poly(n)) \subseteq NP$ 

NP-verifier can simulate  $O(\log n)$  random bits

- $PCP(poly(n), 0) = coRP \stackrel{?!}{\subseteq} NP$
- NP ⊆ PCP(log n, 1) hard part of the PCP-theorem



#### $\blacktriangleright PCP(0, poly(n)) = NP$

by definition; NP-verifier does not use randomness and asks polynomially many queries

•  $PCP(\log n, poly(n)) \subseteq NP$ 

NP-verifier can simulate  $\mathcal{O}(\log n)$  random bits

- $PCP(poly(n), 0) = coRP \stackrel{?!}{\subseteq} NP$
- NP ⊆ PCP(log n, 1) hard part of the PCP-theorem



#### $\blacktriangleright \text{ PCP}(0, \text{poly}(n)) = \text{NP}$

by definition; NP-verifier does not use randomness and asks polynomially many queries

•  $PCP(\log n, poly(n)) \subseteq NP$ 

NP-verifier can simulate  $\mathcal{O}(\log n)$  random bits

- $PCP(poly(n), 0) = coRP \stackrel{?!}{\subseteq} NP$
- ▶ NP  $\subseteq$  PCP(log *n*, 1)

hard part of the PCP-theorem



**PCP theorem: Proof System View** 

#### **Theorem 7 (PCP Theorem B)** NP = PCP( $\log n, 1$ )



18 Hardness of Approximation

11. Jul. 2024 61/85

GNI is the language of pairs of non-isomorphic graphs



GNI is the language of pairs of non-isomorphic graphs

Verifier gets input  $(G_0, G_1)$  (two graphs with *n*-nodes)



GNI is the language of pairs of non-isomorphic graphs

Verifier gets input  $(G_0, G_1)$  (two graphs with *n*-nodes)

It expects a proof of the following form:

For any labeled *n*-node graph *H* the *H*'s bit *P*[*H*] of the proof fulfills

 $G_0 \equiv H \implies P[H] = 0$   $G_1 \equiv H \implies P[H] = 1$  $G_0, G_1 \not\equiv H \implies P[H] = \text{arbitrary}$ 



#### Verifier:

- choose  $b \in \{0, 1\}$  at random
- take graph G<sub>b</sub> and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b



#### Verifier:

- choose  $b \in \{0, 1\}$  at random
- take graph G<sub>b</sub> and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If  $G_0 \not\equiv G_1$  then by using the obvious proof the verifier will always accept.



#### Verifier:

- choose  $b \in \{0, 1\}$  at random
- take graph G<sub>b</sub> and apply a random permutation to obtain a labeled graph H
- check whether P[H] = b

If  $G_0 \not\equiv G_1$  then by using the obvious proof the verifier will always accept.

If  $G_0 \equiv G_1$  a proof only accepts with probability 1/2.

- suppose  $\pi(G_0) = G_1$
- if we accept for b = 1 and permutation  $\pi_{rand}$  we reject for b = 0 and permutation  $\pi_{rand} \circ \pi$



#### Version $B \Rightarrow$ Version A

For 3SAT there exists a verifier that uses  $c \log n$  random bits, reads q = O(1) bits from the proof, has completeness 1 and soundness 1/2.





18 Hardness of Approximation

11. Jul. 2024 64/85

#### Version $B \Rightarrow$ Version A

- For 3SAT there exists a verifier that uses  $c \log n$  random bits, reads q = O(1) bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:





18 Hardness of Approximation

11. Jul. 2024 64/85
- For 3SAT there exists a verifier that uses  $c \log n$  random bits, reads q = O(1) bits from the proof, has completeness 1 and soundness 1/2.
- fix x and r:





transform Boolean formula f<sub>x,r</sub> into 3SAT formula C<sub>x,r</sub> (constant size, variables are proof bits)

• consider 3SAT formula  $C_x = \bigwedge_r C_{x,r}$ 

 $[x \in L]$  There exists proof string  $\gamma$ , s.t. all formulas  $C_{x,r}$  evaluate to 1. Hence, all clauses in  $C_x$  satisfied.

