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Repetition: Primal Dual for Set Cover

Algorithm:

▶ Start with y = 0 (feasible dual solution).

Start with x = 0 (integral primal solution that may be

infeasible).

▶ While x not feasible
▶ Identify an element e that is not covered in current primal

integral solution.
▶ Increase dual variable ye until a dual constraint becomes

tight (maybe increase by 0!).
▶ If this is the constraint for set Sj set xj = 1 (add this set to

your solution).
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Repetition: Primal Dual for Set Cover

Analysis:

▶ For every set Sj with xj = 1 we have∑
e∈Sj

ye = wj

▶ Hence our cost is

∑
j
wjxj =

∑
j

∑
e∈Sj

ye =
∑
e
|{j : e ∈ Sj}| ·ye

≤ f ·
∑
e
ye ≤ f ·OPT
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Note that the constructed pair of primal and dual solution fulfills

primal slackness conditions.

This means

xj > 0⇒
∑
e∈Sj

ye = wj

If we would also fulfill dual slackness conditions

ye > 0⇒
∑

j:e∈Sj
xj = 1

then the solution would be optimal!!!
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We don’t fulfill these constraint but we fulfill an approximate

version:

ye > 0⇒ 1 ≤
∑

j:e∈Sj
xj ≤ f

This is sufficient to show that the solution is an f -approximation.
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Suppose we have a primal/dual pair

min
∑
j cjxj

s.t. ∀i
∑
j: aijxj ≥ bi

∀j xj ≥ 0

max
∑
i biyi

s.t. ∀j
∑
i aijyi ≤ cj

∀i yi ≥ 0

and solutions that fulfill approximate slackness conditions:

xj > 0⇒
∑
i
aijyi ≥

1
α
cj

yi > 0⇒
∑
j
aijxj ≤ βbi
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Then

∑
j
cjxj

≤ α
∑
j

∑
i
aijyi

xj
= α

∑
i

∑
j
aijxj

yi
≤ αβ ·

∑
i
biyi
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∑
i
biyi

dual objective

16.1 Primal Dual Revisited 18. Jun. 2023

Harald Räcke 53/80



Feedback Vertex Set for Undirected Graphs

▶ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

▶ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

16.2 Feedback Vertex Set for Undirected Graphs 18. Jun. 2023

Harald Räcke 54/80



Feedback Vertex Set for Undirected Graphs

▶ Given a graph G = (V , E) and non-negative weights wv ≥ 0

for vertex v ∈ V .

▶ Choose a minimum cost subset of vertices s.t. every cycle

contains at least one vertex.

16.2 Feedback Vertex Set for Undirected Graphs 18. Jun. 2023

Harald Räcke 54/80



We can encode this as an instance of Set Cover

▶ Each vertex can be viewed as a set that contains some cycles.

▶ However, this encoding gives a Set Cover instance of

non-polynomial size.

▶ The O(logn)-approximation for Set Cover does not help us

to get a good solution.
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Let C denote the set of all cycles (where a cycle is identified by its

set of vertices)

Primal Relaxation:

min
∑
v wvxv

s.t. ∀C ∈ C
∑
v∈C xv ≥ 1

∀v xv ≥ 0

Dual Formulation:

max
∑
C∈CyC

s.t. ∀v ∈ V
∑
C :v∈C yC ≤ wv

∀C yC ≥ 0
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If we perform the previous dual technique for Set Cover we get

the following:

▶ Start with x = 0 and y = 0

▶ While there is a cycle C that is not covered (does not contain
a chosen vertex).

▶ Increase yC until dual constraint for some vertex v becomes
tight.

