14 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items $\{1, ..., n\}$, where the *i*-th item has weight $w_i \in \mathbb{N}$ and profit $p_i \in \mathbb{N}$, and given a threshold W. Find a subset $I \subseteq \{1, ..., n\}$ of items of total weight at most W such that the profit is maximized (we can assume each $w_i \leq W$).

	max s.t.	$\forall i \in \{1, \dots, n\}$	$\frac{\sum_{i=1}^{n} p_i x_i}{\sum_{i=1}^{n} w_i x_i}$	≤ ∈	W {0,1}	
Harald Räck	<e< td=""><td></td><td></td><td></td><td></td><td>7. Jul. 2023 42/88</td></e<>					7. Jul. 2023 42/88

14 Rounding Data + Dynamic Programming

Definition 3

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

14 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack
$1: A(1) \leftarrow [(0,0), (p_1, w_1)]$
2: for $j \leftarrow 2$ to n do
3: $A(j) \leftarrow A(j-1)$
4: for each $(p, w) \in A(j - 1)$ do
5: if $w + w_j \le W$ then
6: $\operatorname{add}(p+p_j,w+w_j)$ to $A(j)$
7: remove dominated pairs from $A(j)$
8: return $\max_{(p,w)\in A(n)} p$

The running time is $\mathcal{O}(n \cdot \min\{W, P\})$, where $P = \sum_i p_i$ is the total profit of all items. This is only pseudo-polynomial.

זחוחו	14.1 Knapsack	7. Jul. 2023
Harald Räcke		43/88

14 Rounding Data + Dynamic Programming

- Let *M* be the maximum profit of an element.
- Set $\mu := \epsilon M/n$.
- Set $p'_i := \lfloor p_i / \mu \rfloor$ for all *i*.
- Run the dynamic programming algorithm on this revised instance.

Running time is at most

Harald Räcke

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_i p'_i\right) = \mathcal{O}\left(n\sum_i \left\lfloor \frac{p_i}{\epsilon M/n} \right\rfloor\right) \le \mathcal{O}\left(\frac{n^3}{\epsilon}\right) \ .$$

Jul. 2023 44/88

14 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be an optimum set of items.

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O| \mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT} .$$
14.1 Knapsack 7. Jul. 2
4

14.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \leq \frac{1}{km} \sum_i p_i$$

Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job to complete.

Together with the observation that if each $p_i \ge \frac{1}{3}C_{\max}^*$ then LPT is optimal this gave a 4/3-approximation.

Harald Räcke

14.2 Scheduling Revisited

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where ℓ is the last job (this only requires that all machines are busy before time S_{ℓ}).

If ℓ is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If ℓ is a short job its length is at most

$$p_\ell \leq \sum_j p_j / (mk)$$

which is at most C^*_{\max}/k .

7. Jul. 2023 48/88 Hence we get a schedule of length at most

 $\left(1+\frac{1}{k}\right)C_{\max}^*$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most m^{km} , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

Theorem 4

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose $k = \lceil \frac{1}{\epsilon} \rceil$.

חר	IП	٦l	Harald	
ШĽ	- 1	Ш	Harald	Räcke

14.2 Scheduling Revisited

- We round all long jobs down to multiples of T/k^2 .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most T we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows: On input of *T* it either finds a schedule of length $(1 + \frac{1}{k})T$ or certifies that no schedule of length at most *T* exists (assume $T \ge \frac{1}{m}\sum_j p_j$).

We partition the jobs into long jobs and short jobs:

- A job is long if its size is larger than T/k.
- Otw. it is a short job.

