10 Karmarkars Algorithm Penalty Function

> inequalities Ax < b; m X n matrix A with rows aiT 10
» P={x|Ax <b}; P°:={x| Ax < b}
> interior point algorithm: x € P° throughout the algorithm 8
> for x € P° define 6
si(x):=b;i—alx
as the slack of the i-th constraint !
2
logarithmic barrier function:
. 0
P (x) = - > In(si(x)) 5
i=1

Penalty for point x; points close to the boundary have a very large
penalty.

_________________________

IThroughout this section a; denotes the | 10 Karmarkars Algorithm
| i-th row as a column vector. \ m Harald Ricke

Penalty Function Gradient and Hessian

Taylor approximation:

Px+€)~p(x)+Vpx)Te+ = 5 Tv P(x)e

Gradient:
| m il “hl Hl J .
“ | h ( qu(x) = Z 1 -a; = Ade
“ )
‘ ‘ . where df = (1/51(x),...,1/sm(x)). (dx vector of inverse slacks)
Hessian:
&1
Hy = V2 (x) = 121 oozl =ATDiA

with Dy = diag(dy).

‘_Imm 10 Karmarkars Algorithm
Harald Ricke




Proof for Gradient

op(x)

0Xi

( Zln(sr(X)))

0

T ox;
;aa(ln(sr(x))) ;sy(x) axl< T(X))
-2

SV(X) axl( ar ) ;sr(x) axl< $x>
=S A

” Sy (x)

The i-th entry of the gradient vector is >, 1/s,(x) - A,;. This
gives that the gradient is

Ve (x) =D 1/sr(x)ar = Aldy

Proof for Hessian

afcj(zsf(lx) ) ZA”( Mic)z)'aaxj(sﬂxg

1
=N A, A,
2. Aris ey

v

Note that >, A, A, = (ATA)U. Adding the additional factors
1/s,(x)? can be done with a diagonal matrix.

Hence the Hessian is
Hy, = ATD?A

Properties of the Hessian

Hy is positive semi-definite for x € P°
uTHyu = uTATD2Au = [|[DxAull3 = 0

This gives that ¢ (x) is convex.

If rank(A) = n, Hy is positive definite for x € P°
u'Hyu = |DyAull3 > 0 for u # 0
This gives that ¢ (x) is strictly convex.

llullg, = vulHyu is a (semi-)norm; the unit ball w.r.t. this norm
is an ellipsoid.
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Dikin Ellipsoid

Ex=1y1(-x)THe(y —x) <1} ={y | lly — xllg, <1}

Points in E, are feasible!!!

(v —x)THy(y —x) = (v = x)TATD2A(y - x)
S (a (v = x))?
5i(x)?

i=1

(change of distance to i-th constraint going from x to y)?
(distance of x to i-th constraint)?

IA Il

In order to become infeasible when going from x to y one of the
terms in the sum would need to be larger than 1.




Dikin Ellipsoids

Analytic Center

Xac 1= arg min, cp. ¢ (x)

> X, is solution to
m

V()= 1 a;=0

ai; =
i1 si(x)

> depends on the description of the polytope

> Xac exists and is unique iff P° is nonempty and bounded
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Central Path

In the following we assume that the LP and its dual are strictly
feasible and that rank(A) = n.

Central Path:
Set of points {x*(t) | t > 0} with

x*(t) = argmin, {tcTx + ¢p(x)}

» t = 0: analytic center

> t = oo: optimum solution

x*(t) exists and is unique for all t > 0.

Different Central Paths
y
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Central Path

Intuitive Idea:
Find point on central path for large value of t. Should be close to
optimum solution.

Questions:
> Is this really true? How large a t do we need?

» How do we find corresponding point x*(t) on central path?
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The Dual

primal-dual pair:

— max —-blz
min ¢ X
st. ATz+¢c=0
s.t. Ax<b
z>0
Assumptions

» primal and dual problems are strictly feasible;

» rank(A) = n.

| Note that the right LP in standard form ]
lis equal to max{-bTy | -ATy =c,x =1
1 0}. The dual of this is min{cTx | —Ax > |

: —b} (variables x are unrestricted). y

Force Field Interpretation

Point x*(t) on central path is solution to tc + V¢(x) =0

> We can view each constraint as generating a repelling force.
The combination of these forces is represented by V¢ (x).

