Complexity

LP Feasibility Problem (LP feasibility A)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Does there exist $x \in \mathbb{R}^n$ with $Ax \le b$, $x \ge 0$?

LP Feasiblity Problem (LP feasibility B)

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$. Find $x \in \mathbb{R}^n$ with $Ax \leq b$, $x \geq 0$!

LP Optimization A

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$. What is the maximum value of $c^T x$ for a feasible point $x \in \mathbb{R}^n$?

LP Optimization B

Given $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$. Return feasible point $x \in \mathbb{R}^n$ with maximum value of $c^T x$?

Note that allowing A, b to contain rational numbers does not make a difference, as we can multiply every number by a suitable large constant so that everything becomes integral but the feasible region does not change.

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

$$\langle M
angle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

Input size

▶ The number of bits to represent a number $a \in \mathbb{Z}$ is

$$\lceil \log_2(|a|) \rceil + 1$$

$$\langle M \rangle := \sum_{i,j} \lceil \log_2(|m_{ij}|) + 1 \rceil$$

- ▶ In the following we assume that input matrices are encoded in a standard way, where each number is encoded in binary and then suitable separators are added in order to separate distinct number from each other.
- ▶ Then the input length is $L = \Theta(\langle A \rangle + \langle b \rangle)$.

- In the following we sometimes refer to $L := \langle A \rangle + \langle b \rangle$ as the input size (even though the real input size is something in $\Theta(\langle A \rangle + \langle b \rangle)$).
- Sometimes we may also refer to $L := \langle A \rangle + \langle b \rangle + n \log_2 n$ as the input size. Note that $n \log_2 n = \Theta(\langle A \rangle + \langle b \rangle)$.
- In order to show that LP-decision is in NP we show that if there is a solution *x* then there exists a small solution for which feasibility can be verified in polynomial time (polynomial in *L*).

Note that $m \log_2 m$ may be much larger than $\langle A \rangle + \langle b \rangle$.

Suppose that $\bar{A}x = b$; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set B of basic variables such that

$$x_B = \bar{A}_B^{-1} b$$

and all other entries in x are 0.

In the following we show that this x has small encoding length and we give an explicit bound on this length. So far we have only been handwaving and have said that we can compute x via Gaussian elimination and it will be short

Suppose that $\bar{A}x = b$; $x \ge 0$ is feasible.

Then there exists a basic feasible solution. This means a set *B* of basic variables such that

$$x_B = \bar{A}_B^{-1} b$$

and all other entries in x are 0.

In the following we show that this x has small encoding length and we give an explicit bound on this length. So far we have only been handwaving and have said that we can compute x via Gaussian elimination and it will be short...

Size of a Basic Feasible Solution

Note that n in the theorem denotes the number of columns in A which may be much smaller than $oldsymbol{m}$.

- A: original input matrix
- \blacktriangleright \bar{A} : transformation of A into standard form
- $ightharpoonup ar{A}_B$: submatrix of $ar{A}$ corresponding to basis B

Lemma 3

Let $\bar{A}_B \in \mathbb{Z}^{m \times m}$ and $b \in \mathbb{Z}^m$. Define $L = \langle A \rangle + \langle b \rangle + n \log_2 n$. Then a solution to $\bar{A}_B x_B = b$ has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \leq 2^L$ and $|D| \leq 2^L$.

Proof

Cramers rules says that we can compute x_j as

$$x_j = \frac{\det(\bar{A}_B^j)}{\det(\bar{A}_B)}$$

where \bar{A}_B^J is the matrix obtained from \bar{A}_B by replacing the j-th column by the vector b.

Size of a Basic Feasible Solution number of columns in A which may be

Note that n in the theorem denotes the $^{
m I}$ much smaller than m.

- A: original input matrix
- $ightharpoonup \bar{A}$: transformation of A into standard form
- \blacktriangleright \bar{A}_{B} : submatrix of \bar{A} corresponding to basis B

Lemma 3

Let $\bar{A}_B \in \mathbb{Z}^{m \times m}$ and $b \in \mathbb{Z}^m$. Define $L = \langle A \rangle + \langle b \rangle + n \log_2 n$. Then a solution to $\bar{A}_B x_B = b$ has rational components x_j of the form $\frac{D_j}{D}$, where $|D_j| \le 2^L$ and $|D| \le 2^L$.