Harald Räcke

14.2 Scheduling Revisited

Jul. 2023

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of T/k^2 going from rounded sizes to original sizes gives that the Makespan is at most

14.2 Scheduling Revisited

Jul. 2023 52/88

7. Jul. 2023

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

 $T + \frac{T}{T} < \left(1 + \frac{1}{T}\right)T$

14.2 Scheduling Revisited	7. Jul. 2023

Let $OPT(n_1, ..., n_{k^2})$ be the number of machines that are required to schedule input vector $(n_1, ..., n_{k^2})$ with Makespan at most *T*.

```
If OPT(n_1, \ldots, n_{k^2}) \le m we can schedule the input.
```

We have

 $OPT(n_1,...,n_{k^2})$

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \operatorname{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \neq 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

Hence, the running time is roughly $(k + 1)^{k^2} n^{k^2} \approx (nk)^{k^2}$.

Harald Räcke

7. Jul. 2023 56/88 **Running Time for scheduling large jobs:** There should not be a job with rounded size more than T as otw. the problem becomes trivial.

Hence, any large job has rounded size of $\frac{i}{k^2}T$ for $i \in \{k, ..., k^2\}$. Therefore the number of different inputs is at most n^{k^2} (described by a vector of length k^2 where, the *i*-th entry describes the number of jobs of size $\frac{i}{k^2}T$). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length k^2 where the *i*-th entry describes the number of jobs of rounded size $\frac{i}{k^2}T$ assigned to x. There are only $(k + 1)^{k^2}$ different vectors.

This means there are a constant number of different machine configurations.

Harald Räcke	14.2 Scheduling Revisited	7. Jul. 2023
UUU Harald Räcke		55/88

We can turn this into a PTAS by choosing $k = \lceil 1/\epsilon \rceil$ and using binary search. This gives a running time that is exponential in $1/\epsilon$.

Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 5

There is no FPTAS for problems that are strongly NP-hard.

- Suppose we have an instance with polynomially bounded processing times p_i ≤ q(n)
- We set $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

 $ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

Harald Räcke	14.2 Scheduling Revisited	7

Bin Packing

Given *n* items with sizes s_1, \ldots, s_n where

 $1 > s_1 \ge \cdots \ge s_n > 0$.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

Theorem 6

There is no ρ -approximation for Bin Packing with $\rho < 3/2$ unless P = NP.

More General

Let $OPT(n_1, ..., n_A)$ be the number of machines that are required to schedule input vector $(n_1, ..., n_A)$ with Makespan at most T (A: number of different sizes).

If $OPT(n_1, \ldots, n_A) \le m$ we can schedule the input.

$$OPT(n_1,...,n_A) = \begin{cases} 0 & (n_1,...,n_A) = 0\\ 1 + \min_{(s_1,...,s_A) \in C} OPT(n_1 - s_1,...,n_A - s_A) & (n_1,...,n_A) \ge 0\\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$, where *B* is the number of jobs that possibly can fit on the same machine.

The running time is then $O((B + 1)^A n^A)$ because the dynamic programming table has just n^A entries.

Bin Packing

Proof

▶ In the partition problem we are given positive integers b_1, \ldots, b_n with $B = \sum_i b_i$ even. Can we partition the integers into two sets *S* and *T* s.t.

$$\sum_{i\in S} b_i = \sum_{i\in T} b_i \quad ?$$

- We can solve this problem by setting s_i := 2b_i/B and asking whether we can pack the resulting items into 2 bins or not.
- A ρ-approximation algorithm with ρ < 3/2 cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

Harald Räcke

7. Jul. 2023 60/88

Bin Packing

Definition 7

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms $\{A_{\epsilon}\}$ along with a constant c such that A_{ϵ} returns a solution of value at most $(1 + \epsilon)$ OPT + c for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Harald Räcke	14.3 Bin Packing	7. Jul. 2023 62/88

Choose $\gamma = \epsilon/2$. Then we either use ℓ bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

14.3 Bin Packing

bins.

|||||||| Harald Räcke

It remains to find an algorithm for the large items.

Bin Packing

Again we can differentiate between small and large items.

