10 Karmarkars Algorithm

- ▶ inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- ▶ $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- for $x \in P^{\circ}$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

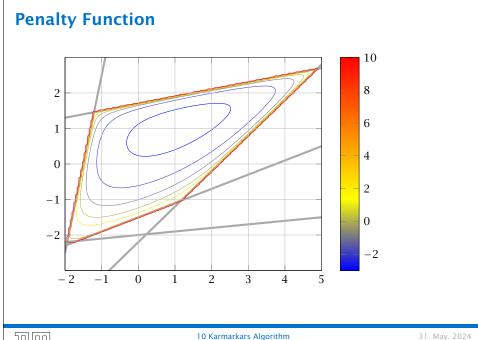
logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \ln(s_i(x))$$

Penalty for point x; points close to the boundary have a very large penalty.

> Throughout this section a_i denotes the i-th row as a column vector.

Penalty Function 10 8 5 -210 Karmarkars Algorithm 31. May. 2024 ∏∏∏ Harald Räcke



Harald Räcke

Gradient and Hessian

Taylor approximation:

$$\phi(x + \epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), ..., 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_X := \nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)^2} a_i a_i^T = A^T D_X^2 A$$

with $D_X = \operatorname{diag}(d_X)$.

Proof for Gradient

$$\frac{\partial \phi(x)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(-\sum_r \ln(s_r(x)) \right)$$

$$= -\sum_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right) = -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right)$$

$$= -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right) = \sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right)$$

$$= \sum_r \frac{1}{s_r(x)} A_{ri}$$

The *i*-th entry of the gradient vector is $\sum_{r} 1/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} 1/s_r(x) a_r = A^T d_x$$

Properties of the Hessian

 H_x is positive semi-definite for $x \in P^{\circ}$

$$u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_x is positive definite for $x \in P^{\circ}$

$$u^T H_X u = ||D_X A u||_2^2 > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_x} := \sqrt{u^T H_x u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_{r} A_{ri} A_{rj} = (A^T A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

Hence the Hessian is

$$H_X = A^T D^2 A$$

Dikin Ellipsoid

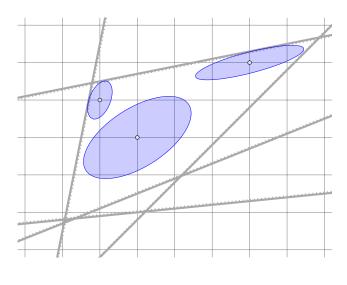
$$E_X = \{ y \mid (y - x)^T H_X (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

Points in E_x are feasible!!!

$$\begin{split} &(y-x)^T H_X(y-x) = (y-x)^T A^T D_X^2 A(y-x) \\ &= \sum_{i=1}^m \frac{(a_i^T (y-x))^2}{s_i(x)^2} \\ &= \sum_{i=1}^m \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^2}{(\text{distance of } x \text{ to } i\text{-th constraint})^2} \\ &\leq 1 \end{split}$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

Dikin Ellipsoids



Harald Räcke

10 Karmarkars Algorithm

31. May. 2024

Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_x \{tc^T x + \phi(x)\}\$$

- ightharpoonup t = 0: analytic center
- $ightharpoonup t=\infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

Analytic Center

$$x_{\mathrm{ac}} := \operatorname{arg\,min}_{x \in P^{\circ}} \phi(x)$$

 \triangleright x_{ac} is solution to

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$$

- depends on the description of the polytope
- \blacktriangleright $\chi_{\rm ac}$ exists and is unique iff P° is nonempty and bounded

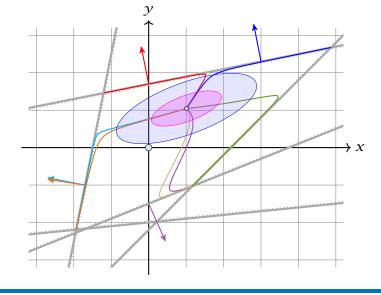
Harald Räcke

10 Karmarkars Algorithm

31. May. 2024

$$x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$$

Different Central Paths



Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions:

- ▶ Is this really true? How large a *t* do we need?
- ▶ How do we find corresponding point $x^*(t)$ on central path?