Proof:

Cramers rules says that we can compute x_i as

$$x_j = \frac{\det(\bar{A}_B^j)}{\det(\bar{A}_B)}$$

where \bar{A}_{R}^{j} is the matrix obtained from \bar{A}_{B} by replacing the j-th column by the vector \boldsymbol{b} .

Let
$$X = \bar{A}_B$$
. Then

 $|\det(X)|$

Let
$$X = \bar{A}_B$$
. Then

$$|\det(X)| = |\det(\bar{X})|$$

Let
$$X = \bar{A}_B$$
. Then

$$|\det(X)| = |\det(\bar{X})|$$

$$= \left| \sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \tilde{n}} \bar{X}_{i\pi(i)} \right|$$

Let
$$X = \bar{A}_B$$
. Then

$$|\det(X)| = |\det(\bar{X})|$$

$$= \left| \sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \tilde{n}} \bar{X}_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \le i \le \tilde{n}} |\bar{X}_{i\pi(i)}|$$

Let
$$X = \bar{A}_B$$
. Then

$$\begin{aligned} |\det(X)| &= |\det(\bar{X})| \\ &= \left| \sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \tilde{n}} \bar{X}_{i\pi(i)} \right| \\ &\le \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \le i \le \tilde{n}} |\bar{X}_{i\pi(i)}| \\ &\le n! \cdot 2^{\langle A \rangle + \langle b \rangle} \end{aligned}$$

Let
$$X = \bar{A}_B$$
. Then

$$\begin{aligned} |\det(X)| &= |\det(\bar{X})| \\ &= \left| \sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \tilde{n}} \bar{X}_{i\pi(i)} \right| \\ &\le \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \le i \le \tilde{n}} |\bar{X}_{i\pi(i)}| \\ &\le n! \cdot 2^{\langle A \rangle + \langle b \rangle} \le 2^{L} \ . \end{aligned}$$

Let
$$X = \bar{A}_B$$
. Then

$$\begin{aligned} |\text{det}(X)| &= |\text{det}(\bar{X})| \\ &= \left| \sum_{\pi \in S_{\tilde{n}}} \text{sgn}(\pi) \prod_{1 \leq i \leq \tilde{n}} \bar{X}_{i\pi(i)} \right| \\ &\leq \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \leq i \leq \tilde{n}} |\bar{X}_{i\pi(i)}| \\ &\leq n! \cdot 2^{\langle A \rangle + \langle b \rangle} \leq 2^{L} \ . \end{aligned}$$

Here \bar{X} is an $\tilde{n} \times \tilde{n}$ submatrix of A with $\tilde{n} \leq n$.

Let
$$X = \bar{A}_B$$
. Then

$$|\det(X)| = |\det(\bar{X})|$$

$$= \left| \sum_{\pi \in S_{\tilde{n}}} \operatorname{sgn}(\pi) \prod_{1 \le i \le \tilde{n}} \bar{X}_{i\pi(i)} \right|$$

$$\le \sum_{\pi \in S_{\tilde{n}}} \prod_{1 \le i \le \tilde{n}} |\bar{X}_{i\pi(i)}|$$
When con

Here \bar{X} is an $\tilde{n} \times \tilde{n}$ submatrix of Awith $\tilde{n} < n$.

Analogously for $\det(A_R^J)$.

When computing the determinant of $X = \bar{A}_R$ $\leq n! \cdot 2^{\langle A \rangle + \langle b \rangle} \leq 2^L$ we first do expansions along columns that were introduced when transforming A into standard form, i.e., into \bar{A} .

Such a column contains a single 1 and the remaining entries of the column are 0. There-i fore, these expansions do not increase the absolute value of the determinant. After we did expansions for all these columns we are left with a square sub-matrix of A of size at

Given an LP $\max\{c^Tx \mid Ax \leq b; x \geq 0\}$ do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'},\ldots,n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \geq \frac{1}{2^{L'}}$.

Given an LP $\max\{c^Tx \mid Ax \leq b; x \geq 0\}$ do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'},\ldots,n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \geq \frac{1}{2^{L'}}$.

Given an LP $\max\{c^Tx \mid Ax \leq b; x \geq 0\}$ do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'},\ldots,n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \geq \frac{1}{2^{L'}}$.