> In addition there is a force tc pulling us towards the
optimum solution.

r—- - - =" =" ="-="-=-=-="-=-="-"="="="="="="==== 1
1 The “gravitational force” actually pulls us 1

: in direction —V®(x). We are minimizing,:
: hence, optimizing in direction —c. !
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How large should t be?

Point x*(t) on central path is solution to tc + V¢ (x) = 0.

This means
U 1
tc + ——a; =0
AP
or
U 1
Cc + Z Z;k(t)ai =0 with Z;k(t) = W

i=1

> z*(t) is strictly dual feasible: (ATz* + ¢ = 0; z* > 0)

> duality gap between x := x*(t) and z := z*(t) is
cIx+bTz=(b-Ax)Tz= %

> if gap is less than 1/2%L) we can snap to optimum point




How to find x* (1)

First idea:
> start somewhere in the polytope

> use iterative method (Newtons method) to minimize
fr(x) i=tcTx + p(x)
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Newton Method

Quadratic approximation of f;

filx+e) =~ fr(x) + Vi) e+ %GTHf:(X)G

Suppose this were exact:

felx +©) = i) + Vfi) e + 2eTHy (e

Then gradient is given by:

Vfi(x +€) =V fi(x)+Hyf(x)-€
| Note that for the one-dimensional case 1
19(€) = f(x) + f1(x)€+ 3£ (x)€?, then |
Lg'(e) = f(x) + f" (x)e. [
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| Observe that Hy, (x) = H(x), where H(x) is the Hessian 1

'for the function ¢(x) (adding a linear term like tcTx
1 does not affect the Hessian). !
1

Newton Method

:Also Vft(x) =tc+ Vp(x).

___________________________________

We want to move to a point where this gradient is O:

Newton Step at x € P°

Axne = —Hp' (X)V fi (x)
—H (o) (tc + Ve (x)

—(ATD2A) Mtc + ATdy)

Newton Iteration:
X =X + AXnt

Measuring Progress of Newton Step

Newton decrement:

At (x) = [[Dx AAXntll

= llAxntll

Square of Newton decrement is linear estimate of reduction if we
do a Newton step:

At (x)? = V()T Axne

> Ar(x) = 0iff x = x* (1)

> A;(x) is measure of proximity of x to x™*(t)




Convergence of Newtons Method

Theorem 3
If A;(x) < 1 then

> x, =X+ Axpu € P° (new point feasible)

> Ar(xs) < Ap(x)?

This means we have quadratic convergence. Very fast.

Convergence of Newtons Method

feasibility:

> At(x) = |Axntllg, < 1; hence x; lies in the Dikin ellipsoid
around x.

Convergence of Newtons Method

bound on As(x™"):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(dy+)

At(x™)? = IDy AAXR I
< |DLAAXI? + IDy AAX, + (I = D7 'D)DAAX |1
= |(I = D;'D)DAAXy ||

To see the last equality we use Pythagoras
lall® + lla + blI* = ||b||?

if al (a + b) = 0.

Convergence of Newtons Method
DAAxp = DA(x™ — x)
=D(b - Ax — (b — Ax™"))
=D(D7'T-D7')
= (I -D7;'D)1

al(a+b)
= Axi ATD. (D AAX, + (I - DI'D)DAAXp)
= Axid (ATD2AAX, — ATD? AAxn + ATD, DAAX )
= Axl (H, Axfy — HAxn + ATD. T — ATDT)
= A (= Ve (x) + Vfix) + Vp(xT) = Veb(x))
=0




Convergence of Newtons Method

bound on As(x7):
we use D := Dy = diag(dy) and Dy := Dy+ = diag(d+)

A(x )2 = ||D+AAx,Tt||2 If A;(x) is large we do not have a guarantee.
< IDyAAXNII? + ID+AAX S + (I = DY D)DAAX |2 Try to avoid this casell

= | (I - D;'D)DAAXy ||
= (I - D7'D)?1?
<0 -D'D)I|?