▶ set xv = 1.
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Then ∑
v
wvxv

=
∑
v

∑
C :v∈C

yCxv

=
∑
v∈S

∑
C :v∈C

yC

=
∑
C
|S ∩ C| ·yC

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this

is unrealistic.
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Algorithm 1 FeedbackVertexSet
1: y ← 0

2: x ← 0

3: while exists cycle C in G do

4: increase yC until there is v ∈ C s.t.
∑
C :v∈C yC = wv

5: xv = 1

6: remove v from G
7: repeatedly remove vertices of degree 1 from G
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Idea:

Always choose a short cycle that is not covered. If we always find

a cycle of length at most α we get an α-approximation.

Observation:

For any path P of vertices of degree 2 in G the algorithm chooses

at most one vertex from P .
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Observation:

If we always choose a cycle for which the number of vertices of

degree at least 3 is at most α we get a 2α-approximation.

Theorem 3

In any graph with no vertices of degree 1, there always exists a

cycle that has at most O(logn) vertices of degree 3 or more. We

can find such a cycle in linear time.

This means we have

yC > 0⇒ |S ∩ C| ≤ O(logn) .
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Primal Dual for Shortest Path

Given a graph G = (V , E) with two nodes s, t ∈ V and

edge-weights c : E → R+ find a shortest path between s and t
w.r.t. edge-weights c.

min
∑
e c(e)xe

s.t. ∀S ∈ S
∑
e:δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.
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Primal Dual for Shortest Path

The Dual:

max
∑
S yS

s.t. ∀e ∈ E
∑
S:e∈δ(S)yS ≤ c(e)

∀S ∈ S yS ≥ 0

Here δ(S) denotes the set of edges with exactly one end-point in

S, and S = {S ⊆ V : s ∈ S, t ∉ S}.
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Primal Dual for Shortest Path

We can interpret the value yS as the width of a moat surounding

the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.
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Algorithm 1 PrimalDualShortestPath
1: y ← 0

2: F ← ∅
3: while there is no s-t path in (V , F) do

4: Let C be the connected component of (V , F) con-

taining s
5: Increase yC until there is an edge e′ ∈ δ(C) such

that
∑
S:e′∈δ(S)yS = c(e′).

6: F ← F ∪ {e′}
7: Let P be an s-t path in (V , F)
8: return P

16.3 Primal Dual for Shortest Path 18. Jun. 2023

Harald Räcke 65/80



Lemma 4

At each point in time the set F forms a tree.

Proof:

▶ In each iteration we take the current connected component

from (V , F) that contains s (call this component C) and add

some edge from δ(C) to F .

▶ Since, at most one end-point of the new edge is in C the

edge cannot close a cycle.
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∑
e∈P

c(e)

=
∑
e∈P

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t∉S
|P ∩ δ(S)| ·yS .

If we can show that yS > 0 implies |P ∩ δ(S)| = 1 gives∑
e∈P

c(e) =
∑
S
yS ≤ OPT

by weak duality.

Hence, we find a shortest path.
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If δ(S) contains two edges from P then there must exist a

subpath P ′ of P that starts and ends with a vertex from S (and all

interior vertices are not in S).

When we increased yS , S was a connected component of the set

of edges F ′ that we had chosen till this point.

F ′ ∪ P ′ contains a cycle. Hence, also the final set of edges

contains a cycle.

This is a contradiction.
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Steiner Forest Problem:

Given a graph G = (V , E), together with source-target pairs si, ti,
i = 1, . . . , k, and a cost function c : E → R+ on the edges. Find a

subset F ⊆ E of the edges such that for every i ∈ {1, . . . , k} there

is a path between si and ti only using edges in F .

min
∑
e c(e)xe

s.t. ∀S ⊆ V : S ∈ Si for some i
∑
e∈δ(S) xe ≥ 1

∀e ∈ E xe ∈ {0,1}

Here Si contains all sets S such that si ∈ S and ti ∉ S.
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max
∑
S : ∃i s.t. S ∈ Si yS

s.t. ∀e ∈ E
∑
S:e∈δ(S)yS ≤ c(e)

yS ≥ 0

The difference to the dual of the shortest path problem is that we

have many more variables (sets for which we can generate a moat

of non-zero width).
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Algorithm 1 FirstTry
1: y ← 0

2: F ← ∅
3: while not all si-ti pairs connected in F do

4: Let C be some connected component of (V , F) such

that |C ∩ {si, ti}| = 1 for some i.
5: Increase yC until there is an edge e′ ∈ δ(C) s.t.∑

S∈Si:e′∈δ(S)yS = ce′
6: F ← F ∪ {e′}
7: return

⋃
i Pi
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∑
e∈F

c(e)

=
∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S
|δ(S)∩ F| ·yS .