Given an LP $\max\{c^Tx \mid Ax \leq b; x \geq 0\}$ do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'},\ldots,n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \geq \frac{1}{2^{L'}}$.

Given an LP $\max\{c^Tx \mid Ax \leq b; x \geq 0\}$ do a binary search for the optimum solution

(Add constraint $c^T x \ge M$). Then checking for feasibility shows whether optimum solution is larger or smaller than M).

If the LP is feasible then the binary search finishes in at most

$$\log_2\left(\frac{2n2^{2L'}}{1/2^{L'}}\right) = \mathcal{O}(L') ,$$

as the range of the search is at most $-n2^{2L'}, \ldots, n2^{2L'}$ and the distance between two adjacent values is at least $\frac{1}{\det(A)} \ge \frac{1}{2^{L'}}$.

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

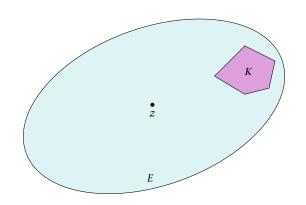
How do we detect whether the LP is unbounded?

Let $M_{\text{max}} = n2^{2L'}$ be an upper bound on the objective value of a basic feasible solution.

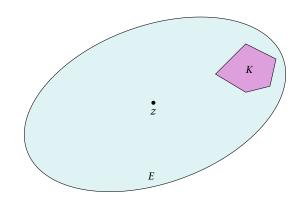
We can add a constraint $c^T x \ge M_{\text{max}} + 1$ and check for feasibility.

Let *K* be a convex set.

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.



- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.



- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

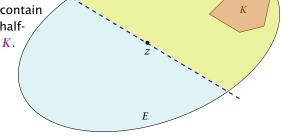
Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

Shift hyperplane to contain node z. H denotes halfspace that contains K.

- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

Shift hyperplane to contain node z. H denotes halfspace that contains K.

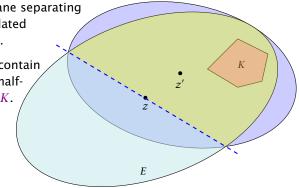


- Let K be a convex set.
- Maintain ellipsoid *E* that is guaranteed to contain *K* provided that *K* is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

Shift hyperplane to contain node z. H denotes halfspace that contains K.

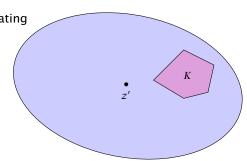
Compute (smallest) ellipsoid E' that contains $E \cap H$.



- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from z (e.g. a violated constraint in the LP).

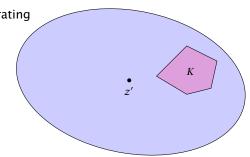
- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $E \cap H$.



- Let *K* be a convex set.
- Maintain ellipsoid E that is guaranteed to contain K provided that K is non-empty.
- ▶ If center $z \in K$ STOP.

Otw. find a hyperplane separating K from Z (e.g. a violated constraint in the LP).

- Shift hyperplane to contain node z. H denotes halfspace that contains K.
- Compute (smallest) ellipsoid E' that contains $E \cap H$.
- REPEAT



Issues/Questions:

- How do you choose the first Ellipsoid? What is its volume?
- How do you measure progress? By how much does the volume decrease in each iteration?
- When can you stop? What is the minimum volume of a non-empty polytop?

A mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ with f(x) = Lx + t, where L is an invertible matrix is called an affine transformation.

A ball in \mathbb{R}^n with center c and radius r is given by

$$B(c,r) = \{x \mid (x-c)^T (x-c) \le r^2\}$$
$$= \{x \mid \sum_i (x-c)_i^2 / r^2 \le 1\}$$

B(0,1) is called the unit ball.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{f(x) \mid x \in B(0,1)\}$$

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$
$$= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$$

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$\begin{split} f(B(0,1)) &= \{ f(x) \mid x \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \} \\ &= \{ y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1 \} \end{split}$$

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1 \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1 \}$$

An affine transformation of the unit ball is called an ellipsoid.

From
$$f(x) = Lx + t$$
 follows $x = L^{-1}(f(x) - t)$.

