8 Seidels LP-algorithm

- Suppose we want to solve $\min\{c^Tx \mid Ax \geq b; x \geq 0\}$, where $x \in \mathbb{R}^d$ and we have m constraints.
- In the worst-case Simplex runs in time roughly $\mathcal{O}(m(m+d)\binom{m+d}{m}) \approx (m+d)^m$. (slightly better bounds on the running time exist, but will not be discussed here).
- ▶ If *d* is much smaller than *m* one can do a lot better.
- ▶ In the following we develop an algorithm with running time $O(d! \cdot m)$, i.e., linear in m.

18. Jun. 2023

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

Compute a lower bound on $c^T x$ for any basic feasible solution.

8 Seidels LP-algorithm

Setting:

▶ We assume an LP of the form

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

► We assume that the LP is bounded.

Harald Räcke

8 Seidels LP-algorithm

18. Jun. 2023

Computing a Lower Bound

Let s denote the smallest common multiple of all denominators of entries in A, b.

Multiply entries in A, b by s to obtain integral entries. This does not change the feasible region.

Add slack variables to A; denote the resulting matrix with \bar{A} .

If B is an optimal basis then x_B with $\bar{A}_B x_B = \bar{b}$, gives an optimal assignment to the basis variables (non-basic variables are 0).

8 Seidels LP-algorithm

18. Jun. 2023

18. Jun. 2023

Theorem 3 (Cramers Rule)

Let M be a matrix with $det(M) \neq 0$. Then the solution to the system Mx = b is given by

$$x_i = \frac{\det(M_j)}{\det(M)} ,$$

where M_i is the matrix obtained from M by replacing the i-th column by the vector b.

8 Seidels LP-algorithm

18. Jun. 2023 30/44

Bounding the Determinant

Let Z be the maximum absolute entry occurring in \bar{A} , \bar{b} or c. Let C denote the matrix obtained from \bar{A}_B by replacing the j-th column with vector \bar{b} (for some j).

Observe that

$$|\det(C)| = \left| \sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{1 \leq i \leq m} C_{i\pi(i)} \right|$$

$$\leq \sum_{\pi \in S_m} \prod_{1 \leq i \leq m} |C_{i\pi(i)}|$$

$$\leq m! \cdot Z^m \text{ Here } \operatorname{sgn}(\pi) \text{ denotes the sign of the permutation, which is 1 if the permutation can be generated by an even number of transpositions (exchanging two elements), and -1 if the number of transpositions is odd. The first identity is known as Leibniz formula.$$

Proof:

Define

$$X_i = \begin{pmatrix} | & | & | & | \\ e_1 \cdots e_{i-1} & x & e_{i+1} \cdots e_n \\ | & | & | & | \end{pmatrix}$$

Note that expanding along the i-th column gives that $det(X_i) = x_i$.

Further, we have

$$MX_{i} = \begin{pmatrix} | & | & | & | \\ Me_{1} \cdots Me_{i-1} & Mx & Me_{i+1} \cdots Me_{n} \\ | & | & | & | \end{pmatrix} = M_{i}$$

Hence,

$$x_i = \det(X_i) = \frac{\det(M_i)}{\det(M)}$$

8 Seidels LP-algorithm

18. Jun. 2023

31/4

Bounding the Determinant

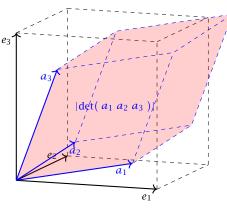
Alternatively, Hadamards inequality gives

$$|\det(C)| \le \prod_{i=1}^{m} ||C_{*i}|| \le \prod_{i=1}^{m} (\sqrt{m}Z)$$

$$\le m^{m/2}Z^{m}.$$

8 Seidels LP-algorithm

Hadamards Inequality



Hadamards inequality says that the volume of the red parallelepiped (Spat) is smaller than the volume in the black cube (if $||e_1|| = ||a_1||$, $||e_2|| = ||a_2||$, $||e_3|| = ||a_3||$).

8 Seidels LP-algorithm

18. Jun. 2023 34/44

Ensuring Conditions

Compute an optimum basis for the new LP.

- ▶ If the cost is $c^T x = -(dZ)(m! \cdot Z^m) 1$ we know that the original LP is unbounded.
- Otw. we have an optimum basis.

Ensuring Conditions

Given a standard minimization LP

$$\begin{array}{cccc}
\min & c^T x \\
\text{s.t.} & Ax & \geq & b \\
& x & \geq & 0
\end{array}$$

how can we obtain an LP of the required form?

► Compute a lower bound on c^Tx for any basic feasible solution. Add the constraint $c^Tx \ge -dZ(m! \cdot Z^m) - 1$. Note that this constraint is superfluous unless the LP is unbounded.

In the following we use \mathcal{H} to denote the set of all constraints apart from the constraint $c^Tx \geq -dZ(m! \cdot Z^m) - 1$.

We give a routine SeidelLP(\mathcal{H},d) that is given a set \mathcal{H} of explicit, non-degenerate constraints over d variables, and minimizes c^Tx over all feasible points.

In addition it obeys the implicit constraint $c^T x \ge -(dZ)(m! \cdot Z^m) - 1$.