10 Karmarkars Algorithm

31. May. 2024 47/75

Force Field Interpretation

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$

- We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
- ▶ In addition there is a force *tc* pulling us towards the optimum solution.

The "gravitational force" actually pulls us in direction $-\nabla\Phi(x)$. We are minimizing, hence, optimizing in direction -c.

Harald Räcke

10 Karmarkars Algorithm

31. May. 2024

The Dual

primal-dual pair:

$$\begin{array}{cc}
\min & c^T x \\
\text{s.t. } Ax \leq b
\end{array}$$

$$\max -b^{T}z$$
s.t. $A^{T}z + c = 0$
 $z \ge 0$

Assumptions

- primal and dual problems are strictly feasible;
- ightharpoonup rank(A) = n.

Note that the right LP in standard form is equal to $\max\{-b^Ty \mid -A^Ty = c, x \ge 0\}$. The dual of this is $\min\{c^Tx \mid -Ax \ge -b\}$ (variables x are unrestricted).

How large should t be?

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

- $ightharpoonup z^*(t)$ is strictly dual feasible: $(A^Tz^* + c = 0; z^* > 0)$
- duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

How to find $x^*(t)$

First idea:

- start somewhere in the polytope
- use iterative method (Newtons method) to minimize $f_t(x) := tc^T x + \phi(x)$

10 Karmarkars Algorithm

31. May. 2024 51/75

Newton Method

Observe that $H_{f_t}(x) = H(x)$, where H(x) is the Hessian for the function $\phi(x)$ (adding a linear term like tc^Tx does not affect the Hessian).

Also
$$\nabla f_t(x) = tc + \nabla \phi(x)$$
.

We want to move to a point where this gradient is 0:

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H_{f_t}^{-1}(x) \nabla f_t(x)$$

$$= -H_{f_t}^{-1}(x) (tc + \nabla \phi(x))$$

$$= -(A^T D_x^2 A)^{-1} (tc + A^T d_x)$$

Newton Iteration:

$$x := x + \Delta x_{\mathsf{nt}}$$

Newton Method

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x+\epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$$

Note that for the one-dimensional case $g(\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2$, then $g'(\epsilon) = f'(x) + f''(x)\epsilon$.

10 Karmarkars Algorithm

31. May. 2024

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\mathsf{nt}}$$

- $\lambda_t(x) = 0 \text{ iff } x = x^*(t)$
- \blacktriangleright $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Recall that $\Delta x_{\rm nt}$ fulfills $-H(x)\Delta x_{\rm nt} = \nabla f_t(x)$.

Convergence of Newtons Method

Theorem 3

If $\lambda_t(x) < 1$ then

- $\blacktriangleright x_+ := x + \Delta x_{nt} \in P^\circ$ (new point feasible)
- $\lambda_t(x_+) \leq \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\begin{split} \lambda_t(x^+)^2 &= \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 \\ &\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \end{split}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||^2$$

$$if a^T(a+b)=0.$$

Convergence of Newtons Method

feasibility:

▶ $\lambda_t(x) = \|\Delta x_{\rm nt}\|_{H_X} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

Convergence of Newtons Method

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$a^{T}(a+b)$$

$$= \Delta x_{\mathsf{nt}}^{+T} A^{T} D_{+} \left(D_{+} A \Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1} D) D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(A^{T} D_{+}^{2} A \Delta x_{\mathsf{nt}}^{+} - A^{T} D^{2} A \Delta x_{\mathsf{nt}} + A^{T} D_{+} D A \Delta x_{\mathsf{nt}} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(H_{+} \Delta x_{\mathsf{nt}}^{+} - H \Delta x_{\mathsf{nt}} + A^{T} D_{+} \vec{1} - A^{T} D \vec{1} \right)$$

$$= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_{t}(x^{+}) + \nabla f_{t}(x) + \nabla \phi(x^{+}) - \nabla \phi(x) \right)$$

$$= 0$$

Convergence of Newtons Method

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\begin{split} \lambda_t(x^+)^2 &= \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 \\ &\leq \|D_+ A \Delta x_{\mathsf{nt}}^+\|^2 + \|D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}}\|^2 \\ &= \|(I - D_+^{-1} D)^2 \vec{1}\|^2 \\ &\leq \|(I - D_+^{-1} D) \vec{1}\|^4 \\ &= \|D A \Delta x_{\mathsf{nt}}\|^4 \\ &= \lambda_t(x)^4 \end{split}$$

The second inequality follows from $\sum_i y_i^4 \le (\sum_i y_i^2)^2$

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function

4: recenter to return to central path

If $\lambda_t(x)$ is large we do not have a guarantee.

