Complexity

LP Feasibility Problem (LP feasibility A)
Given A € 7™ b € 7™. Does there exist x € R" with Ax < b,
x =07

LP Feasiblity Problem (LP feasibility B)
Given A € 72"™*" b € 7™, Find x € R™ with Ax < b, x = 0!

LP Optimization A
Given A € 7"™*" b € 7™, c € 7™. What is the maximum value of
cTx for a feasible point x € R"?

LP Optimization B
Given A € 7" b € 7", c € 7. Return feasible point x € R"
with maximum value of ¢Tx?
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The Bit Model

Input size
» The number of bits to represent a number a € 7 is

[log,(lal)1+1

> Let for an m X n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

(M) := > [logy (Imjl) + 11
ij
> In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

» Then the input length is L = ©((A) + (b)).



> In the following we sometimes refer to L := (A) + (b) as the
input size (even though the real input size is something in
O((A) + (b))).

> Sometimes we may also refer to L := (A) + (b) + nlog, n as
the input size. Note that nlog, n = ©({A) + (b)).

> In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in L).
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Suppose that Ax = b; x = 0 is feasible.
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Suppose that Ax = b; x > 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

Xp = A_ﬁlb

and all other entries in x are 0.
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Size of a Basic Feasible Solution

> A: original input matrix
> A: transformation of A into standard form

> Ap: submatrix of A corresponding to basis B

Lemma 3
Let Ap € 7™ gnd b € 7™. Define L. = (A) + (b) + nlog, n.
Then a solution to Agxg = b has rational components x; of the

form %, where |D;| < 2L and |D| < 2L.



Size of a Basic Feasible Solution

> A: original input matrix
> A: transformation of A into standard form

> Ap: submatrix of A corresponding to basis B

Lemma 3

Let Ap € 7™ gnd b € 7™. Define L. = (A) + (b) + nlog, n.
Then a solution to Agxg = b has rational components x; of the
form %, where |D;| < 2L and |D| < 2L.

Proof:
Cramers rules says that we can compute x; as

.. _ det(A})
7 det(Ap)

where A_é is the matrix obtained from Ap by replacing the j-th
column by the vector b.



Bounding the Determinant

Let X = Ap. Then

|det(X)|
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Bounding the Determinant
Let X = Ap. Then

|det(X)| = |det(X)]

= Z sgn (1) 1_[ Xire(i)

TeSH l<i<n
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Bounding the Determinant

Let X = Ap. Then

|det(X)| = |det(X)]

Z sgn (1) 1_[ Xire(i)

TeSH l<i<n

> T KXinw!

mesSy 1<i<n

IA
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Bounding the Determinant

Let X = Ap. Then

|det(X)| = |det(X)]

Z sgn (1) 1_[ Xire(i)

TeSH l<i<n

> 1 Kinawl
meSH 1<i<n
(A)+(b)

IA

<nl-2
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Bounding the Determinant

Let X = Ap. Then

|det(X)| = |det(X)]

Z sgn (1) 1_[ Xire(i)

TeSH l<i<n
> I 1Xima!
mesSy 1<i<n

<! A oL

IA

m 9 The Ellipsoid Algorithm
Harald Racke 32/77



Bounding the Determinant

Let X = Ap. Then

|det(X)| = |det(X)]

Z sgn (1) 1_[ Xire(i)

TeSH l<i<n
z 1_[ |Xirr(i)|
meSy 1<i<n

<! A oL

IA

Here X is an 77 X 77 submatrix of A
with 71 < n.
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Bounding the Determinant

Let X = Ap. Then

|det(X)| = |det(X)]

> sgn(m) [| Xira

TeSH l<i<n
> T KXinw!
meSy 1<i<n

<! A oL

IA

Here X is an 77 X 77 submatrix of A
with 71 < n.

Analogously for det(A{;).
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Reducing LP-solving to LP decision.

Given an LP max{c’x | Ax < b;x = 0} do a binary search for the
optimum solution

(Add constraint ¢’ x > M). Then checking for feasibility shows
whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22t
I —— =0l ,
082 ( 1/2L ) o)
as the range of the search is at most —n22L", ... n22L" and the

) . . 1 1
distance between two adjacent values is at least det @) = o0

Here we use L' = (A) + (b) + (c) + nlog, n (it also includes the
encoding size of ¢).



