Complexity

LP Feasibility Problem (LP feasibility A)
Given A € 7"™*" b € 7™. Does there exist x € R™ with Ax < b,

x = 07?

LP Feasiblity Problem (LP feasibility B)
Given A € 7™ b € 7™. Find x € R™ with Ax < b, x = 0!

LP Optimization A
Given A € 7"*" b € 7™, c € 7™. What is the maximum value of

cTx for a feasible point x € R"?

LP Optimization B
Given A € 7ZM™*" b € 7™, c € Z". Return feasible point x € R"

with maximum value of ¢Tx?

1
| Note that allowing A, b to contain rational numbers does not make a difference, as we can multiply
: every number by a suitable large constant so that everything becomes integral but the feasible :
y region does not change.

The Bit Model

Input size
» The number of bits to represent a number a € Z is

[log,(lal)]+1

> Let for an m x n matrix M, L(M) denote the number of bits
required to encode all the numbers in M.

(M) := > [ogy (Imgj|) + 1]
i,]

» In the following we assume that input matrices are encoded
in a standard way, where each number is encoded in binary
and then suitable separators are added in order to separate
distinct number from each other.

» Then the input length is L = O((A) + (b)).

> In the following we sometimes refer to L := (A) + (b) as the
input size (even though the real input size is something in
O((A) + (b))).

> Sometimes we may also refer to L := (A) + (b) + nlog, n as
the input size. Note that nlog, n = ©((A) + (b)).

» In order to show that LP-decision is in NP we show that if
there is a solution x then there exists a small solution for
which feasibility can be verified in polynomial time
(polynomial in L).

' Note that mlog, m may be much Iarger .
|than (A) + (b). '

Suppose that Ax = b; x > 0 is feasible.

Then there exists a basic feasible solution. This means a set B of
basic variables such that

XB = Aglb

and all other entries in x are O.

| In the following we show that this x has small encoding length |
1 and we give an explicit bound on this length. So far we have l
! onIy been handwaving and have said that we can compute x via .
| Gaussian elimination and it will be short...
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| Note that n in the theorem denotes the '

Size of a Basic Feasible Solution: number of columns in A which may be,

! much smaller than m.

> A: original input matrix
> A: transformation of A into standard form

> Ap: submatrix of A corresponding to basis B

Lemma 3

Let Ag € 7M™ gnd b € 7™. Define L = (A) + (b) + nlog, n.
Then a solution to Agxg = b has rational components x; of the
form %, where |D| < 2L and |D| < 2L.

Proof:
Cramers rules says that we can compute x; as

L, _ det(Ap)
7 det(Ap)

where A';é is the matrix obtained from A by replacing the j-th
column by the vector b.

Bounding the Determinant
Let X = Ag. Then

|det(X)| = [det(X)|

> sgn(m) [ Xim)

TeESH l<i<n

IA

meSH 1<i<n

IA

Here X is an 71 x 71 submatrix of A

with 11 < n.

Analogously for det(A{;).

Z l_[ |Xm Dl

n! . 24+ < oL

IWhen computing the determinant of X = AB )
.we first do expansions along columns that '
'were introduced when transforming A |nto |
1 standard form, i.e., into A.

i Such a column contains a single 1 and the :
! remammg entries of the column are 0. There- |
| fore, these expansions do not increase the
| absolute value of the determinant. After we :
! did expansions for all these columns we are
i left with a square sub-matrix of A of size at |
| most n x n. |
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Reducing LP-solving to LP decision.

Given an LP max{cTx | Ax < b;x = 0} do a binary search for the
optimum solution

(Add constraint ¢’ x = M). Then checking for feasibility shows
whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

2n22l ,
logs (T ) = 00

as the range of the search is at most —n22L' ..., n22L" and the
distance between two adjacent values is at least m > 2%
Here we use L’ = (A) + (b) + (c) + nlog, n (it also includes the
encoding size of ¢).

How do we detect whether the LP is unbounded?

Let Mmax = n22L" be an upper bound on the objective value of a

basic feasible solution.

We can add a constraint ¢7x > M.y + 1 and check for feasibility.

lm Harald Racke
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Ellipsoid Method

> Let K be a convex set.

> Maintain ellipsoid E that is guaranteed to
contain K provided that K is non-empty.

> If center z € K STOP.

> Otw. find a hyperplane separating
K from z (e.g. a violated
constraint in the LP).

> Shift hyperplane to contain
node z. H denotes half-
space that contains K.