[ $x \notin L$ ] For any proof string y, at most 50% of formulas  $C_{x,r}$  evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in  $C_x$  are not satisfied.



 transform Boolean formula f<sub>x,r</sub> into 3SAT formula C<sub>x,r</sub> (constant size, variables are proof bits)

• consider 3SAT formula  $C_X \coloneqq \bigwedge_{\gamma} C_{X,\gamma}$ 

 $[x \in L]$  There exists proof string y, s.t. all formulas  $C_{x,r}$  evaluate to 1. Hence, all clauses in  $C_x$  satisfied.

[ $x \notin L$ ] For any proof string y, at most 50% of formulas  $C_{x,r}$  evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in  $C_x$  are not satisfied.



- transform Boolean formula f<sub>x,r</sub> into 3SAT formula C<sub>x,r</sub> (constant size, variables are proof bits)
- consider 3SAT formula  $C_X = \bigwedge_r C_{X,r}$
- $[x \in L]$  There exists proof string  $\gamma$ , s.t. all formulas  $C_{\chi,\gamma}$  evaluate to 1. Hence, all clauses in  $C_{\chi}$  satisfied.
- [ $x \notin L$ ] For any proof string y, at most 50% of formulas  $C_{x,r}$  evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in  $C_x$  are not satisfied.



 transform Boolean formula f<sub>x,r</sub> into 3SAT formula C<sub>x,r</sub> (constant size, variables are proof bits)

• consider 3SAT formula  $C_X = \bigwedge_r C_{X,r}$ 

- $[x \in L]$  There exists proof string  $\gamma$ , s.t. all formulas  $C_{\chi,\gamma}$  evaluate to 1. Hence, all clauses in  $C_{\chi}$  satisfied.
- [ $x \notin L$ ] For any proof string  $\gamma$ , at most 50% of formulas  $C_{\chi,\gamma}$  evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in  $C_{\chi}$  are not satisfied.



 transform Boolean formula f<sub>x,r</sub> into 3SAT formula C<sub>x,r</sub> (constant size, variables are proof bits)

• consider 3SAT formula  $C_X = \bigwedge_r C_{X,r}$ 

- $[x \in L]$  There exists proof string  $\gamma$ , s.t. all formulas  $C_{\chi,\gamma}$  evaluate to 1. Hence, all clauses in  $C_{\chi}$  satisfied.
- [ $x \notin L$ ] For any proof string  $\gamma$ , at most 50% of formulas  $C_{\chi,\gamma}$  evaluate to 1. Since each contains only a constant number of clauses, a constant fraction of clauses in  $C_{\chi}$  are not satisfied.



### We show: Version A $\implies$ NP $\subseteq$ PCP<sub>1,1- $\epsilon$ </sub>(log *n*, 1).

given  $L \in NP$  we build a PCP-verifier for L

- $\approx 3$ SAT is NP-complete; map instance x for L into 3SAT instance  $I_{21}$  s.t.  $I_{22}$  satisfiable iff  $x \in L$
- map  $I_{\mathcal{X}}$  to MAX3SAT instance  $C_{\mathcal{X}}$  (Comparison (Comparison))
- $\gg$  interpret proof as assignment to variables in  $C_{
  m x}$
- choose random clause X from  $C_{2}$
- query variable assignment or for X;
- $\sim$  accept if  $X(\sigma) =$  true otw. reject

We show: Version A  $\Rightarrow$  NP  $\subseteq$  PCP<sub>1,1- $\epsilon$ </sub> (log *n*, 1).

given  $L \in NP$  we build a PCP-verifier for L

- = 3SAT is NP-complete; map instance x for L into 3SAT instance  $I_{xi}$  s.t.  $I_x$  satisfiable iff  $x \in L$
- $\gg$  interpret proof as assignment to variables in  $C_{
  m x}$
- choose random clause X from  $C_{\lambda}$
- query variable assignment or for X;
- $\sim$  accept if  $X(\sigma) =$  true otw. reject.

