# **Number of Simplex Iterations**

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at most  $\binom{n}{m}$  iterations, because it will not visit a basis twice.

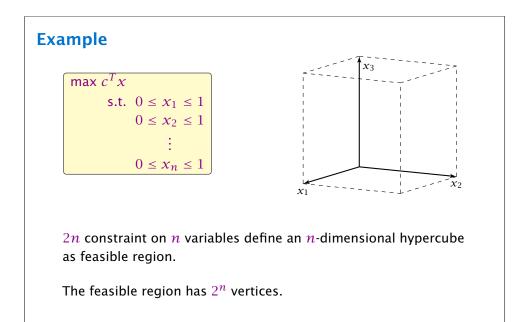
The input size is  $L \cdot n \cdot m$ , where n is the number of variables, m is the number of constraints, and L is the length of the binary representation of the largest coefficient in the matrix A.

If we really require  $\binom{n}{m}$  iterations then Simplex is not a polynomial time algorithm.

Can we obtain a better analysis?

Harald Räcke

| החוחר            | 18. Jun. 2023 |
|------------------|---------------|
| U U Harald Räcke |               |



7 Klee Minty Cube

# **Number of Simplex Iterations**

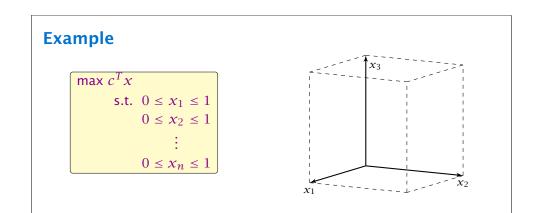
Observation

Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.

 7 Klee Minty Cube
 18. Jun. 2023

 Harald Räcke
 22/35



However, Simplex may still run quickly as it usually does not visit all feasible bases.

In the following we give an example of a feasible region for which there is a bad Pivoting Rule.



18. Jun. 2023

# **Pivoting Rule**

A Pivoting Rule defines how to choose the entering and leaving variable for an iteration of Simplex.

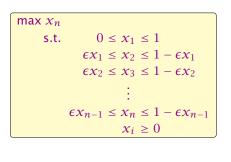
In the non-degenerate case after choosing the entering variable the leaving variable is unique.

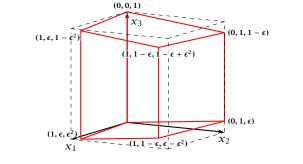
| Harald Räcke | 7 Klee Minty Cube | 18. Jun |
|--------------|-------------------|---------|
|              |                   |         |

# **Observations**

- We have 2n constraints, and 3n variables (after adding slack variables to every constraint).
- Every basis is defined by 2n variables, and n non-basic variables.
- There exist degenerate vertices.
- The degeneracies come from the non-negativity constraints, which are superfluous.
- In the following all variables  $x_i$  stay in the basis at all times.
- Then, we can uniquely specify a basis by choosing for each variable whether it should be equal to its lower bound, or equal to its upper bound (the slack variable corresponding to the non-tight constraint is part of the basis).
- We can also simply identify each basis/vertex with the corresponding hypercube vertex obtained by letting  $\epsilon \rightarrow 0$ .

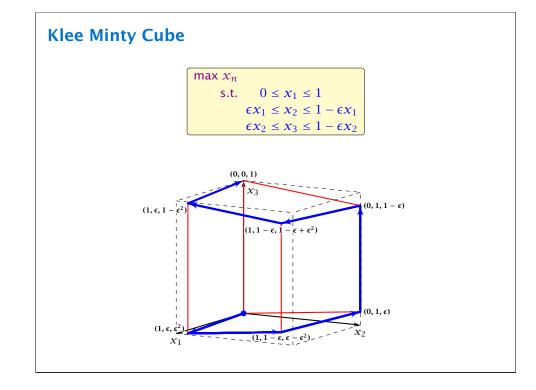
# **Klee Minty Cube**





# Analysis

- In the following we specify a sequence of bases (identified by the corresponding hypercube node) along which the objective function strictly increases.
- The basis  $(0, \ldots, 0, 1)$  is the unique optimal basis.
- Our sequence S<sub>n</sub> starts at (0,...,0) ends with (0,...,0,1) and visits every node of the hypercube.
- An unfortunate Pivoting Rule may choose this sequence, and, hence, require an exponential number of iterations.



# Analysis

### Lemma 3

The objective value  $x_n$  is increasing along path  $S_n$ .

### **Proof by induction:**

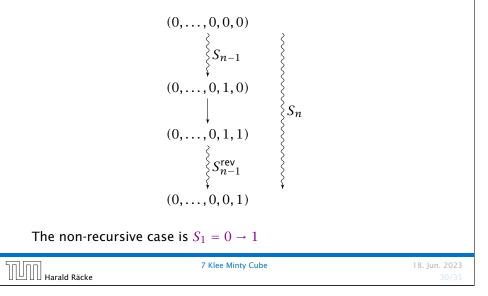
n = 1: obvious, since  $S_1 = 0 \rightarrow 1$ , and 1 > 0.

### $n-1 \rightarrow n$

- For the first part the value of  $x_n = \epsilon x_{n-1}$ .
- ▶ By induction hypothesis x<sub>n-1</sub> is increasing along S<sub>n-1</sub>, hence, also x<sub>n</sub>.
- ► Going from (0,...,0,1,0) to (0,...,0,1,1) increases x<sub>n</sub> for small enough ε.
- For the remaining path  $S_{n-1}^{\text{rev}}$  we have  $x_n = 1 \epsilon x_{n-1}$ .
- ▶ By induction hypothesis  $x_{n-1}$  is increasing along  $S_{n-1}$ , hence  $-\epsilon x_{n-1}$  is increasing along  $S_{n-1}^{\text{rev}}$ .

# Analysis

The sequence  $S_n$  that visits every node of the hypercube is defined recursively



# Remarks about SimplexObservationThe simplex algorithm takes at most $\binom{n}{m}$ iterations. Each<br/>iteration can be implemented in time $\mathcal{O}(mn)$ .In practise it usually takes a linear number of iterations.

# **Remarks about Simplex**

### Theorem

For almost all known deterministic pivoting rules (rules for choosing entering and leaving variables) there exist lower bounds that require the algorithm to have exponential running time  $(\Omega(2^{\Omega(n)}))$  (e.g. Klee Minty 1972).

| Harald Räcke | 7 Klee Minty Cube |
|--------------|-------------------|
|              |                   |

# <section-header><section-header><section-header><section-header><section-header><text><text><text>

# Remarks about Simplex

### Theorem

For some standard randomized pivoting rules there exist subexponential lower bounds ( $\Omega(2^{\Omega(n^{\alpha})})$  for  $\alpha > 0$ ) (Friedmann, Hansen, Zwick 2011).

Harald Räcke

18. Jun. 2023

7 Klee Minty Cube

18. Jun. 2023