Lemma 8

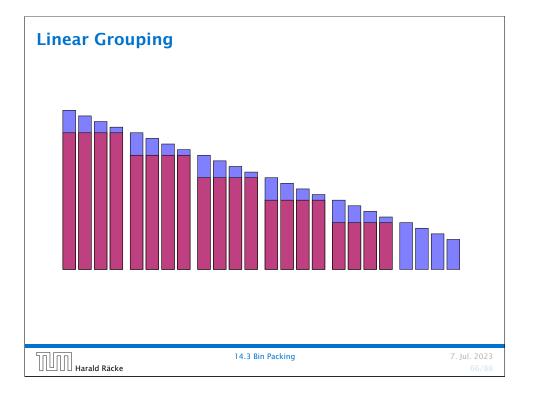
Any packing of items into ℓ bins can be extended with items of size at most γ s.t. we use only $\max\{\ell, \frac{1}{1-\gamma}SIZE(I) + 1\}$ bins, where $SIZE(I) = \sum_i s_i$ is the sum of all item sizes.

- If after Greedy we use more than ℓ bins, all bins (apart from the last) must be full to at least 1γ .
- Hence, $r(1 \gamma) \leq \text{SIZE}(I)$ where r is the number of nearly-full bins.
- This gives the lemma.

 14.3 Bin Packing
 7. Jul. 2023

 Harald Räcke
 63/88

Bin Packing Linear Grouping: Generate an instance I' (for large items) as follows. Order large items according to size. Let the first k items belong to group 1; the following k items belong to group 2; etc. Delete items in the first group; Round items in the remaining groups to the size of the largest item in the group.



Lemma 10 OPT $(I') \le OPT(I) \le OPT(I') + k$

Proof 2:

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

▶ ...

]]][]]| Harald Räcke

Lemma 9 $OPT(I') \le OPT(I) \le OPT(I') + k$

Proof 1:

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;

▶ ...

Harald Räcke

14.3 Bin Packing

Jul. 2023

Assume that our instance does not contain pieces smaller than $\epsilon/2$. Then SIZE(I) $\geq \epsilon n/2$.

We set $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$.

Then $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$ (note that $\lfloor \alpha \rfloor \ge \alpha/2$ for $\alpha \ge 1$).

Hence, after grouping we have a constant number of piece sizes $(4/\epsilon^2)$ and at most a constant number $(2/\epsilon)$ can fit into any bin.

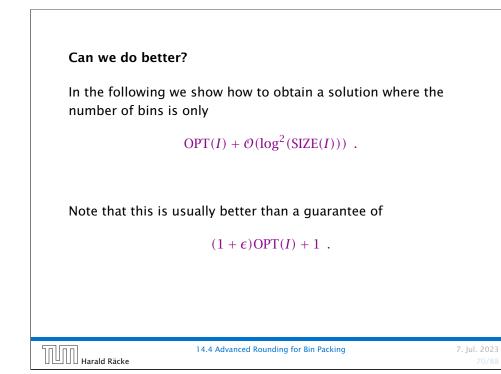
We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$

• running time $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$.

7. Jul. 2(68



Configuration LP

||||||| Harald Räcke

A possible packing of a bin can be described by an *m*-tuple (t_1, \ldots, t_m) , where t_i describes the number of pieces of size s_i . Clearly,

 $\sum_i t_i \cdot s_i \leq 1 \ .$

We call a vector that fulfills the above constraint a configuration.