If we show that yS > 0 implies that |δ(S)∩ F| ≤ α we are in good

shape.

However, this is not true:

▶ Take a complete graph on k+ 1 vertices v0, v1, . . . , vk.
▶ The i-th pair is v0-vi.
▶ The first component C could be {v0}.
▶ We only set y{v0} = 1. All other dual variables stay 0.

▶ The final set F contains all edges {v0, vi}, i = 1, . . . , k.

▶ y{v0} > 0 but |δ({v0})∩ F| = k.
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Algorithm 1 SecondTry

1: y ← 0; F ← ∅; ℓ ← 0

2: while not all si-ti pairs connected in F do

3: ℓ ← ℓ + 1

4: Let C be set of all connected components C of (V , F)
such that |C ∩ {si, ti}| = 1 for some i.

5: Increase yC for all C ∈ C uniformly until for some edge

eℓ ∈ δ(C′), C′ ∈ C s.t.
∑
S:eℓ∈δ(S)yS = ceℓ

6: F ← F ∪ {eℓ}
7: F ′ ← F
8: for k← ℓ downto 1 do // reverse deletion

9: if F ′ − ek is feasible solution then

10: remove ek from F ′

11: return F ′
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The reverse deletion step is not strictly necessary this way. It

would also be sufficient to simply delete all unnecessary edges in

any order.
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Example

s1 s2

s3

t1

t2

t3
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Lemma 5

For any C in any iteration of the algorithm∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

This means that the number of times a moat from C is crossed in

the final solution is at most twice the number of moats.

Proof: later...
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∑
e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S
|F ′ ∩ δ(S)| ·yS .

We want to show that∑
S
|F ′ ∩ δ(S)| ·yS ≤ 2

∑
S
yS

▶ In the i-th iteration the increase of the left-hand side is

ϵ
∑
C∈C

|F ′ ∩ δ(C)|

and the increase of the right hand side is 2ϵ|C|.
▶ Hence, by the previous lemma the inequality holds after the

iteration if it holds in the beginning of the iteration.
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Lemma 6

For any set of connected components C in any iteration of the

algorithm ∑
C∈C

|δ(C)∩ F ′| ≤ 2|C|

Proof:

▶ At any point during the algorithm the set of edges forms a

forest (why?).

▶ Fix iteration i. Let Fi be the set of edges in F at the

beginning of the iteration.

▶ Let H = F ′ − Fi.
▶ All edges in H are necessary for the solution.
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▶ Contract all edges in Fi into single vertices V ′.

▶ We can consider the forest H on the set of vertices V ′.

▶ Let deg(v) be the degree of a vertex v ∈ V ′ within this forest.

▶ Color a vertex v ∈ V ′ red if it corresponds to a component from C
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

▶ We have

∑
v∈R

deg(v) ≥
∑
C∈C

|δ(C)∩ F ′|
?
≤ 2|C| = 2|R|
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▶ Suppose that no node in B has degree one.

▶ Then

∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v)

≤ 2(|R| + |B|)− 2|B| = 2|R|

▶ Every blue vertex with non-zero degree must have degree at
least two.

▶ Suppose not. The single edge connecting b ∈ B comes from
H, and, hence, is necessary.

▶ But this means that the cluster corresponding to b must
separate a source-target pair.

▶ But then it must be a red node.
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