= |IDAAX|I*

= Ar(x)?

The second inequality follows from 3, v < (3, 2)*
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Path-following Methods Short Step Barrier Method

simplifying assumptions:

Try to slowly travel along the central path. > a first central point x* (o) is given
> x*(t)is computed exactly in each iteration

Algorithm 1 PathFollowing
1: start at analytic center € is approximation we are aiming for
2: while solution not good enough do
3: make step to improve objective function start at t = tg, repeat until m/t < e
4 recenter to return to central path > compute x*(ut) using Newton starting from x* (t)
> = ut

where py=1+1/(2/m)




Short Step Barrier Method

gradient of f;+ at (x = x*(t))

Vfr+(x) = Vfi(x) + (u—1tc

—(u-1)ATD,1

This holds because 0 = Vf;(x) = tc + ATD,1.

The Newton decrement is

A+ (%) = Ve () THV f+ (%)

=(u-1)%1"B(BTB)"'BTT B=DIA
<(u-1)2°m
=1/4

This means we are in the range of quadratic convergence!!!

| Explanation for previous slide
1P = B(BTB)"1BT is a symmet-
. . .

, ric real-valued matrix; it has n
. . : linearly independent Eigenvec-
the number of Newton iterations per outer . tors. Since it is a projection ma-
. . . . . [ 2 _ ;

iteration is very small; in practise only 1 or 2: /* (P~ = P) it can only have
:Elgenvalues 0 and 1 (because

. . i the Eigenvalues of P2 are A%,
Number of outer iterations: ! where A; is Eigenvalue of P).

We need t; = uktg = m/e. This holds when ! The expression

Number of Iterations

! T
o log(m/(€to)) : e L
log(u) . vouy
| gives the largest Eigenvalue for
1TpT < 1T1 =
We get a bound of 1P Hence, 'P1<171=m |
m
O (\/mlog —)
a0

We show how to get a starting point with to = 1/2. Together
with € = 271 we get O(L./m) iterations.
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|We assume that the polytope (not just

| the LP) is bounded. Then Av < 0 is not
: possible.

Damped Newton Method

1
1 al v is the change on the left hand
| side of the i-th constraint when

For x € P° and direction v + 0 define
a.Tv I moving in direction of v.
Ox (V) 1= max L LOIf ox(v) > 1 then for one coor-
t Si(X) : dinate this change is larger than
: the slack in the constraint at posi-
, tion x.

| Bydownscaling v we can ensure

Observation:

x+aveP forxe{0,1/ox(v)}

1
1
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Damped Newton Method

Suppose that we move from x to x + xv. The linear estimate says
that f;(x) should change by V.f; (x)T axv.

The following argument shows that f; is well behaved. For small
o the reduction of f;(x) is close to linear estimate.

filkx +av) — fi(x) =tcTov + p(x + av) — p(x)

P(x + o) = (x) = = > log(si(x + av)) + > log(si(x))
- > log(si(x + av) /si(x))

- > log(1 —af av/si(x))

1
15i(x + av) = b; 7aiTx7aiTow = s5i(x) 7aiT(xv
o - O C U
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L Vi) Tav :
| = (teT + Zial /si(0))av
: =tclTav + 3 qw; :

Note that |w| = |[vg ]
Define w; = al v/si(x) and 0 = max; w;. Then “--__Z_______C X
fi(x + av) = fr(x) = Vfi(x) ow
= —Zi(cxwi+log(1—cxwi))
2,2
XW;
<— > (ow;i+log(l —ow;)) + > 5 L
w;i>0 w;<0
2 2 2
w (xo) w:
< - Z E(o«f-klog(l—(xo)) —L
2 o
w;i>0 w;<0
For x| <1,x<0: oo :
2 B 4 ) B P
P xtlogl-x)=-%5 -5 -F .25 =5 % |
L o o e e e e e e e e e e e e e e e e e e e D e e e e e e e e e e e o 1
:_Forlx\<1 O<x<y :
) 3 4 2 2 2 2o 1
(oevlogl =)= 5= A=Al - s
I 2 2 3 4 2
! 25 (- T - - )= (v +log-») |