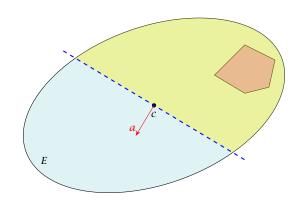
$$f(B(0,1)) = \{ f(x) \mid x \in B(0,1) \}$$

$$= \{ y \in \mathbb{R}^n \mid L^{-1}(y-t) \in B(0,1) \}$$

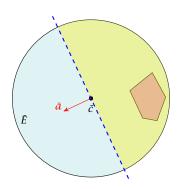
$$= \{ y \in \mathbb{R}^n \mid (y-t)^T L^{-1}^T L^{-1}(y-t) \le 1 \}$$

$$= \{ y \in \mathbb{R}^n \mid (y-t)^T Q^{-1}(y-t) \le 1 \}$$

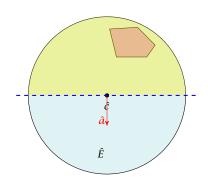
where $Q = LL^T$ is an invertible matrix.



▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

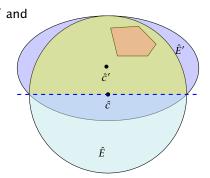


- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

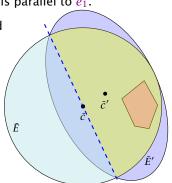


- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.



- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.
- Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.

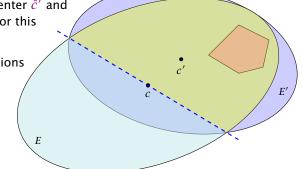


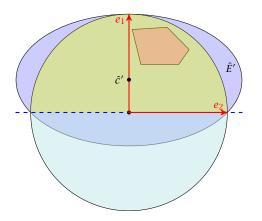
▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to rotate/distort the ellipsoid (back) into the unit ball.

• Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

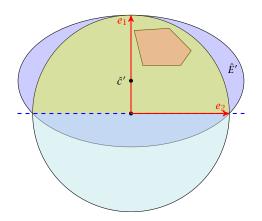
Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.

Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.





- ▶ The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ▶ The vectors $e_1, e_2,...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i \hat{c}')^T \hat{O}'^{-1} (e_i \hat{c}') = 1$.



- ▶ The new center lies on axis x_1 . Hence, $\hat{c}' = te_1$ for t > 0.
- ► The vectors $e_1, e_2,...$ have to fulfill the ellipsoid constraint with equality. Hence $(e_i \hat{c}')^T \hat{Q}'^{-1} (e_i \hat{c}') = 1$.

- ▶ To obtain the matrix \hat{Q}'^{-1} for our ellipsoid \hat{E}' note that \hat{E}' is axis-parallel.
- Let a denote the radius along the x_1 -axis and let b denote the (common) radius for the other axes.
- ▶ The matrix

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

- ▶ To obtain the matrix \hat{Q}'^{-1} for our ellipsoid \hat{E}' note that \hat{E}' is axis-parallel.
- Let a denote the radius along the x_1 -axis and let b denote the (common) radius for the other axes.
- ► The matrix

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

- ▶ To obtain the matrix \hat{Q}'^{-1} for our ellipsoid \hat{E}' note that \hat{E}' is axis-parallel.
- Let a denote the radius along the x_1 -axis and let b denote the (common) radius for the other axes.
- The matrix

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

maps the unit ball (via function $\hat{f}'(x) = \hat{L}'x$) to an axis-parallel ellipsoid with radius a in direction x_1 and b in all other directions.

As $\hat{Q}' = \hat{L}'\hat{L}'^t$ the matrix \hat{Q}'^{-1} is of the form

$$\hat{Q}'^{-1} = \begin{pmatrix} \frac{1}{a^2} & 0 & \dots & 0\\ 0 & \frac{1}{b^2} & \ddots & \vdots\\ \vdots & \ddots & \ddots & 0\\ 0 & \dots & 0 & \frac{1}{b^2} \end{pmatrix}$$

 $(e_1 - \hat{c}')^T \hat{Q}'^{-1} (e_1 - \hat{c}') = 1$ gives

$$\begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \cdots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} 1-t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $(1 - t)^2 = a^2$.