» Compute (smallest)
ellipsoid E’ that
contains E N H.

> REPEAT

Issues/Questions:
» How do you choose the first Ellipsoid? What is its volume?

» How do you measure progress? By how much does the
volume decrease in each iteration?

» When can you stop? What is the minimum volume of a
non-empty polytop?
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Definition 4
A mapping f: R" — R™ with f(x) = Lx + t, where L is an
invertible matrix is called an affine transformation.

Definition 5
A ball in R™ with center ¢ and radius 7 is given by

B(c,v)={x|(x-0c)T(x -¢) <7r?}

={x|D(x-0)Fr*<1}

B(0,1) is called the unit ball.
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Definition 6
An affine transformation of the unit ball is called an ellipsoid.

From f(x) = Lx + t follows x = L1 (f(x) — t).

f(B(0,1)) = {f(x) | x € B(0,1)}
={yeR"| L1 (y-t) €B(0,1)}

—{yeR" | (y-0)TL VL Y y-1) <1}
={yeR'| (y-HIQ Ny -t) <1}

where Q = LLT is an invertible matrix.
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How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to rotate/distort the ellipsoid (back) into the
unit ball.

> Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

> Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.
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The Easy Case

» The new center lies on axis x;. Hence, ¢’ = te; fort > 0.

» The vectors e, ep,... have to fulﬁlllthe ellipsoid constraint
with equality. Hence (e; — ¢)TQ’ "(ej —¢') = 1.
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The Easy Case

. oA, S A, -
> To obtain the matrix Q" ~ for our ellipsoid E’ note that E’ is
axis-parallel.

> Let a denote the radius along the x;-axis and let b denote
the (common) radius for the other axes.

» The matrix

a 0 0
« b
L' = 0
: . . 0
0O ... 0 b

maps the unit ball (via function /' (x) = 1'x) to an
axis-parallel ellipsoid with radius a in direction x; and b in
all other directions.

m 9 The Ellipsoid Algorithm
Harald Racke




The Easy Case

> As O’ = i/1’" the matrix O’ " is of the form

= 0 0

Q,fl _ 0 %
' 0
0 0
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The Easy Case

> (e1 — é')TQ'_l(el —¢') =1 gives

T /1

11—t 2 0 ... 0 1-¢t
0 0 blT : : 0
. : 0
0 0 0 # 0

> This gives (1 — t)? = a?.
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The Easy Case

» For i # 1 the equation (e; — c”)TQ’_l(ei —¢") =1 looks like

(here i = 2)
—t\ 1 ¢
1 a0 ! 1
0o L
0 b2 0 =1
. 0 )
1
0 0 0 4 0
» This gives ;—22 + # =1, and hence
1t 1 2 1-2t
b2 a? (1-6)2 (1-1t)2
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Summary

So far we have

1-t
=1-t d b=
a an NI
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The Easy Case

We still have many choices for t:

Choose t such that the volume of E’ is minimal!!!
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The Easy Case

We want to choose t such that the volume of £’ is minimal.

Lemma 7
Let L be an dffine transformation and K < R™. Then

vol(L(K)) = [det(L)]| - vol(K) .
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n-dimensional volume
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The Easy Case

> We want to choose t such that the volume of £’ is minimal.

vol(E") = vol(B(0,1)) - |det(L")] ,

» Recall that

a 0 0

i b
S
0 0 b

» Note that a and b in the above equations depend on t, by
the previous equations.
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The Easy Case

vol(E') = vol(B(0,1)) - |det(L))]
=vol(B(0,1)) - ab™!

— vol(B(0,1)) - (1 - 1) - (H)nl

V1 =2t
=vol(B(0,1)) - %
B ’ (V1 =2t)n-1

We use the shortcut ® := vol(B(0,1)).
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The Easy Case

dvol(E") d (@ (1-t)" >

—r\yn—1
dt dq)t (vVi-2t) 1-9¢
=47 (ED - na T AR
: derivative of numerator ‘ ’ denominator ]
N = denominator 1-1

1
~m-1NL1—20"2. = . (2T (1T
. ZP -
Inner derivative
SN TN L

. ((n— DA-¢)—n(l- 2t)>

= % SW1=20m .-t ((n + 1)t — 1)
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The Easy Case

> We obtain the minimum for t = ﬁ

» For this value we obtain

a=1-t=—"—andb= -t _ n
n+1 1-2t n? -1

To see the equation for b, observe that

1
b2 = (1-1)° _ (1 - n+1)2 _ (n:L—l)2 _ n?
T 1-2t 1_--2  — nl T2
n+1 n+1
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The Easy Case

vol(E")

Let yn = ooy = @b ! be the ratio by which the volume
changes:
2
2 n 2 n n-1
Yn = (n+1> <n2—1>
1 2 1 n-1
= (1- 14—
( n+1> ( (n—l)(n+1)>
_p L _1

where we used (1 + x)4 < e%* for x € R and a > 0.