We show: Version A  $\Rightarrow$  NP  $\subseteq$  PCP<sub>1,1- $\epsilon$ </sub> (log *n*, 1).

given  $L \in NP$  we build a PCP-verifier for L

- SAT is NP-complete; map instance x for L into 3SAT instance I<sub>x</sub>, s.t. I<sub>x</sub> satisfiable iff x ∈ L
- map  $I_x$  to MAX3SAT instance  $C_x$  (PCP Thm. Version A)
- interpret proof as assignment to variables in C<sub>x</sub>
- choose random clause X from C<sub>x</sub>
- query variable assignment  $\sigma$  for X;
- accept if  $X(\sigma)$  = true otw. reject

We show: Version A  $\Rightarrow$  NP  $\subseteq$  PCP<sub>1,1- $\epsilon$ </sub> (log *n*, 1).

given  $L \in NP$  we build a PCP-verifier for L

- SAT is NP-complete; map instance x for L into 3SAT instance I<sub>x</sub>, s.t. I<sub>x</sub> satisfiable iff x ∈ L
- map  $I_x$  to MAX3SAT instance  $C_x$  (PCP Thm. Version A)
- interpret proof as assignment to variables in C<sub>x</sub>
- choose random clause X from  $C_X$
- query variable assignment  $\sigma$  for X;
- accept if  $X(\sigma)$  = true otw. reject

We show: Version A  $\Rightarrow$  NP  $\subseteq$  PCP<sub>1,1- $\epsilon$ </sub> (log *n*, 1).

given  $L \in NP$  we build a PCP-verifier for L

- SAT is NP-complete; map instance x for L into 3SAT instance I<sub>x</sub>, s.t. I<sub>x</sub> satisfiable iff x ∈ L
- map  $I_x$  to MAX3SAT instance  $C_x$  (PCP Thm. Version A)
- interpret proof as assignment to variables in C<sub>x</sub>
- choose random clause X from C<sub>x</sub>
- query variable assignment  $\sigma$  for  $X_i$
- accept if  $X(\sigma)$  = true otw. reject

We show: Version A  $\Rightarrow$  NP  $\subseteq$  PCP<sub>1,1- $\epsilon$ </sub>(log *n*, 1).

given  $L \in NP$  we build a PCP-verifier for L

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance  $I_x$ , s.t.  $I_x$  satisfiable iff  $x \in L$
- map  $I_x$  to MAX3SAT instance  $C_x$  (PCP Thm. Version A)
- interpret proof as assignment to variables in C<sub>x</sub>
- choose random clause X from  $C_X$
- query variable assignment  $\sigma$  for X;
- accept if  $X(\sigma)$  = true otw. reject

We show: Version A  $\Rightarrow$  NP  $\subseteq$  PCP<sub>1,1- $\epsilon$ </sub>(log *n*, 1).

given  $L \in NP$  we build a PCP-verifier for L

Verifier:

- ▶ 3SAT is NP-complete; map instance x for L into 3SAT instance  $I_x$ , s.t.  $I_x$  satisfiable iff  $x \in L$
- map  $I_X$  to MAX3SAT instance  $C_X$  (PCP Thm. Version A)
- interpret proof as assignment to variables in C<sub>x</sub>
- choose random clause X from  $C_X$
- query variable assignment  $\sigma$  for X;

• accept if  $X(\sigma)$  = true otw. reject

We show: Version A  $\Rightarrow$  NP  $\subseteq$  PCP<sub>1,1- $\epsilon$ </sub> (log *n*, 1).

given  $L \in NP$  we build a PCP-verifier for L

- SAT is NP-complete; map instance x for L into 3SAT instance I<sub>x</sub>, s.t. I<sub>x</sub> satisfiable iff x ∈ L
- map  $I_x$  to MAX3SAT instance  $C_x$  (PCP Thm. Version A)
- interpret proof as assignment to variables in C<sub>x</sub>
- choose random clause X from  $C_X$
- query variable assignment  $\sigma$  for X;
- accept if  $X(\sigma)$  = true otw. reject

- $[x \in L]$  There exists proof string  $\gamma$ , s.t. all clauses in  $C_{\chi}$  evaluate to 1. In this case the verifier returns 1.
- $[x \notin L]$  For any proof string  $\gamma$ , at most a  $(1 \epsilon)$ -fraction of clauses in  $C_x$  evaluate to 1. The verifier will reject with probability at least  $\epsilon$ .