For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i = 2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{b^2} = 1$, and hence

$$\frac{1}{b^2} = 1 - \frac{t^2}{a^2}$$

► For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i=2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{b^2} = 1$, and hence

$$\frac{1}{b^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2}$$

For $i \neq 1$ the equation $(e_i - \hat{c}')^T \hat{Q}'^{-1} (e_i - \hat{c}') = 1$ looks like (here i = 2)

$$\begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}^{T} \cdot \begin{pmatrix} \frac{1}{a^{2}} & 0 & \dots & 0 \\ 0 & \frac{1}{b^{2}} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \frac{1}{b^{2}} \end{pmatrix} \cdot \begin{pmatrix} -t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 1$$

► This gives $\frac{t^2}{a^2} + \frac{1}{b^2} = 1$, and hence

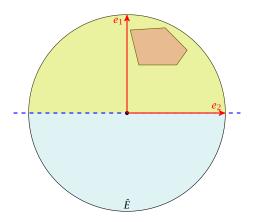
$$\frac{1}{b^2} = 1 - \frac{t^2}{a^2} = 1 - \frac{t^2}{(1-t)^2} = \frac{1-2t}{(1-t)^2}$$

Summary

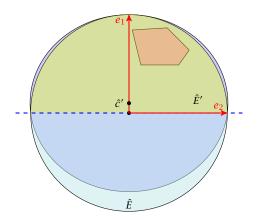
So far we have

$$a = 1 - t$$
 and $b = \frac{1 - t}{\sqrt{1 - 2t}}$

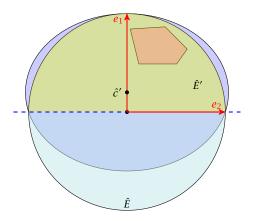
We still have many choices for t:



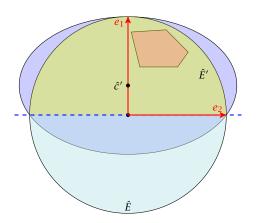
We still have many choices for t:



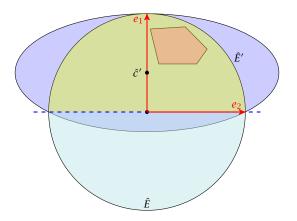
We still have many choices for t:



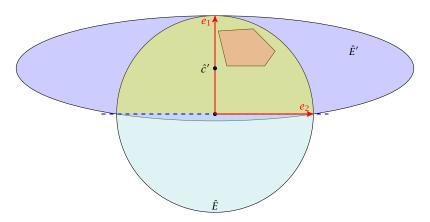
We still have many choices for t:



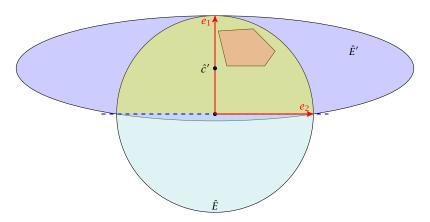
We still have many choices for t:



We still have many choices for t:



We still have many choices for t:



We want to choose t such that the volume of \hat{E}' is minimal.

Lemma 7

Let L be an affine transformation and $K\subseteq \mathbb{R}^n.$ Then

 $vol(L(K)) = |det(L)| \cdot vol(K)$.

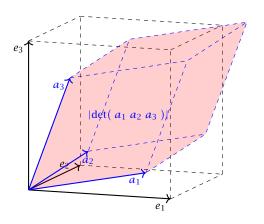
We want to choose t such that the volume of \hat{E}' is minimal.

Lemma 7

Let L be an affine transformation and $K \subseteq \mathbb{R}^n$. Then

$$vol(L(K)) = |det(L)| \cdot vol(K)$$
.

n-dimensional volume



• We want to choose t such that the volume of \hat{E}' is minimal.

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')| ,$$

Recall that

$$\hat{L}' = \left(\begin{array}{cccc} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{array}\right)$$

Note that *a* and *b* in the above equations depend on *t*, by the previous equations.

• We want to choose t such that the volume of \hat{E}' is minimal.

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')| ,$$

Recall that

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

Note that *a* and *b* in the above equations depend on *t*, by the previous equations.

• We want to choose t such that the volume of \hat{E}' is minimal.

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|,$$

Recall that

$$\hat{L}' = \begin{pmatrix} a & 0 & \dots & 0 \\ 0 & b & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b \end{pmatrix}$$

Note that *a* and *b* in the above equations depend on *t*, by the previous equations.