Algorithm 1 SeidelLP(\mathcal{H}, d)

1: **if** d = 1 **then** solve 1-dimensional problem and return;

2: if $\mathcal{H} = \emptyset$ then return x on implicit constraint hyperplane

3: choose random constraint $h \in \mathcal{H}$

4: $\hat{\mathcal{H}} \leftarrow \mathcal{H} \setminus \{h\}$

5: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d)$

6: if \hat{x}^* = infeasible then return infeasible

7: **if** \hat{x}^* fulfills h then return \hat{x}^*

8: // optimal solution fulfills h with equality, i.e., $a_h^T x = b_h$

9: solve $a_h^T x = b_h$ for some variable x_ℓ ;

10: eliminate x_{ℓ} in constraints from $\hat{\mathcal{H}}$ and in implicit constr.;

11: $\hat{x}^* \leftarrow \text{SeidelLP}(\hat{\mathcal{H}}, d-1)$

12: **if** \hat{x}^* = infeasible **then**

13: **return** infeasible

14: **else**

add the value of x_{ℓ} to \hat{x}^* and return the solution

8 Seidels LP-algorithm

This gives the recurrence

$$T(m,d) = \begin{cases} \mathcal{O}(\max\{1,m\}) & \text{if } d = 1\\ \mathcal{O}(d) & \text{if } d > 1 \text{ and } m = 0\\ \mathcal{O}(d) + T(m-1,d) + \\ \frac{d}{m}(\mathcal{O}(dm) + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

8 Seidels LP-algorithm

Note that for the case d=1, the asymptotic bound $\mathcal{O}(\max\{m,1\})$ is valid also for the case m=0.

- ▶ If d = 1 we can solve the 1-dimensional problem in time $O(\max\{m, 1\})$.
- ▶ If d > 1 and m = 0 we take time O(d) to return d-dimensional vector x.
- ▶ The first recursive call takes time T(m-1,d) for the call plus O(d) for checking whether the solution fulfills h.
- ▶ If we are unlucky and \hat{x}^* does not fulfill h we need time $\mathcal{O}(d(m+1)) = \mathcal{O}(dm)$ to eliminate x_ℓ . Then we make a recursive call that takes time T(m-1,d-1).
- ▶ The probability of being unlucky is at most d/m as there are at most d constraints whose removal will decrease the objective function

8 Seidels LP-algorithm

18. Jun. 2023

39/44

8 Seidels LP-algorithm

Let \mathcal{C} be the largest constant in the \mathcal{O} -notations.

$$T(m,d) = \begin{cases} C \max\{1,m\} & \text{if } d = 1\\ Cd & \text{if } d > 1 \text{ and } m = 0\\ Cd + T(m-1,d) + \\ \frac{d}{m}(Cdm + T(m-1,d-1)) & \text{otw.} \end{cases}$$

Note that T(m, d) denotes the expected running time.

41/44

18. Jun. 2023

8 Seidels LP-algorithm

Let C be the largest constant in the \mathcal{O} -notations.

We show $T(m, d) \le Cf(d) \max\{1, m\}$.

d = 1:

 $T(m, 1) \le C \max\{1, m\} \le Cf(1) \max\{1, m\} \text{ for } f(1) \ge 1$

d > 1; m = 0:

 $T(0,d) \le \mathcal{O}(d) \le Cd \le Cf(d) \max\{1,m\} \text{ for } f(d) \ge d$

d > 1; m = 1:

$$T(1,d) = \mathcal{O}(d) + T(0,d) + d(\mathcal{O}(d) + T(0,d-1))$$

$$\leq Cd + Cd + Cd^2 + dCf(d-1)$$

$$\leq Cf(d) \max\{1, m\} \text{ for } f(d) \geq 3d^2 + df(d-1)$$

8 Seidels LP-algorithm

▶ Define $f(1) = 3 \cdot 1^2$ and $f(d) = df(d-1) + 3d^2$ for d > 1.

Then

$$f(d) = 3d^{2} + df(d-1)$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)f(d-2)\right]$$

$$= 3d^{2} + d\left[3(d-1)^{2} + (d-1)\left[3(d-2)^{2} + (d-2)f(d-3)\right]\right]$$

$$= 3d^{2} + 3d(d-1)^{2} + 3d(d-1)(d-2)^{2} + \dots$$

$$+ 3d(d-1)(d-2) \cdot \dots \cdot 4 \cdot 3 \cdot 2 \cdot 1^{2}$$

$$= 3d! \left(\frac{d^{2}}{d!} + \frac{(d-1)^{2}}{(d-1)!} + \frac{(d-2)^{2}}{(d-2)!} + \dots\right)$$

$$= \mathcal{O}(d!)$$

since $\sum_{i\geq 1}\frac{i^2}{i!}$ is a constant.

$$\sum_{i \ge 1} \frac{i^2}{i!} = \sum_{i \ge 0} \frac{i+1}{i!} = e + \sum_{i \ge 1} \frac{i}{i!} = 2e$$

Harald Räcke

8 Seidels LP-algorithm

18. Jun. 202

8 Seidels LP-algorithm

d > 1; m > 1:

(by induction hypothesis statm. true for $d' < d, m' \ge 0$; and for d' = d, m' < m)

$$T(m,d) = \mathcal{O}(d) + T(m-1,d) + \frac{d}{m} \Big(\mathcal{O}(dm) + T(m-1,d-1) \Big)$$

$$\leq Cd + Cf(d)(m-1) + Cd^2 + \frac{d}{m} Cf(d-1)(m-1)$$

$$\leq 2Cd^2 + Cf(d)(m-1) + dCf(d-1)$$

$$\leq Cf(d)m$$

if
$$f(d) \ge df(d-1) + 2d^2$$
.

8 Seidels LP-algorithm

18. Jun. 2023

43/4