To show Theorem B we only need to run this verifier a constant number of times to push rejection probability above 1/2.



# **Label Cover**

### Input:

- bipartite graph  $G = (V_1, V_2, E)$
- label sets L<sub>1</sub>, L<sub>2</sub>
- ► for every edge  $(u, v) \in E$  a relation  $R_{u,v} \subseteq L_1 \times L_2$  that describe assignments that make the edge happy.
- maximize number of happy edges



The label cover problem also has its origin in proof systems. It encodes a 2PR1 (2 prover 1 round system). Each side of the graph corresponds to a prover. An edge is a query consisting of a question for prover 1 and prover 2. If the answers are consistent the verifer accepts otw. it rejects.

# **Label Cover**

- an instance of label cover is (d<sub>1</sub>, d<sub>2</sub>)-regular if every vertex in L<sub>1</sub> has degree d<sub>1</sub> and every vertex in L<sub>2</sub> has degree d<sub>2</sub>.
- if every vertex has the same degree d the instance is called d-regular



instance:

 $\Phi(x) = (x_1 \lor \bar{x}_2 \lor x_3) \land (x_4 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_4)$ 

#### corresponding graph:



The verifier accepts if the labelling (assignment to variables in clauses at the top + assignment to variables at the bottom) causes the clause to evaluate to true and is consistent, i.e., the assignment of e.g.  $x_4$  at the bottom is the same as the assignment given to  $x_4$  in the labelling of the clause.

label sets:  $L_1 = \{T, F\}^3, L_2 = \{T, F\}$  (T=true, F=false)

relation:  $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$ , where the clause C is over variables  $x_i, x_j, x_k$  and assignment  $(u_i, u_j, u_k)$  satisfies C

 $R = \{ ((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), ((T,T,T),T), ((T,T,F),F), ((T,F,F),F) \}$ 

instance:

 $\Phi(x) = (x_1 \lor \bar{x}_2 \lor x_3) \land (x_4 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_4)$ 

### corresponding graph:



The verifier accepts if the labelling (assignment to variables in clauses at the top + assignment to variables at the bottom) causes the clause to evaluate to true and is consistent, i.e., the assignment of e.g.  $x_4$  at the bottom is the same as the assignment given to  $x_4$  in the labelling of the clause.

label sets:  $L_1 = \{T, F\}^3, L_2 = \{T, F\}$  (T=true, F=false)

relation:  $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$ , where the clause C is over variables  $x_i, x_j, x_k$  and assignment  $(u_i, u_j, u_k)$  satisfies C

 $R = \{ ((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), ((T,T,T),T), ((T,T,F),F), ((T,F,F),F) \}$ 

instance:

 $\Phi(x) = (x_1 \lor \bar{x}_2 \lor x_3) \land (x_4 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_4)$ 

corresponding graph:



The verifier accepts if the labelling (assignment to variables in clauses at the top + assignment to variables at the bottom) causes the clause to evaluate to true and is consistent, i.e., the assignment of e.g.  $x_4$  at the bottom is the same as the assignment given to  $x_4$  in the labelling of the clause.

label sets:  $L_1 = \{T, F\}^3, L_2 = \{T, F\}$  (*T*=true, *F*=false)

relation:  $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$ , where the clause C is over variables  $x_i, x_j, x_k$  and assignment  $(u_i, u_j, u_k)$  satisfies C

 $R = \{ ((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), ((T,T,T),T), ((T,T,F),F), ((T,F,F),F) \}$ 

instance:

 $\Phi(x) = (x_1 \lor \bar{x}_2 \lor x_3) \land (x_4 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_1 \lor x_2 \lor \bar{x}_4)$ 

corresponding graph:



The verifier accepts if the labelling (assignment to variables in clauses at the top + assignment to variables at the bottom) causes the clause to evaluate to true and is consistent, i.e., the assignment of e.g.  $x_4$  at the bottom is the same as the assignment given to  $x_4$  in the labelling of the clause.

label sets:  $L_1 = \{T, F\}^3, L_2 = \{T, F\}$  (*T*=true, *F*=false)

relation:  $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$ , where the clause *C* is over variables  $x_i, x_j, x_k$  and assignment  $(u_i, u_j, u_k)$  satisfies *C* 

$$\begin{split} R &= \{ ((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), \\ &\quad ((T,T,T),T), ((T,T,F),F), ((T,F,F),F) \} \end{split}$$

instance:

 $\Phi(\boldsymbol{x}) = (\boldsymbol{x}_1 \vee \bar{\boldsymbol{x}}_2 \vee \boldsymbol{x}_3) \land (\boldsymbol{x}_4 \vee \boldsymbol{x}_2 \vee \bar{\boldsymbol{x}}_3) \land (\bar{\boldsymbol{x}}_1 \vee \boldsymbol{x}_2 \vee \bar{\boldsymbol{x}}_4)$ 

corresponding graph:



The verifier accepts if the labelling (assignment to variables in clauses at the top + assignment to variables at the bottom) causes the clause to evaluate to true and is consistent, i.e., the assignment of e.g.  $x_4$  at the bottom is the same as the assignment given to  $x_4$  in the labelling of the clause.

label sets:  $L_1 = \{T, F\}^3, L_2 = \{T, F\}$  (*T*=true, *F*=false)

relation:  $R_{C,x_i} = \{((u_i, u_j, u_k), u_i)\}$ , where the clause *C* is over variables  $x_i, x_j, x_k$  and assignment  $(u_i, u_j, u_k)$  satisfies *C* 

$$R = \{((F,F,F),F), ((F,T,F),F), ((F,F,T),T), ((F,T,T),T), ((T,T,T),T), ((T,T,F),F), ((T,F,F),F)\}$$

### Lemma 8

If we can satisfy k out of m clauses in  $\phi$  we can make at least 3k + 2(m - k) edges happy.

- for 10 use the setting of the assignment that satisfies to clauses
- for satisfied clauses in (-) use the corresponding assignment) to the clause-variables (gives (-) happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives align with happy edges)



### Lemma 8

If we can satisfy k out of m clauses in  $\phi$  we can make at least 3k + 2(m - k) edges happy.

- for V<sub>2</sub> use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V<sub>1</sub> use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m - k) happy edges)



### Lemma 8

If we can satisfy k out of m clauses in  $\phi$  we can make at least 3k + 2(m - k) edges happy.

- for V<sub>2</sub> use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V<sub>1</sub> use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m - k) happy edges)



### Lemma 8

If we can satisfy k out of m clauses in  $\phi$  we can make at least 3k + 2(m - k) edges happy.

- for V<sub>2</sub> use the setting of the assignment that satisfies k clauses
- for satisfied clauses in V<sub>1</sub> use the corresponding assignment to the clause-variables (gives 3k happy edges)
- for unsatisfied clauses flip assignment of one of the variables; this makes one incident edge unhappy (gives 2(m - k) happy edges)



#### Lemma 9

If we can satisfy at most k clauses in  $\Phi$  we can make at most 3k + 2(m - k) = 2m + k edges happy.

- It the labeling of nodes in 3% gives an assignment.
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most 3m = (m = k) = 2m + k edges are happy



#### Lemma 9

If we can satisfy at most k clauses in  $\Phi$  we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V<sub>2</sub> gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most 3m (m k) = 2m + k edges are happy



#### Lemma 9

If we can satisfy at most k clauses in  $\Phi$  we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V<sub>2</sub> gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most 3m (m k) = 2m + k edges are happy



#### Lemma 9

If we can satisfy at most k clauses in  $\Phi$  we can make at most 3k + 2(m - k) = 2m + k edges happy.