How do we detect whether the LP is unbounded?
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How do we detect whether the LP is unbounded?

Let Mpax = 12%L" be an upper bound on the objective value of a
basic feasible solution.

m 9 The Ellipsoid Algorithm
Harald Racke 34/77



How do we detect whether the LP is unbounded?

Let Mpax = 12%L" be an upper bound on the objective value of a
basic feasible solution.

We can add a constraint ¢’ x > Mmax + 1 and check for feasibility.
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Ellipsoid Method
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Ellipsoid Method

> Let K be a convex set.
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> Let K be a convex set.
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contain K provided that K is non-empty.

> If center z € K STOP.

> Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> If center z € K STOP.

> Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

> Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains E N H.
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> If center z € K STOP.

> Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

> Shift hyperplane to contain
node z. H denotes half- &
space that contains K.

» Compute (smallest)
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> If center z € K STOP.

> Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

> Shift hyperplane to contain
node z. H denotes half- &
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains E N H.

> REPEAT
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Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?

» How do you measure progress? By how much does the
volume decrease in each iteration?
» When can you stop? What is the minimum volume of a

non-empty polytop?

:
9 The Ellipsoid Algorithm
36/77

m Harald Racke



Definition 4
A mapping f : R" — R" with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.
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Definition 5
A ball in R™ with center ¢ and radius 7 is given by

B(c,7v)={x|(x-c)T(x-c) <7r?}

={x|D(x-02/r* <1}

B(0,1) is called the unit ball.
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Definition 6
An affine transformation of the unit ball is called an ellipsoid.
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Definition 6
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

S(B(0,1))
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Definition 6
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

S(B(0,1)) ={f(x) | x €B(0,1)}
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Definition 6
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}
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Definition 6
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).
f(B(0,1)) = {f(x) | x € B(0,1)}

={yeR"| L Ny -t)€B(0,1)}
—{yeR" | (y-0TL VL Yy 1) <1}
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Definition 6
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}

—{yeR" | (y-0)TL VL (y-t) <1}
—{yeR" | (y-DlQl(y-1t) <1}
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Definition 6
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L Ny -t)€B(0,1)}

—{yeR" | (y-0TL VL Yy 1) <1}
={yeR"|(y-tHlQl(y-t)<1}

where Q = LLT is an invertible matrix.
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How to Compute the New Ellipsoid
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How to Compute the New Ellipsoid

> Use f! (recall that f = Lx + t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.
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How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx + t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

> Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.
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How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx + t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

> Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.
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How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx + t is the affine transformation of

the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

Compute the new center ¢’ and \
the new matrix Q' for this
simplified setting.

Use the transformations
R and f to get the

new center ¢’ and

the new matrix Q'

for the original

ellipsoid E.

A}
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How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx + t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

> Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

> Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.
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The Easy Case

» The new center lies on axis x;. Hence, ¢’ = te; fort > 0.
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The Easy Case

» The new center lies on axis x;. Hence, ¢’ = te; fort > 0.

» The vectors eq,e>2,... have to fulﬁlllthe ellipsoid constraint
with equality. Hence (e; — ¢)TQ" " (e; —¢') = 1.
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The Easy Case

. oAl L ny, -
> To obtain the matrix Q" = for our ellipsoid E’ note that E’ is
axis-parallel,
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The Easy Case

. oAl L ny, -
> To obtain the matrix Q" = for our ellipsoid E’ note that E’ is
axis-parallel,

> Let a denote the radius along the x;-axis and let b denote
the (common) radius for the other axes.
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The Easy Case

. oA, L ny, -
> To obtain the matrix Q" = for our ellipsoid E’ note that E’ is
axis-parallel,

> Let a denote the radius along the x;-axis and let b denote
the (common) radius for the other axes.

» The matrix

a 0 0
. b
ir=]?