 $\operatorname{vol}(\hat{E}')$

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$$

$$\operatorname{vol}(\hat{E}') = \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')|$$
$$= \operatorname{vol}(B(0,1)) \cdot ab^{n-1}$$

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\operatorname{det}(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \end{aligned}$$

$$\begin{aligned} \operatorname{vol}(\hat{E}') &= \operatorname{vol}(B(0,1)) \cdot |\det(\hat{L}')| \\ &= \operatorname{vol}(B(0,1)) \cdot ab^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1} \\ &= \operatorname{vol}(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \end{aligned}$$

$$vol(\hat{E}') = vol(B(0,1)) \cdot |det(\hat{L}')|$$

$$= vol(B(0,1)) \cdot ab^{n-1}$$

$$= vol(B(0,1)) \cdot (1-t) \cdot \left(\frac{1-t}{\sqrt{1-2t}}\right)^{n-1}$$

$$= vol(B(0,1)) \cdot \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}}$$

We use the shortcut $\Phi := vol(B(0, 1))$.

 $\frac{\operatorname{d}\operatorname{vol}(\hat{E}')}{\operatorname{d}t}$

$$\frac{\operatorname{d} \operatorname{vol}(\hat{E}')}{\operatorname{d} t} = \frac{\operatorname{d}}{\operatorname{d} t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$

$$\frac{\operatorname{d}\operatorname{vol}(\hat{E}')}{\operatorname{d}t} = \frac{\operatorname{d}}{\operatorname{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{\Phi}{N^2}$$

$$N = \operatorname{denominator}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right)$$
$$= \frac{\Phi}{N^2} \cdot \left(\frac{(-1) \cdot n(1-t)^{n-1}}{\text{derivative of numerator}} \right)$$

$$\begin{split} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n (1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right. \\ &\qquad \qquad \left. \left(\mathrm{denominator} \right) \right] \end{split}$$

$$\begin{split} \frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}\,t} &= \frac{\mathrm{d}}{\mathrm{d}\,t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right. \\ &\left. - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot \frac{(1-t)^n}{\mathrm{numerator}} \right] \end{split}$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} t} &= \frac{\mathrm{d}}{\mathrm{d} t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right. \\ &\left. - (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} \, t} &= \frac{\mathrm{d}}{\mathrm{d} \, t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n (1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right. \\ &\left. - (n-1) (\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} t} &= \frac{\mathrm{d}}{\mathrm{d} t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} t} &= \frac{\mathrm{d}}{\mathrm{d} t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} t} &= \frac{\mathrm{d}}{\mathrm{d} t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &- (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (-2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} t} &= \frac{\mathrm{d}}{\mathrm{d} t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{Z\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \end{split}$$

$$\frac{\mathrm{d}\operatorname{vol}(\hat{E}')}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\
= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n(1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\
= (n-1)(\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right) \\
= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\
\cdot \left((n-1)(1-t) - n(1-2t) \right)$$

$$\begin{split} \frac{\mathrm{d} \operatorname{vol}(\hat{E}')}{\mathrm{d} \, t} &= \frac{\mathrm{d}}{\mathrm{d} \, t} \left(\Phi \frac{(1-t)^n}{(\sqrt{1-2t})^{n-1}} \right) \\ &= \frac{\Phi}{N^2} \cdot \left((-1) \cdot n (1-t)^{n-1} \cdot (\sqrt{1-2t})^{n-1} \right) \\ &= (n-1) (\sqrt{1-2t})^{n-2} \cdot \frac{1}{2\sqrt{1-2t}} \cdot (2) \cdot (1-t)^n \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \\ &\quad \cdot \left((n-1)(1-t) - n(1-2t) \right) \\ &= \frac{\Phi}{N^2} \cdot (\sqrt{1-2t})^{n-3} \cdot (1-t)^{n-1} \cdot \left((n+1)t - 1 \right) \end{split}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

a

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a=1-t=\frac{n}{n+1}$$
 and $b=$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}}$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

 b^2

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^2 = \frac{(1-t)^2}{1-2t}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}}$$

- We obtain the minimum for $t = \frac{1}{n+1}$.
- For this value we obtain

$$a = 1 - t = \frac{n}{n+1}$$
 and $b = \frac{1-t}{\sqrt{1-2t}} = \frac{n}{\sqrt{n^2-1}}$