- the labeling of nodes in V<sub>2</sub> gives an assignment
- every unsatisfied clause in this assignment cannot be assigned a label that satisfies all 3 incident edges
- hence at most 3m (m k) = 2m + k edges are happy



# Hardness for Label Cover

Here  $\epsilon > 0$  is the constant from PCP Theorem A.

We cannot distinguish between the following two cases

- all 3m edges can be made happy
- at most  $2m + (1 \epsilon)m = (3 \epsilon)m$  out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant  $\alpha > \frac{3-\epsilon}{3}$ .



# Hardness for Label Cover

| ŀ | ler | e | $\epsilon >$ | 0 | is | the | e c | on | sta | ant | fr | om | ۱F | PC | Ρ | ТΙ | he | - |
|---|-----|---|--------------|---|----|-----|-----|----|-----|-----|----|----|----|----|---|----|----|---|
|   | ore | m | Α.           |   |    |     |     |    |     |     |    |    |    |    |   |    |    |   |
| _ |     | _ |              | - |    |     |     |    |     |     |    |    | -  | -  | - | -  | -  | _ |

We cannot distinguish between the following two cases

- all 3m edges can be made happy
- at most  $2m + (1 \epsilon)m = (3 \epsilon)m$  out of the 3m edges can be made happy

Hence, we cannot obtain an approximation constant  $\alpha > \frac{3-\epsilon}{3}$ .



# (3, 5)-regular instances

#### Theorem 10

There is a constant  $\rho$  s.t. MAXE3SAT is hard to approximate with a factor of  $\rho$  even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- the resulting Label Cover instance is (3,5)-regular.
- it is hard to approximate for a constant  $\alpha < 1$
- ▶ given a label l₁ for x there is at most one label l₂ for y that makes edge (x, y) happy (uniqueness property)



# (3, 5)-regular instances

### Theorem 10

There is a constant  $\rho$  s.t. MAXE3SAT is hard to approximate with a factor of  $\rho$  even if restricted to instances where a variable appears in exactly 5 clauses.

Then our reduction has the following properties:

- ▶ the resulting Label Cover instance is (3, 5)-regular
- it is hard to approximate for a constant  $\alpha < 1$
- ▶ given a label ℓ<sub>1</sub> for x there is at most one label ℓ<sub>2</sub> for y that makes edge (x, y) happy (uniqueness property)



# (3, 5)-regular instances

The previous theorem can be obtained with a series of gap-preserving reductions:

- MAX3SAT  $\leq$  MAX3SAT( $\leq$  29)
- $MAX3SAT(\leq 29) \leq MAX3SAT(\leq 5)$
- $MAX3SAT(\leq 5) \leq MAX3SAT(= 5)$

• 
$$MAX3SAT(= 5) \le MAXE3SAT(= 5)$$

Here MAX3SAT( $\leq 29$ ) is the variant of MAX3SAT in which a variable appears in at most 29 clauses. Similar for the other problems.



# **Regular instances**

We take the (3, 5)-regular instance. We make 3 copies of every clause vertex and 5 copies of every variable vertex. Then we add edges between clause vertex and variable vertex iff the clause contains the variable. This increases the size by a constant factor. The gap instance can still either only satisfy a constant fraction of the edges or all edges. The uniqueness property still holds for the new instance.

### Theorem 11

There is a constant  $\alpha < 1$  such if there is an  $\alpha$ -approximation algorithm for Label Cover on 15-regular instances than P=NP.

Given a label  $\ell_1$  for  $x \in V_1$  there is at most one label  $\ell_2$  for y that makes (x, y) happy. (uniqueness property)


We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance probability of a wrong proof (or as here: a pair of wrong proofs) one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several rounds in parallel and hope that the acceptance probability of wrong proofs goes down.