: . . 0

0O ... 0 b

maps the unit ball (via function f(x) = ['x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.
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The Easy Case

-1

> As Q' = I/1'" the matrix Q' is of the form

50 0

Q,—l _ 0 #
' 0
0 0 3
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The Easy Case

> (e1 — 5')TQ'_1(61 —¢') =1 gives

1-t\" (& 0 ... 0 1-1¢

? - (.) .
) :

0 0 0 & 0

> This gives (1 — )2 = a?.
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The Easy Case

, . it A =1 . .
> For i+ 1 the equation (e; — ¢)TQ’ (e; — ¢’) = 1 looks like

(here i =2)
—t 1 —t
— 0 0
a2
1 0 L 1
0 b2 0 -1
' 0
1
0 0 0 4 0

2
» This gives % + % =1, and hence
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The Easy Case

, . it A =1 . .
> For i+ 1 the equation (e; — ¢)TQ’ (e; — ¢’) = 1 looks like

(herei=2)
—t 1 —t
1 a0 X 1
0o L
0 b2 0 =1
' 0
1
0 0 0 5 0
» This gives ;—22 + % =1, and hence
1 2 2
L
b2 a? (1-1¢)2

m 9 The Ellipsoid Algorithm
Harald Racke 45/77



The Easy Case

, . it A =1 . .
> For i+ 1 the equation (e; — ¢)TQ’ (e; — ¢’) = 1 looks like

(herei=2)
—t 1 —t
1 a0 X 1
0o L
0 b2 0 =1
' 0
1
0 0 0 5 0
>Thisgives;—22+%=1,andhence
i—1—ﬁ—1— t2 1-2t
b2 a? (1-1t)2 (1-1t)2
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Summary

So far we have

1-t
=1-t and b=——
a NI
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The Easy Case

We still have many choices for ¢:
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The Easy Case
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Choose t such that the volume of E’ is minimal!l!

m 9 The Ellipsoid Algorithm
Harald Racke 47/77



The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!l!

m 9 The Ellipsoid Algorithm
Harald Racke 47/77



The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!l!

m 9 The Ellipsoid Algorithm
Harald Racke 47/77



The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!l!

m 9 The Ellipsoid Algorithm
Harald Racke 47/77
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We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!
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The Easy Case

We still have many choices for ¢:

Choose t such that the volume of E’ is minimal!!!
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The Easy Case

We want to choose t such that the volume of E’ is minimal.
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The Easy Case

We want to choose t such that the volume of E’ is minimal.

Lemma 7
Let L be an affine transformation and K < R™. Then

vol(L(K)) = |det(L)| - vol(K) .
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n-dimensional volume

/ 17
|det( a1 az a3 ) y
/ 71
/ /

|
/ _— =1
/ |
A

|

-

-
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The Easy Case

> We want to choose t such that the volume of E’ is minimal.

vol(E’) = vol(B(0,1)) - |det(L")| ,
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The Easy Case

> We want to choose t such that the volume of E’ is minimal.

vol(E’) = vol(B(0,1)) - |det(L")| ,

» Recall that

a 0 0
R 0O b
L' =
0
0 0O b
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The Easy Case

> We want to choose t such that the volume of E’ is minimal.

vol(E’) = vol(B(0,1)) - |det(L")| ,

» Recall that

a 0 0
R 0O b
L' =
0
0 0O b

> Note that a and b in the above equations depend on t, by
the previous equations.
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The Easy Case

vol(E")
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab" 1
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab" 1

l_t )Tl—l

=vol(B(0,1)) - (1 —t) - ( 1-2t
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab" 1

_ n-1
=vol(B(0,1)) - (1 —t) - (\/11_7;)
(1-0"

= vol(B(0,1)) - JI-20n1
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L")|
=vol(B(0,1)) - ab" 1

_ n-1
=vol(B(0,1)) - (1 —t) - (\/11_7;)
Ca-or

(V1 =2t)n"1

We use the shortcut ® := vol(B(0,1)).

=vol(B(0,1)) -
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The Easy Case

dvol(E")
dt
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The Easy Case

dvol(E') d (¢ 1-o" )

dt  dt \ (vimepn!
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The Easy Case

dvol(E') d (¢ 1-o" )

dt de \ (viczp)n!
®
" N?
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The Easy Case

dvol(E') ( (1=t )
dt (yizap)n-1

G( 1) -n(l -1

derivative of numerator |

2‘»& Q‘\Q.
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The Easy Case

dvol(E') (1-1)
dt (q)(m)” 1)
(( H-n(1-n"1.\1 )"1

2‘»& Q‘\Q.
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The Easy Case

dvol(E') d (¢ 1-o" )

dt dt \" (yi=2p)nL
= % : ((—1) n1 - (1-20m!
—(n=-1)(1=-2t"2
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The Easy Case

dvol(E') d (¢ 1-o" )

dt t (yi=2r)n1
= % . ((—1) n(1-t" . 1=-2t)n!
1
n— IV o2, Y
(n-1)W1-2t) ST =57 (=2)
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The Easy Case

dvol(E') d (¢ 1-o" )

dt dt \" (vi—zpn?
= % : ((—1) n1 - (1-20m!