14.4 Advanced Rounding for Bin Packing

Configuration LP

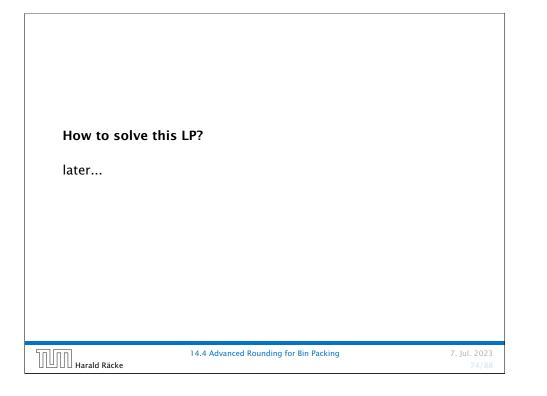
Change of Notation:

- Group pieces of identical size.
- Let s₁ denote the largest size, and let b₁ denote the number of pieces of size s₁.
- \blacktriangleright s₂ is second largest size and b₂ number of pieces of size s₂;
- ▶ ...
- s_m smallest size and b_m number of pieces of size s_m .

וחחווחר	
Harald R	2.1
U L U U Haraid K	аске

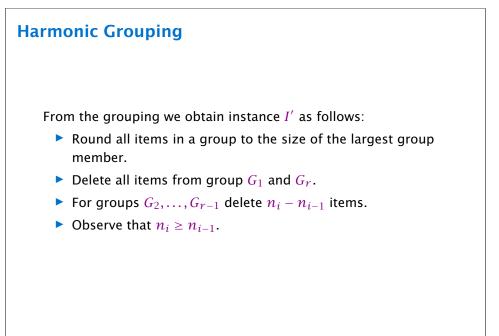
14.4 Advanced Rounding for Bin Packing

Configuration LP Let *N* be the number of configurations (exponential). Let $T_1, ..., T_N$ be the sequence of all possible configurations (a configuration T_j has T_{ji} pieces of size s_i). $\begin{array}{c} \min & \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1..., M\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ \forall j \in \{1, ..., N\} & x_j & \geq & 0 \\ \forall j \in \{1, ..., N\} & x_j & \text{integral} \end{array}$



Harmonic Grouping Sort items according to size (monotonically decreasing). Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group. I.e., G₁ is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for G₂,..., G_{r-1}. Only the size of items in the last group G_r may sum up to less than 2.

We can assume that each item has size at least 1/SIZE(*I*).



14.4 Advanced Rounding for Bin Packing

2023 76/88 Harald Räcke

Lemma 11

The number of different sizes in I' is at most SIZE(I)/2.

- **•** Each group that survives (recall that G_1 and G_r are deleted) has total size at least 2.
- Hence, the number of surviving groups is at most SIZE(I)/2.
- \blacktriangleright All items in a group have the same size in I'.

Harald Räcke	14.4 Advanced Rounding for Bin Packing	7. Jul. 20
Harald Räcke		

Algorithm 1 BinPack

1: if SIZE(I) < 10 then

- pack remaining items greedily 2:
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most $O(\log(SIZE(I)))$ bins.
- 4: Let *x* be optimal solution to configuration LP
- 5: Pack $\lfloor x_i \rfloor$ bins in configuration T_i for all j; call the packed instance I_1 .
- 6: Let I_2 be remaining pieces from I'
- 7: Pack I_2 via BinPack (I_2)

Lemma 12

The total size of deleted items is at most $\mathcal{O}(\log(\text{SIZE}(I)))$.

- The total size of items in G_1 and G_r is at most 6 as a group has total size at most 3.
- Consider a group G_i that has strictly more items than G_{i-1} .
- lt discards $n_i n_{i-1}$ pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

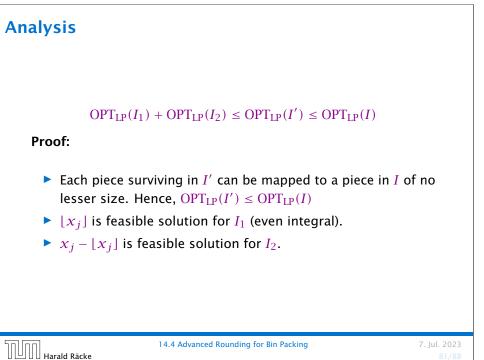
since the average piece size is only $3/n_i$.