Given Label Cover instance I with  $G = (V_1, V_2, E)$ , label sets  $L_1$  and  $L_2$  we construct a new instance I':

$$V'_1 = V_1^k = V_1 \times \cdots \times V_1$$

$$V'_2 = V_2^k = V_2 \times \cdots \times V_2$$

$$L'_1 = L_1^k = L_1 \times \cdots \times L_1$$

$$L'_2 = L_2^k = L_2 \times \cdots \times L_2$$

$$E' = E^k = E \times \cdots \times E$$

An edge  $((x_1, \ldots, x_k), (y_1, \ldots, y_k))$  whose end-points are labelled by  $(\ell_1^x, \ldots, \ell_k^x)$  and  $(\ell_1^y, \ldots, \ell_k^y)$  is happy if  $(\ell_i^x, \ell_i^y) \in R_{x_i, y_i}$  for all *i*.



## If I is regular than also I'.

## If I has the uniqueness property than also I'.

#### Did the gap increase?

- Suppose we have labelling (5.1%) that satisfies just an enfraction of edges in (.
- We transfer this labelling to instance in vertex (as a set opers label (1/1000), as (1/000), vertex (as a set opergets label (1/000), as (2/000).
- How many edges are happy?



## If I is regular than also I'.

If I has the uniqueness property than also I'.

## Did the gap increase?

- Suppose we have labelling if a first hat satisfies just an orifaction of edges in a
- We transfer this labelling to instance in vertex (as a set opers label (1/1000), as (1/000), vertex (as a set opergets label (1/000), as (2/000).
- How many edges are happy?



If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling  $\ell_1, \ell_2$  that satisfies just an  $\alpha$ -fraction of edges in *I*.
- ▶ We transfer this labelling to instance I': vertex  $(x_1,...,x_k)$  gets label  $(\ell_1(x_1),...,\ell_1(x_k))$ , vertex  $(y_1,...,y_k)$  gets label  $(\ell_2(y_1),...,\ell_2(y_k))$ .
- How many edges are happy? only to the out of the UU (just an ed fraction).



If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ<sub>1</sub>, ℓ<sub>2</sub> that satisfies just an α-fraction of edges in *I*.
- ▶ We transfer this labelling to instance I': vertex  $(x_1, ..., x_k)$  gets label  $(\ell_1(x_1), ..., \ell_1(x_k))$ , vertex  $(y_1, ..., y_k)$  gets label  $(\ell_2(y_1), ..., \ell_2(y_k))$ .

How many edges are happy? only control out of a child (ust an of fraction loss this always work?



If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ<sub>1</sub>, ℓ<sub>2</sub> that satisfies just an α-fraction of edges in *I*.
- ▶ We transfer this labelling to instance I': vertex  $(x_1, ..., x_k)$  gets label  $(\ell_1(x_1), ..., \ell_1(x_k))$ , vertex  $(y_1, ..., y_k)$  gets label  $(\ell_2(y_1), ..., \ell_2(y_k))$ .
- How many edges are happy? only (α|E|)<sup>k</sup> out of |E|<sup>k</sup>!!! (just an α<sup>k</sup> fraction) loes this always work?



If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ<sub>1</sub>, ℓ<sub>2</sub> that satisfies just an α-fraction of edges in *I*.
- ▶ We transfer this labelling to instance I': vertex  $(x_1, ..., x_k)$  gets label  $(\ell_1(x_1), ..., \ell_1(x_k))$ , vertex  $(y_1, ..., y_k)$  gets label  $(\ell_2(y_1), ..., \ell_2(y_k))$ .
- How many edges are happy?
   only (α|E|)<sup>k</sup> out of |E|<sup>k</sup>!!! (just an α<sup>k</sup> fraction)



If I is regular than also I'.

If I has the uniqueness property than also I'.

Did the gap increase?