Damped Newton Method

< ,Z ((xa+log(17(x0))

= —EHUH%IX (cxa +log(1 — cxa))

Damped Newton Iteration:
In a damped Newton step we choose

Xy =X+ AXnt

1 + Ux(AXnt)

:This means that in the above expressions we choose & = 1+0 and v = Axnt. Note that |t
:wouldn t make sense to choose « larger than 1 as this would mean that our real target :
(x + Axny) is inside the polytope but we overshoot and go further than this target. i

Damped Newton Method

Theorem:
In a damped Newton step the cost decreases by at least

Ar(x) —log(1 + A¢(x))

Proof: The decrease in cost is

—aVfi(x)Tv + éllv\léx(ow +log(1l — xo))

Choosing o = m and v = Axp gives
A(x)( o o
2 t _
1+O_AI(X) 2 <1+U+log<1 1+0>>
A¢(x)
_ t0'2 (o ~log(1 +0))

:With v = Axnpe we have w2 = [[vlig, = Ae(x); further:
i recall that 0 = ||w||l«; hence o < A¢(x). |

__________________________________

l The ﬁrst inequality follows since the func- k

Damped Newton MethOd  tion x2 (x —log(1+x)) is monotonically

: decreasing. !

> Ap(x) —log(1 + A¢(x))
> 0.09

for A¢(x) = 0.5

Centering Algorithm:

Input: precision ¢; starting point x
1. compute Axnt and A (x)
2. if Ay(x) < 6 return x
3. set x := X + xAxnt with

1
o = 1+0x(Axnt) =1/2
1 otw.
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Centering

Lemma 4
The centering algorithm starting at xo reaches a point with
At(x) < 6 after

Sft(xo) —miny fi(y)
0.09

+ O(loglog(1/6))

iterations.

This can be very, very slow...
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How to get close to analytic center?

Let P = {Ax < b} be our (feasible) polyhedron, and x( a feasible
point.

We change b — b + % -1, where L = (A) + (b) + (¢) (encoding
length) and A = 22L. Recall that a basis is feasible in the old LP iff
it is feasible in the new LP.
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Lemma [without proof]
The inverse of a matrix M can be represented with rational
numbers that have denominators z;; = det(M).

For two basis solutions xg, xj, the cost-difference cTxp — ch,;
can be represented by a rational number that has denominator
z = det(Ap) - det(Ap).

This means that in the perturbed LP it is sufficient to decrease the
duality gap to 1/2%L (i.e., t ~ 2%L). This means the previous
analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective
value ¢ x is at most n2M2L, where M < L is the encoding length
of the largest entry in C.
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How to get close to analytic center?

Start at xo.
Choose ¢ := -V (x). | the vector of inverse slacks.

xo = x*(1) is point on central path for ¢ and t = 1.

You can travel the central path in both directions. Go towards 0
until t ~ 1/22%L), This requires O (./mL) outer iterations.

Let x¢ denote this point.
Let x. denote the point that minimizes
t-clx +p(x)

(i.e., same value for t but different ¢, hence, different central
path).

i holds since the slack in every constraint at
1 X0 is at least A = 1/22L, and the gradient is |




How to get close to analytic center?
Clearly,

t-ETxe+ plxe) <t-ETxe+ Pplxe)
The difference between f:(xz) and fi(x.) is

teTxe + p(xe) —tcTxe — plxe)
<t(cTxs+ETxe —Txs —clxe)
< 4tn23L

For t = 1/220) the last term becomes constant. Hence, using
damped Newton we can move from x; to x. quickly.

In total for this analysis we require @(,/mL) outer iterations for
the whole algorithm.

One iteration can be implemented in O (m3) time.
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