Try to avoid this case!!!

Harald Räcke

10 Karmarkars Algorithm

31. May. 2024

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $\triangleright x^*(t)$ is computed exactly in each iteration

 ϵ is approximation we are aiming for

start at $t=t_0$, repeat until $m/t \leq \epsilon$

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- $ightharpoonup t := \mu t$

where $\mu = 1 + 1/(2\sqrt{m})$

Short Step Barrier Method

gradient of f_{t+} at $(x = x^*(t))$

$$\nabla f_{t^+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$$

$$= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A$$

$$\leq (\mu - 1)^{2} m$$

$$= 1/4$$

This means we are in the range of quadratic convergence!!!

Damped Newton Method

We assume that the polytope (not just the LP) is bounded. Then $Av \le 0$ is not possible.

For $x \in P^{\circ}$ and direction $v \neq 0$ define

$$\sigma_X(v) := \max_i \frac{a_i^T v}{s_i(x)}$$
 side of the *i*-th constrain moving in direction of v . If $\sigma_X(v) > 1$ then for or dinate this change is larg

 $\begin{bmatrix} a_i^T v \text{ is the change on the left hand} \\ \text{side of the } i\text{-th constraint when} \\ \text{moving in direction of } v. \end{bmatrix}$

If $\sigma_X(v) > 1$ then for one coordinate this change is larger than the slack in the constraint at position x.

By downscaling v we can ensure to stay in the polytope.

31. May. 2024

Observation:

$$x + \alpha v \in P$$
 for $\alpha \in \{0, 1/\sigma_x(v)\}$

Number of Iterations

the number of Newton iterations per outer tors. Since it is a projection maiteration is very small; in practise only 1 or $2\frac{trix}{trix}$ ($P^2 = P$) it can only have

Number of outer iterations:

We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when

$$k \geq \frac{\log(m/(\epsilon t_0))}{\log(\mu)}$$

We get a bound of

$$\mathcal{O}\Big(\sqrt{m}\log\frac{m}{\epsilon t_0}\Big)$$

Explanation for previous slide $P = B(B^TB)^{-1}B^T$ is a symmetric real-valued matrix; it has n linearly independent Eigenvectors. Since it is a projection matrix $(P^2 = P)$ it can only have Eigenvalues 0 and 1 (because the Eigenvalues of P^2 are λ_i^2 , where λ_i is Eigenvalue of P).

$$\max_{v} \frac{v^T P v}{v^T v}$$

gives the largest Eigenvalue for P. Hence, $\vec{1}^T P \vec{1} \leq \vec{1}^T \vec{1} = m$

We show how to get a starting point with $t_0=1/2^L$. Together with $\epsilon \approx 2^{-L}$ we get $\mathcal{O}(L\sqrt{m})$ iterations.

10 Karmarkars Algorithm

31. May. 2024

Damped Newton Method

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha v) - \phi(x) = -\sum_{i} \log(s_{i}(x + \alpha v)) + \sum_{i} \log(s_{i}(x))$$
$$= -\sum_{i} \log(s_{i}(x + \alpha v)/s_{i}(x))$$
$$= -\sum_{i} \log(1 - a_{i}^{T} \alpha v/s_{i}(x))$$

 $s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$

Damped Newton Method

$$\nabla f_t(x)^T \alpha v$$

$$= \left(tc^T + \sum_i a_i^T / s_i(x)\right) \alpha v$$

$$= tc^T \alpha v + \sum_i \alpha w_i$$

Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then Note that $||w|| = ||v||_{H_x}$.

$$\begin{split} f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v \\ &= -\sum_i (\alpha w_i + \log(1 - \alpha w_i)) \\ &\leq -\sum_{w_i > 0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_{w_i \le 0} \frac{\alpha^2 w_i^2}{2} \\ &\leq -\sum_{w_i > 0} \frac{w_i^2}{\sigma^2} \Big(\alpha \sigma + \log(1 - \alpha \sigma)\Big) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i \le 0} \frac{w_i^2}{\sigma^2} \end{split}$$