- Suppose we have labelling ℓ<sub>1</sub>, ℓ<sub>2</sub> that satisfies just an α-fraction of edges in *I*.
- ▶ We transfer this labelling to instance I': vertex  $(x_1, ..., x_k)$  gets label  $(\ell_1(x_1), ..., \ell_1(x_k))$ , vertex  $(y_1, ..., y_k)$  gets label  $(\ell_2(y_1), ..., \ell_2(y_k))$ .
- How many edges are happy?
   only (α|E|)<sup>k</sup> out of |E|<sup>k</sup>!!! (just an α<sup>k</sup> fraction)



#### Non interactive agreement:

- Two provers A and B
- The verifier generates two random bits b<sub>A</sub>, and b<sub>B</sub>, and sends one to A and one to B.
- Each prover has to answer one of A<sub>0</sub>, A<sub>1</sub>, B<sub>0</sub>, B<sub>1</sub> with the meaning A<sub>0</sub> := prover A has been given a bit with value 0.
- The provers win if they give the same answer and if the answer is correct.



#### The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!



18 Hardness of Approximation

#### The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!



18 Hardness of Approximation

#### The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!



18 Hardness of Approximation

#### The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!



18 Hardness of Approximation

#### The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!



18 Hardness of Approximation

#### The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!



18 Hardness of Approximation

#### The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!



18 Hardness of Approximation

#### The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!



18 Hardness of Approximation

The provers can win with probability at most 1/2.



Regardless what we do 50% of edges are unhappy!



18 Hardness of Approximation

In the repeated game the provers can also win with probability 1/2:



For the first game/coordinate the provers give an answer of the form ! "A has received..." ( $A_0$  or  $A_1$ ) and for the second an answer of the form "B has received..." ( $B_0$  or  $B_1$ ). If the answer a prover has to give i is about himself a prover can answer correctly. If the answer to be ! given is about the other prover the  $A_0, B_0$  same bit is returned. This means e.g. Prover B answers  $A_1$  for the first game iff in the second game he receives a 1-bit. By this method the provers always win if Prover A gets the same bit in the first game as Prover B in the second game. This happens with probability 1/2. This strategy is not possible for the provers if the game is repeated sequentially. How should prover B know (for her answer in the first !

 $A_1, B_1$  game) which bit she is going to receive in the second game?

## **Boosting**

#### Theorem 12

There is a constant c > 0 such if  $OPT(I) = |E|(1 - \delta)$  then  $OPT(I') \le |E'|(1 - \delta)^{\frac{ck}{\log L}}$ , where  $L = |L_1| + |L_2|$  denotes total number of labels in I.

proof is highly non-trivial



18 Hardness of Approximation

## **Boosting**

#### Theorem 12

There is a constant c > 0 such if  $OPT(I) = |E|(1 - \delta)$  then  $OPT(I') \le |E'|(1 - \delta)^{\frac{ck}{\log L}}$ , where  $L = |L_1| + |L_2|$  denotes total number of labels in I.

proof is highly non-trivial



18 Hardness of Approximation

## **Hardness of Label Cover**

#### Theorem 13

There are constants c > 0,  $\delta < 1$  s.t. for any k we cannot distinguish regular instances for Label Cover in which either

- OPT(I) = |E|, or
- OPT(I) =  $|E|(1 \delta)^{ck}$

# unless each problem in NP has an algorithm running in time $\mathcal{O}(n^{\mathcal{O}(k)})$ .

## **Corollary 14**

There is no  $\alpha$ -approximation for Label Cover for any constant  $\alpha$ .



# **Advanced PCP Theorem**

Here the verifier reads exactly three bits from the proof. Not O(3) bits.

## Theorem 15

For any positive constant  $\epsilon > 0$ , it is the case that  $NP \subseteq PCP_{1-\epsilon,1/2+\epsilon}(\log n, 3)$ . Moreover, the verifier just reads three bits from the proof, and bases its decision only on the parity of these bits.

It is NP-hard to approximate a MAXE3LIN problem by a factor better than  $1/2 + \delta$ , for any constant  $\delta$ .

It is NP-hard to approximate MAX3SAT better than  $7/8 + \delta$ , for any constant  $\delta$ .