_n— oot L (oy.a-pn
(n =D =20"2 - ey o 2)
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The Easy Case

dvol(£)) d (¢ a-nn )

de de \" (vt
= % : ((—1) ‘n(1 -0t (1 -20)n!
M-I 2. L Loy aa—pn
(n-1H1-2t) ZM(Z) (1 t))
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To see the equation for b, observe that

(1-1)? _,(1 — n+1)2 (n+1)2
1-2t 11— -2 n-1

n+1 n+1

b* =

m 9 The Ellipsoid Algorithm
Harald Racke 53/77



The Easy Case

» We obtain the minimum for t = T

+1
» For this value we obtain
n 1-t n
a=1-t= and b = =
n+1 1-2t ne—1
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The Easy Case

Let y, = #(Eo:i)) = ab™! be the ratio by which the volume
changes:
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changes:
2
2 n 2 n n-1
Yu = <n+1> (n2—1>
1 2 1 n-1
= (1- 14—
( n+1> ( (n—l)(n+1))
o1 1

where we used (1 + x)4 < e?* for x € R and a > 0.
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The Easy Case

Let y, = #gi)) = ab™! be the ratio by which the volume
changes:
2
2 n 2 n n-1
Yu = <n+1> (n2—1>
1 2 1 n-1
= (1- 14—
( n+1> ( (n—l)(n+1))
o1 1

where we used (1 + x)4 < e?* for x € R and a > 0.

1
This gives y, < e 20+1),
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> Use f~! (recall that f = Lx + t is the affine transformation of
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How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx + t is the affine transformation of

the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.
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the new matrix Q' for this
simplified setting.

Use the transformations
R and f to get the
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> Use a rotation R~! to rotate the unit ball such that the
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How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx + t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

> Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting. s

> Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
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m 9 The Ellipsoid Algorithm
Harald Racke 55/77



Our progress is the same:
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Our progress is the same:

P vol(E") _ vol(E") _ vol(R(E"))
~ vol(B(0,1))  vol(E)  vol(R(E))
_ vol(E') _ vol(f(E")) _ vol(E")

~ vol(E)  vol(f(E))  vol(E)

Here it is important that mapping a set with affine function
f(x) = Lx +t changes the volume by factor det(L).
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The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | al (x — ¢) < 0};

SHH) = {f ') aT(x—¢) =0}
={f N SfON 1a (f(y) —c) <0}
={yla'(f(y)-c) <0}
={ylal(Ly +c-c) <0}
={y @'y <0}

This means @ = LT a.
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The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

,1( LTOl >: LTGl
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ILTall ILTall
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The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
= —e - =R-e]
(IILTaH) ILTall
Hence,
F—R.¢ - 1 1 L'a
- T 17T Tmr 1 LTal
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The Ellipsoid Algorithm

After rotating back (applying R~!) the normal vector of the
halfspace points in negative x-direction. Hence,

LTa LTa
-1
=—e ——=—-=R-e
(nLTan) ! ILTall !
Hence,
’ A7 1 1 LTa
7 =R-¢" =R - - - =
¢ ¢ n+19 T Tus1LTal

o
Il

‘= f@)=L-¢ +c
1 LTa
= - L +c
n+1 |[LTal

1 Qa

n+1 /aTQa




For computing the matrix Q' of the new ellipsoid we assume in
the following that £/, E” and E’ refer to the ellispoids centered in
the origin.
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9 The Ellipsoid Algorithm

Hence,
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9 The Ellipsoid Algorithm

Hence,
Q' = RQ'RT
n? 2
=R - I— TY . pT
nz—l( n+1e1e1> K

m 9 The Ellipsoid Algorithm
Harald Racke 62/77



9 The Ellipsoid Algorithm

Hence,

2
'nzn_l(

2
__n JRT__2 T
= 57 (R-R" = " (Re) (Ren))

_ T\ . pT
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2
- (R-RT =~ (Re1)(Ren)”)