To see the equation for b, observe that

$$b^{2} = \frac{(1-t)^{2}}{1-2t} = \frac{(1-\frac{1}{n+1})^{2}}{1-\frac{2}{n+1}} = \frac{(\frac{n}{n+1})^{2}}{\frac{n-1}{n+1}} = \frac{n^{2}}{n^{2}-1}$$

Let $\gamma_n=\frac{{\rm vol}(\hat E')}{{\rm vol}(B(0,1))}=ab^{n-1}$ be the ratio by which the volume changes:

$$\gamma_n^2$$

Let $y_n = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2-1}\right)^{n-1}$$

Let $y_n = \frac{\operatorname{vol}(\vec{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$
$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

Let $y_n = \frac{\operatorname{vol}(\vec{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

Let $y_n = \frac{\operatorname{vol}(\vec{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

Let $y_n = \frac{\operatorname{vol}(\vec{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\leq e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

Let $y_n = \frac{\operatorname{vol}(\vec{E}')}{\operatorname{vol}(B(0,1))} = ab^{n-1}$ be the ratio by which the volume changes:

$$y_n^2 = \left(\frac{n}{n+1}\right)^2 \left(\frac{n^2}{n^2 - 1}\right)^{n-1}$$

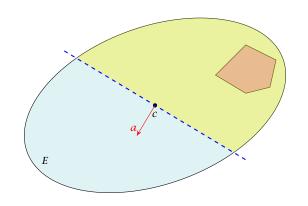
$$= \left(1 - \frac{1}{n+1}\right)^2 \left(1 + \frac{1}{(n-1)(n+1)}\right)^{n-1}$$

$$\le e^{-2\frac{1}{n+1}} \cdot e^{\frac{1}{n+1}}$$

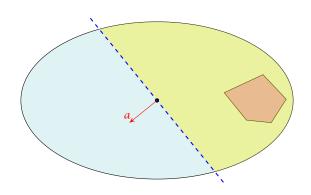
$$= e^{-\frac{1}{n+1}}$$

where we used $(1+x)^a \le e^{ax}$ for $x \in \mathbb{R}$ and a > 0.

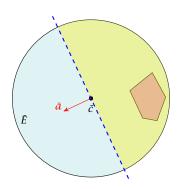
This gives $y_n \leq e^{-\frac{1}{2(n+1)}}$.



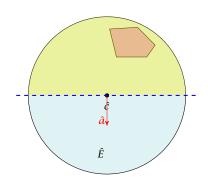
▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.



▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.

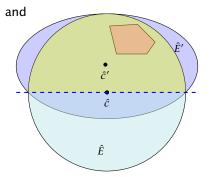


- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

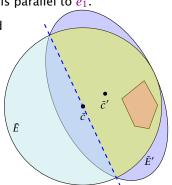


- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.



- ▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.
- Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .
- Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.
- Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.

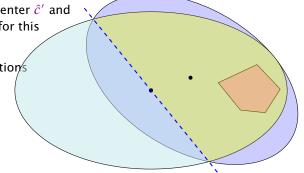


▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.

Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.

P Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.

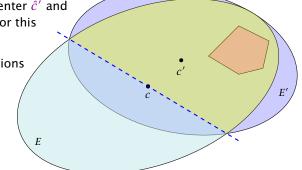


▶ Use f^{-1} (recall that f = Lx + t is the affine transformation of the unit ball) to translate/distort the ellipsoid (back) into the unit ball.

• Use a rotation R^{-1} to rotate the unit ball such that the normal vector of the halfspace is parallel to e_1 .

Compute the new center \hat{c}' and the new matrix \hat{Q}' for this simplified setting.

Use the transformations R and f to get the new center c' and the new matrix Q' for the original ellipsoid E.