Summing over all *i* that have $n_i > n_{i-1}$ gives a bound of at

most

 $\sum_{i=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) \quad .$

(note that $n_r \leq \text{SIZE}(I)$ since we assume that the size of each item is at least 1/SIZE(I)).



Analysis

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in *I*₁.
- **3.** Pieces in *I*² are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT_{LP} many bins.

Pieces of type 1 are packed into at most

$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$

many bins where *L* is the number of recursion levels.

Harald Räcke	14.4 Advanced Rounding for Bin Packing	7. Jul. 2023 82/88

How to solve the LP?

Let T_1, \ldots, T_N be the sequence of all possible configurations (a configuration T_i has T_{ii} pieces of size s_i). In total we have b_i pieces of size s_i .

Primal

min		$\sum_{j=1}^{N} x_j$		
s.t.	$\forall i \in \{1 \dots m\}$	$\sum_{j=1}^{N} T_{ji} x_j$	\geq	b_i
	$\forall j \in \{1, \dots, N\}$	x_j	\geq	0

D

Dual						
	max s.t.	$\forall j \in \{1, \dots, N\}$ $\forall i \in \{1, \dots, m\}$	$\frac{\sum_{i=1}^{m} y_i b_i}{\sum_{i=1}^{m} T_{ji} y_i}$	<	1	
		v t < (1,, m)	<i>Y</i> 1	~	0	
Harald Bäcka		14.4 Advanced Roundin	g for Bin Packing			7. Jul. 20

Analysis

We can show that $SIZE(I_2) \leq SIZE(I)/2$. Hence, the number of recursion levels is only $O(\log(\text{SIZE}(I_{\text{original}}))))$ in total.

- The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes (\leq SIZE(I)/2).
- The total size of items in I_2 can be at most $\sum_{i=1}^{N} x_i \lfloor x_i \rfloor$ which is at most the number of non-zero entries in the solution to the configuration LP.

Harald Bäcke

14.4 Advanced Rounding for Bin Packing

Separation Oracle Suppose that I am given variable assignment γ for the dual. How do I find a violated constraint? I have to find a configuration $T_i = (T_{i1}, \ldots, T_{im})$ that ▶ is feasible, i.e., $\sum_{i=1}^{m} T_{ji} \cdot s_i \leq 1$, and has a large profit $\sum_{i=1}^{m} T_{ji} y_i > 1$ But this is the Knapsack problem.

14.4 Advanced Rounding for Bin Packing

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is violated with $1 + \epsilon' = 1 + \frac{\epsilon}{1-\epsilon}$ we find it, since we can obtain at least $(1 - \epsilon)$ of the optimal profit.

The solution we get is feasible for:

Dual'

max		$\sum_{i=1}^{m} y_i b_i$		
s.t.	$\forall j \in \{1, \dots, N\}$	$\sum_{i=1}^{m} T_{ji} \gamma_i$	\leq	$1 + \epsilon'$
	$\forall i \in \{1,\ldots,m\}$	${\mathcal Y}_i$	\geq	0

Primal'

min		$(1+\epsilon')\sum_{j=1}^N x_j$		
s.t.	$\forall i \in \{1 \dots m\}$	$\sum_{j=1}^{N} T_{ji} x_j$	\geq	b_i
	$\forall j \in \{1, \dots, N\}$			0

Separation Oracle

If the value of the computed dual solution (which may be infeasible) is \boldsymbol{z} then

$OPT \le z \le (1 + \epsilon')OPT$

How do we get good primal solution (not just the value)?

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL'' be DUAL without unused constraints.
- The dual to DUAL'' is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- The optimum value for PRIMAL'' is at most $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

This gives that overall we need at most

 $(1 + \epsilon')$ OPT_{LP} $(I) + O(\log^2(SIZE(I)))$

bins.

We can choose $\epsilon' = \frac{1}{OPT}$ as $OPT \le \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

7. Jul. 202 88/8