9 The Ellipsoid Algori
Hence,
Q' =RQ'RT
2
1’L2
n2 -1
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elelT> -RT
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2 LTaaTL)
n+1|LTal?
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Hence,
Q' =LQ'L"
2 T,,T
_..n ( 2 L'aa L) LT
n2 -1 n+1 alQa
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Hence,
Q' =LQ'L"
2 T T
=L- n (_ 2 LaaL>_LT
2-1 n+1 alQa
(Q— 2 QaaTQ)
n2—1 n+1 alQa
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Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K < R"
2: output: point x € K or “K is empty”

3:. Q =M

4: repeat

5 if c € K then return ¢

6
7

else
choose a violated hyperplane a
1 Qa
8: cC —Cc-— —_—
n+1 /aTQa
2 T
_ n 2 Qaa'Q
% Q n2—1<Q n+1 aTQa)
10: endif
11: until 77?

12: return “K is empty”




Repeat: Size of basic solutions

Lemma 8

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let
L:=2(A) + (b) +2n(1 + log, n). Then every entry x; in a basic
solution fulfills |x ;| = % with D;,D < 2L,
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Repeat: Size of basic solutions

Lemma 8

LetP = {x € R" | Ax < b} be a bounded polyhedron. Let
L:=2(A) + (b) +2n(1 + log, n). Then every entry x; in a basic
solution fulfills |x ;| = % with D;,D < 2L,

In the following we use & := 2L,

Proof:

We can replace P by P' := {x | A’x < b;x > 0} where

A = [A —A]. The lemma follows by applying Lemma 3, and
observing that (A") = 2(A) and n’ = 2n.

m 9 The Ellipsoid Algorithm
Harald Racke 66/77



How do we find the first ellipsoid?

m 9 The Ellipsoid Algorithm
Harald Racke 67/77



How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

m 9 The Ellipsoid Algorithm
Harald Racke 67/77



How do we find the first ellipsoid?
For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < 6.

m 9 The Ellipsoid Algorithm
Harald Racke 67/77



How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < 6.

Hence, P is contained in the cube -6 < x; < 6.

m 9 The Ellipsoid Algorithm
Harald Racke 67/77



How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < 6.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /n6 from the
origin.

m 9 The Ellipsoid Algorithm
Harald Racke 67/77



How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < 6.
Hence, P is contained in the cube -6 < x; < 6.

A vector in this cube has at most distance R := /n6 from the
origin.

Starting with the ball Eg := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R"vol(B(0,1)) < (nd)"vol(B(0,1)).
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When can we terminate?

Let P:= {x | Ax < b} with A e Zand b € Z be a bounded
polytop.
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When can we terminate?

Let P:= {x | Ax < b} with A e Zand b € Z be a bounded
polytop.

Consider the following polyhedron

1
PA:={x|Axsb+i : },
1

where A = §2 + 1.

Note that the volume of Py cannot be 0
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Making P full-dimensional

Lemma 9
P, is feasible if and only if P is feasible.

m 9 The Ellipsoid Algorithm
Harald Racke 69/77



Making P full-dimensional

Lemma 9
P, is feasible if and only if P is feasible.
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Making P full-dimensional

=

Consider the polyhedrons
P={x|[A-AlLn|x =b;x =0}
and
P;\={XI[A—AIm]x:b+% lix =0l .
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P is feasible if and only if P is feasible, and P, feasible if and only
if P, feasible.



Making P full-dimensional

=

Consider the polyhedrons
P = {x | [A —Alm]x:b;xzo}
and
P;\z{xl[A—AIm]x:bJr% : ;xzo} .
1
P is feasible if and only if P is feasible, and P, feasible if and only

if P, feasible.

P, is bounded since P, and P are bounded.
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Making P full-dimensional
Let A = [A —A I ].
P, feasible implies that there is a basic feasible solution

represented by
1

xp = Aglb + %A,}l
(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for
P is that one of the basic variables becomes negative.

