
Number of Simplex Iterations

Each iteration of Simplex can be implemented in polynomial time.

If we use lexicographic pivoting we know that Simplex requires at

most
(
n
m

)
iterations, because it will not visit a basis twice.

The input size is L ·n ·m, where n is the number of variables, m
is the number of constraints, and L is the length of the binary

representation of the largest coefficient in the matrix A.

If we really require
(
n
m

)
iterations then Simplex is not a

polynomial time algorithm.

Can we obtain a better analysis?
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Number of Simplex Iterations

Observation

Simplex visits every feasible basis at most once.

However, also the number of feasible bases can be very large.
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Example

max cTx
s.t. 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1
...

0 ≤ xn ≤ 1

x1
x2

x3

2n constraint on n variables define an n-dimensional hypercube

as feasible region.

The feasible region has 2n vertices.
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Example

max cTx
s.t. 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1
...

0 ≤ xn ≤ 1

x1
x2

x3

However, Simplex may still run quickly as it usually does not visit

all feasible bases.

In the following we give an example of a feasible region for which

there is a bad Pivoting Rule.
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Pivoting Rule

A Pivoting Rule defines how to choose the entering and leaving

variable for an iteration of Simplex.

In the non-degenerate case after choosing the entering variable

the leaving variable is unique.
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Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

ϵx1 ≤ x2 ≤ 1− ϵx1

ϵx2 ≤ x3 ≤ 1− ϵx2
...

ϵxn−1 ≤ xn ≤ 1− ϵxn−1

xi ≥ 0

x1
x2

x3

(1, ϵ, ϵ2)
(1, 1 − ϵ, ϵ − ϵ2)

(0, 1, ϵ)

(0, 1, 1 − ϵ)

(1, 1 − ϵ, 1 − ϵ + ϵ2)

(1, ϵ, 1 − ϵ2)

(0, 0, 1)



Observations

▶ We have 2n constraints, and 3n variables (after adding slack

variables to every constraint).

▶ Every basis is defined by 2n variables, and n non-basic

variables.

▶ There exist degenerate vertices.

▶ The degeneracies come from the non-negativity constraints,

which are superfluous.

▶ In the following all variables xi stay in the basis at all times.

▶ Then, we can uniquely specify a basis by choosing for each

variable whether it should be equal to its lower bound, or

equal to its upper bound (the slack variable corresponding to

the non-tight constraint is part of the basis).

▶ We can also simply identify each basis/vertex with the

corresponding hypercube vertex obtained by letting ϵ → 0.
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Analysis

▶ In the following we specify a sequence of bases (identified by

the corresponding hypercube node) along which the

objective function strictly increases.

▶ The basis (0, . . . ,0,1) is the unique optimal basis.

▶ Our sequence Sn starts at (0, . . . ,0) ends with (0, . . . ,0,1)
and visits every node of the hypercube.

▶ An unfortunate Pivoting Rule may choose this sequence, and,

hence, require an exponential number of iterations.
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Klee Minty Cube

max xn
s.t. 0 ≤ x1 ≤ 1

ϵx1 ≤ x2 ≤ 1− ϵx1

ϵx2 ≤ x3 ≤ 1− ϵx2

x1
x2

x3
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Analysis

The sequence Sn that visits every node of the hypercube is

defined recursively

(0, . . . ,0,0,0)

(0, . . . ,0,1,0)

(0, . . . ,0,1,1)

(0, . . . ,0,0,1)

Sn−1

Srev
n−1

Sn

The non-recursive case is S1 = 0 → 1
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Analysis

Lemma 3

The objective value xn is increasing along path Sn.

Proof by induction:

n = 1: obvious, since S1 = 0 → 1, and 1 > 0.

n − 1 → n
▶ For the first part the value of xn = ϵxn−1.

▶ By induction hypothesis xn−1 is increasing along Sn−1,

hence, also xn.

▶ Going from (0, . . . ,0,1,0) to (0, . . . ,0,1,1) increases xn for

small enough ϵ.
▶ For the remaining path Srev

n−1 we have xn = 1− ϵxn−1.

▶ By induction hypothesis xn−1 is increasing along Sn−1, hence

−ϵxn−1 is increasing along Srev
n−1.
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Remarks about Simplex

Observation

The simplex algorithm takes at most
(
n
m

)
iterations. Each

iteration can be implemented in time O(mn).

In practise it usually takes a linear number of iterations.
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Remarks about Simplex

Theorem

For almost all known deterministic pivoting rules (rules for

choosing entering and leaving variables) there exist lower bounds

that require the algorithm to have exponential running time

(Ω(2Ω(n))) (e.g. Klee Minty 1972).
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Remarks about Simplex

Theorem

For some standard randomized pivoting rules there exist

subexponential lower bounds (Ω(2Ω(nα)) for α > 0) (Friedmann,

Hansen, Zwick 2011).
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Remarks about Simplex

Conjecture (Hirsch 1957)

The edge-vertex graph of an m-facet polytope in d-dimensional

Euclidean space has diameter no more than m− d.

The conjecture has been proven wrong in 2010.

But the question whether the diameter is perhaps of the form

O(poly(m,d)) is open.
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