1
This gives y, < e 20+1),
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How to Compute the New Ellipsoid

> Use f~! (recall that f = Lx +t is the affine transformation of
the unit ball) to translate/distort the ellipsoid (back) into the
unit ball.

> Use a rotation R~! to rotate the unit ball such that the
normal vector of the halfspace is parallel to e;.

» Compute the new center ¢’ and
the new matrix Q' for this
simplified setting.

> Use the transformations
R and f to get the
new center ¢’ and
the new matrix Q'
for the original
ellipsoid E.

Our progress is the same:

o2 vol(E”) _ Vol(E’A’) _ Vol(R(I:A:’))
~ vol(B(0,1))  vol(E) vol(R(E))
vol(E")  vol(f(E"))  vol(E")
~ vol(E) ~ vol(f(E)) ~ vol(E)

Here it is important that mapping a set with affine function
f(x) = Lx + t changes the volume by factor det(L).
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The Ellipsoid Algorithm

How to compute the new parameters?
The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: H = {x | a’ (x — ¢) < 0};

SHH) ={f ' (x) laT(x—¢) <0}
={f Y fo) lal(f(y)—c) <0}
={yla'(f(y)-c) <0}
={ylalLy+c-c) =<0}
={y|(a'L)y <0}

This means d@ = L7a.
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The Ellipsoid Algorithm

After rotating back (applying R~1) the normal vector of the
halfspace points in negative xi-direction. Hence,

LTa LTa
-1
) = —e -——=R-e
<||LTa||) ! ILTall !
Hence,

7 N 1 1 LTG,

¢ =R-¢ =R- e = —
n+1 ' T n+l|LTal

¢ =f@E)=L-¢ +c

—fLL La +c
- n+1 |LTal
1 Qa

=C —
n+1 aTQa




For computing the matrix Q’ of the new ellipsoid we assume in
the following that £/, E” and E’ refer to the ellispoids centered in
the origin.
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Recall that

a’? 0 0
s, | 0 b2
S
0 0 b?
This gives : (Nea th exéf s & e
’ n

Q= :

e eT) |M that has M1 = 1 and all .
L€1 ) ! other entries equal to 0.

n2—1<1_n+1

because for a® = n’/(n+1)2 and b2 = n’/n2_1

b2 _ b2 2 _ n? 2n?

n+l n2-1 (m-1)(n+1)2

n’(n+1)-2n>  n?’m-1) 22
m-1n+1)2 m-1n+1)2

9 The Ellipsoid Algorithm

B = R(E)
—{R(x) | xTQ 'x <1}
— Y [ RTQ 'Ry <1}
— {y [YT(RN1Q 'Ry < 1}
= {y | yT(RQ'RT) 'y <1}
o
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Hence,
Q' =RQ'R"
2
_ n T
R'nz—l< _n+1elel) R
2

__n T2 T
= 5 7 (R-RT————(Re1)(Re)")
- n? (_ 2 LTaaTL>
n? -1 n+1||[LTal?

| Here we used the equation for Rej proved before, and the fact that RRT = I, which holds for anyI
' rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e. ,.

1
: xTIx = (Rx)T(Rx) = xT(RTR)x
1

'WhICh means xT (I - RTR)x = 0 for every vector x. It is easy to see that this can only be fulfilled
Lif I - RTR = 0.
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9 The Ellipsoid Algorithm

E = L(E)
— (L) [ xTQ 'x <1}
iy | LT 'Ly <1}
=y 1yTaH '@ 'ty <13
={ylyTaQLhH 'y <1}
o
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Hence,
Q' =1Q'L!
_ n2 ( 2 LTa aTL> T
-1 n+1 alQa
. n? (Q— 2 QaaTQ)
-1 n+1 alQa
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Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R", convex set K < R"
2: output: point x € K or “K is empty”

3:Q — 7?7

4: repeat

5: if c € K then return ¢

6: else

7: choose a violated hyperplane a

1 Qa
& C“C‘n+1¢§5;
n? 2 Qaa’qQ

% Q(_nz—l(Q_n+1 aTQa>
10: endif
11: until 722
12: return “K is empty”

Repeat: Size of basic solutions

Lemma 8
LetP = {x € R" | Ax < b} be a bounded polyhedron. Let

L:=2(A) +(b) +2n(1 + log, n). Then every entry x; in a basic

solution fulfills |x;| = 5 with D;,D < 2L,

In the following we use § := 2L,

Proof:

We can replace P by P’ := {x | A’x < b;x = 0} where

A = [A —A]. The lemma follows by applying Lemma 3, and
observing that (A") = 2(A) and n’ = 2n.
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How do we find the first ellipsoid?