Hence, there exists i with

(Ag'b); <0 < (Ag'b); + %(Agli)i



Making P full-dimensional

By Cramers rule we get

(Aglh); <0 = (A3'b); < -1/8

b
det(Ap)

and .
(Ag'1); < det(A}) <& ,

where A{; is obtained by replacing the j-th column of Ag by 1.
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Making P full-dimensional

By Cramers rule we get

(Aglh); <0 = (A3'b); < -1/8

b
det(Ap)

and .
(Ag'1); < det(A}) <& ,

where A{; is obtained by replacing the j-th column of Ag by 1.
But then

(Ag'b); + %(Agli)i <-1/6+68/A<0,
as we chose A = 5° + 1. Contradiction.
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Lemma 10
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = ﬁvol(B(O, 1)).

m 9 The Ellipsoid Algorithm
Harald Racke 73/77



Lemma 10
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.

m 9 The Ellipsoid Algorithm
Harald Racke 73/77



Lemma 10
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

m 9 The Ellipsoid Algorithm
Harald Racke 73/77



Lemma 10
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||£] < 7. Then

(Alx +€));

m 9 The Ellipsoid Algorithm
Harald Réacke 73/77



Lemma 10
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||£] < 7. Then

(Ax +0)); = (Ax); + (AD);

m 9 The Ellipsoid Algorithm
Harald Réacke 73/77



Lemma 10
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||£] < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl

m 9 The Ellipsoid Algorithm
Harald Réacke 73/77



Lemma 10
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Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||£] < 7. Then

(AGx + 0)); = (Ax); + (AD); < by +aTl
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Lemma 10
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||£] < 7. Then

(Alx +0) = (Ax); + (AD); < by + dl l
= bi+ ”dl” . ||E|| < bi+ \/ﬁ Z(umax> -

\/ﬁ . 2(amax>

<b;+ 53

m 9 The Ellipsoid Algorithm
Harald Racke 73/77



Lemma 10
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||£] < 7. Then

(Alx +0) = (Ax); + (AD); < by + dl l
= bi+ ”dl” . ||E|| < bi+ \/ﬁ Z(umax> -

n.2(amax> 1
Sbi'ﬁ‘%ﬁbi‘i‘m

1
Sbl'i‘x
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Lemma 10
If Py is feasible then it contains a ball of radius v = 1/5°. This
has a volume of at least v""vol(B(0,1)) = ﬁvol(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||£] < 7. Then

(A(x +E))i = (Ax); + (Ag)i <b;+ ‘iiT!7
< b+ ld@ll - I1€)] < by + v - 2(@ma) .y

\/ﬁ . 2(amax> 1

Sbi+ 53 Sbi‘l‘m

1
Sbl'i‘x

Hence, x + U is feasible for Py which proves the lemma.
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How many iterations do we need until the volume becomes too
small?
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Hence,
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How many iterations do we need until the volume becomes too
small?

e 2(n+1) -vol(B(0O,R)) < vol(B(0,71))

Hence,

vol(B(0,R)) )
vol(B(0,7))

=2(n+1)In (n"é" . 63")

i>2(n+1)1n(
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How many iterations do we need until the volume becomes too
small?

o~ TID -vol(B(0,R)) < vol(B(0,7))
Hence,

VOl(B(O,R)))
vol(B(0,7))
=2n+1)In (n"é" . 63")

=8nn+1)Ind) +2(n+ 1)nin(n)
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How many iterations do we need until the volume becomes too
small?

o~ TID -vol(B(0,R)) < vol(B(0,7))
Hence,

VOl(B(O,R)))
vol(B(0,7))
=2n+1)In (n"é" . 63")
=8n(n+1)In(d) + 2(n+ 1)nin(n)
= O(poly(n) - L)

i>mn+nm(
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Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R™, convex set K = R", radii R and r
2 with K < B(¢,R), and B(x,7) < K for some x
3: output: point x € K or “K is empty”

4: Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)

5: repeat

6 if c € K then return ¢

7
8

else
choose a violated hyperplane a
1 Qa
9: C —C— ———F———
n+1 /aTQa
2 T
n 2 Qaa'Q
10: - - ===
0 Q n2—1<Q n+1 aTQa)
11: endif

12: until det(Q) < 2" //i.e., det(L) < r"
13: return “K is empty”
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Separation Oracle

Let K < R™ be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R" and either

> certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
> a guarantee that a ball of radius v is contained in K,
» an initial ball B(c,R) with radius R that contains K,

> a separation oracle for K.

The Ellipsoid algorithm requires @ (poly(n) - log(R/v)) iterations.
Each iteration is polytime for a polynomial-time Separation oracle.
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