For
$$|x| < 1$$
, $x \le 0$:
 $|x + \log(1 - x)| = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \ge -\frac{x^2}{2} = -\frac{y^2}{2} \frac{x^2}{y^2}$
For $|x| < 1$, $0 < x \le y$:
 $|x + \log(1 - x)| = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^2x}{3} - \frac{y^2x^2}{4} - \dots \right)$
 $|x + \log(1 - x)| = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^3}{3} - \frac{y^4}{4} - \dots \right) = \frac{x^2}{y^2} (y + \log(1 - y))$

Damped Newton Method

Theorem:

In a damped Newton step the cost decreases by at least

$$\lambda_t(x) - \log(1 + \lambda_t(x))$$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x}^2 (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\alpha}$ and $v = \Delta x_{nt}$ gives

$$\frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \left(\frac{\sigma}{1+\sigma} + \log\left(1 - \frac{\sigma}{1+\sigma}\right) \right)$$
$$= \frac{\lambda_t(x)^2}{\sigma^2} \left(\sigma - \log(1+\sigma) \right)$$

With $v = \Delta x_{nt}$ we have $||w||_2 = ||v||_{H_X} = \lambda_t(x)$; further recall that $\sigma = \|w\|_{\infty}$; hence $\sigma \leq \lambda_t(x)$.

Damped Newton Method
$$\begin{cases} \text{For } x \ge 0 \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \end{cases}$$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{X}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{\mathsf{nt}})} \Delta x_{\mathsf{nt}}$$

This means that in the above expressions we choose $\alpha=\frac{1}{1+\sigma}$ and $v=\Delta x_{\rm nt}$. Note that it wouldn't make sense to choose α larger than 1 as this would mean that our real target $\frac{1}{1}(x + \Delta x_{\rm nt})$ is inside the polytope but we overshoot and go further than this target.

10 Karmarkars Algorithm

31. May. 2024

Damped Newton Method

The first inequality follows since the function $\frac{1}{x^2}(x - \log(1+x))$ is monotonically decreasing.

$$\geq \lambda_t(x) - \log(1 + \lambda_t(x))$$

 ≥ 0.09

for $\lambda_t(x) \geq 0.5$

Centering Algorithm:

Input: precision δ ; starting point x

- 1. compute $\Delta x_{\rm nt}$ and $\lambda_t(x)$
- **2.** if $\lambda_t(x) \leq \delta$ return x
- 3. set $x := x + \alpha \Delta x_{nt}$ with

$$\alpha = \left\{ \begin{array}{ll} \frac{1}{1 + \sigma_x(\Delta x_{\mathsf{nt}})} & \lambda_t \ge 1/2 \\ 1 & \mathsf{otw.} \end{array} \right.$$

10 Karmarkars Algorithm

31. May. 2024

Centering

Lemma 4

The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \leq \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log\log(1/\delta))$$

iterations.

This can be very, very slow...

10 Karmarkars Algorithm

31. May. 2024

31. May. 2024

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^Tx_B - c^Tx_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}})$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t\approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

Harald Räcke

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

Harald Räcke

10 Karmarkars Algorithm

31. May. 2024

How to get close to analytic center?

Start at x_0 .

Choose $\hat{c} := -\nabla \phi(x)$.

Note that an entry in \hat{c} fulfills $|\hat{c}_i| \leq 2^{2L}$. This holds since the slack in every constraint at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient is the vector of inverse slacks.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

(i.e., same value for t but different c, hence, different central path).

How to get close to analytic center? Clearly, $t \cdot \hat{c}^T x_{\hat{c}} + \phi(x_{\hat{c}}) \le t \cdot \hat{c}^T x_c + \phi(x_c)$ The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is $tc^T \mathbf{x}_{\hat{c}} + \phi(\mathbf{x}_{\hat{c}}) - tc^T \mathbf{x}_c - \phi(\mathbf{x}_c)$ $\leq t(c^T x_{\hat{c}} + \hat{c}^T x_c - \hat{c}^T x_{\hat{c}} - c^T x_c)$ $\leq 4tn2^{3L}$ For $t = 1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to x_c quickly. In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm. One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.