For feasibility checking we can assume that the polytop P is
bounded; it is sufficient to consider basic solutions.

Every entry x; in a basic solution fulfills |x;| < 9.
Hence, P is contained in the cube —6 < x; < 6.

A vector in this cube has at most distance R := \/n6 from the
origin.

Starting with the ball Eyp := B(0,R) ensures that P is completely
contained in the initial ellipsoid. This ellipsoid has volume at
most R"vol(B(0,1)) < (né)"vol(B(0,1)).

When can we terminate?
Let P:= {x | Ax < b} with A€ Z and b € 7 be a bounded
polytop.

Consider the following polyhedron
1{.
PAzz{x|Axsb+A : }

where A = 62 + 1.

Note that the volume of P, cannot be 0
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Making P full-dimensional

Lemma 9
P, is feasible if and only if P is feasible.

< obvious!
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Making P full-dimensional

e

Consider the polyhedrons
P = {x \ [A —Alm]x=l/);X20}
and

pA:{X||:A_AIm]X:b+% : ;sz}.
1

P is feasible if and only if P is feasible, and P, feasible if and only
if P, feasible.

P, is bounded since Py and P are bounded.




Making P full-dimensional
Let A = [A —A Im].
P, feasible implies that there is a basic feasible solution

represented by
1

_ 1 -
xg=Ag'b + XAgl
(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for
P is that one of the basic variables becomes negative.

Hence, there exists i with

(Ag'b); <0 < (Az'h); + %(A'glf)i

Making P full-dimensional

By Cramers rule we get

(Ag'h)i <0 = (A3'b); < <-1/§

1
det(AB)
and '
(Ag'D); < det(A}) <6 ,

where A_é is obtained by replacing the j-th column of Ag by 1.
But then
(Ag'b)i + %(Agli)i <-1/6+6/A<0,

as we chose A = 62 + 1. Contradiction.
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Lemma 10
If Py is feasible then it contains a ball of radius v := 1/5°. This
has a volume of at least v"'vol(B(0,1)) = (;WVOI(B(O, 1)).

Proof:
If P, feasible then also P. Let x be feasible for P.
This means Ax < b.

Let £ with ||[/]| < 7. Then

(Ax +0)i = (Ax); + (AD); < by +all
< by + ldll - 10]l < by + Jn - 2%amax) .y

\/ﬁ . 2<amax) <b 1 - 1

<b;+ 53

Hence, x + U is feasible for Py which proves the lemma.
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How many iterations do we need until the volume becomes too
small?

e 7m0 - yol(B(0,R)) < vol(B(0,7))
Hence,

Vol(B(O,R))>
vol(B(0,7))
=2(n+1)In(n"o" - 5°")
=8nn+1)In(d) +2(n + 1)nln(n)
= O(poly(n) - L)

i>2(n+1)ln(
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Algorithm 1 ellipsoid-algorithm

1: input: point ¢ € R", convex set K < R", radii R and r
2 with K € B(c,R), and B(x,r) < K for some x
3: output: point x € K or “K is empty”

4. Q — diag(R?,...,R?) //i.e., L = diag(R,...,R)

5. repeat

6 if c € K then return c

7
8

else
choose a violated hyperplane a
1 Qa
9 c —cCc—
n+1l /aTQa
n? 2 Qaa’qQ

10: <=
0 Q n2 I(Q n+1 aTQa>
11: endif

12: until det(Q) < 72" // i.e., det(L) < "
13: return “K is empty”

Separation Oracle

Let K < R" be a convex set. A separation oracle for K is an
algorithm A that gets as input a point x € R" and either

» certifies that x € K,
» or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need
> a guarantee that a ball of radius 7 is contained in K,
» an initial ball B(c,R) with radius R that contains K,

> a separation oracle for K.

The Ellipsoid algorithm requires @ (poly(n) - log(R/v)) iterations.
Each iteration is polytime for a polynomial-time Separation oracle.

Example
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