$$e^{-\frac{1}{2(n+1)}}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})}$$

$$e^{-\frac{1}{2(n+1)}} \geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))}$$

$$\begin{split} e^{-\frac{1}{2(n+1)}} &\geq \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(B(0,1))} = \frac{\operatorname{vol}(\hat{E}')}{\operatorname{vol}(\hat{E})} = \frac{\operatorname{vol}(R(\hat{E}'))}{\operatorname{vol}(R(\hat{E}))} \\ &= \frac{\operatorname{vol}(\bar{E}')}{\operatorname{vol}(\bar{E})} \end{split}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(\hat{E}')}{\text{vol}(B(0,1))} = \frac{\text{vol}(\hat{E}')}{\text{vol}(\hat{E})} = \frac{\text{vol}(R(\hat{E}'))}{\text{vol}(R(\hat{E}))}$$
$$= \frac{\text{vol}(\bar{E}')}{\text{vol}(\bar{E})} = \frac{\text{vol}(f(\bar{E}'))}{\text{vol}(f(\bar{E}))}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(\hat{E}')}{\text{vol}(B(0,1))} = \frac{\text{vol}(\hat{E}')}{\text{vol}(\hat{E})} = \frac{\text{vol}(R(\hat{E}'))}{\text{vol}(R(\hat{E}))}$$
$$= \frac{\text{vol}(\bar{E}')}{\text{vol}(\bar{E})} = \frac{\text{vol}(f(\bar{E}'))}{\text{vol}(f(\bar{E}))} = \frac{\text{vol}(E')}{\text{vol}(E)}$$

$$e^{-\frac{1}{2(n+1)}} \ge \frac{\text{vol}(\hat{E}')}{\text{vol}(B(0,1))} = \frac{\text{vol}(\hat{E}')}{\text{vol}(\hat{E})} = \frac{\text{vol}(R(\hat{E}'))}{\text{vol}(R(\hat{E}))}$$
$$= \frac{\text{vol}(\bar{E}')}{\text{vol}(\bar{E})} = \frac{\text{vol}(f(\bar{E}'))}{\text{vol}(f(\bar{E}))} = \frac{\text{vol}(E')}{\text{vol}(E)}$$

Here it is important that mapping a set with affine function f(x) = Lx + t changes the volume by factor det(L).

How to compute the new parameters?

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^T(x - c) \le 0 \}$$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$
$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

How to compute the new parameters?

The transformation function of the (old) ellipsoid: f(x) = Lx + c;

The halfspace to be intersected: $H = \{x \mid a^T(x-c) \le 0\}$;

$$f^{-1}(H) = \{ f^{-1}(x) \mid a^{T}(x - c) \le 0 \}$$

$$= \{ f^{-1}(f(y)) \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(f(y) - c) \le 0 \}$$

$$= \{ y \mid a^{T}(Ly + c - c) \le 0 \}$$

$$= \{ y \mid (a^{T}L)y \le 0 \}$$

This means $\bar{a} = L^T a$.

The center \bar{c} is of course at the origin.

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

Hence,

 \bar{c}'

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

$$\bar{c}' = R \cdot \hat{c}'$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

After rotating back (applying \mathbb{R}^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

Hence,

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

c'

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}')$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^{T}a}{\|L^{T}a\|}\right) = -e_{1} \quad \Rightarrow \quad -\frac{L^{T}a}{\|L^{T}a\|} = R \cdot e_{1}$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$

After rotating back (applying R^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$
$$= -\frac{1}{n+1} L \frac{L^T a}{\|L^T a\|} + c$$

After rotating back (applying \mathbb{R}^{-1}) the normal vector of the halfspace points in negative x_1 -direction. Hence,

$$R^{-1}\left(\frac{L^T a}{\|L^T a\|}\right) = -e_1 \quad \Rightarrow \quad -\frac{L^T a}{\|L^T a\|} = R \cdot e_1$$

$$\bar{c}' = R \cdot \hat{c}' = R \cdot \frac{1}{n+1} e_1 = -\frac{1}{n+1} \frac{L^T a}{\|L^T a\|}$$

$$c' = f(\bar{c}') = L \cdot \bar{c}' + c$$

$$= -\frac{1}{n+1} L \frac{L^T a}{\|L^T a\|} + c$$

$$= c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

For computing the matrix Q' of the new ellipsoid we assume in the following that \hat{E}' , \bar{E}' and E' refer to the ellispoids centered in the origin.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right) \begin{vmatrix} \text{Note that } e_1 e_1^T & \text{is a matrix} \\ M \text{ that has } M_{11} = 1 \text{ and all other entries equal to 0.} \end{vmatrix}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$

 $\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$ Note that $e_1 e_1^T$ is a matrix of $e_1 e_1^T$ is a matrix of $e_1 e_1^T$ of $e_1 e_1^T$ is a matrix of $e_1 e_1^T$ of $e_1 e_1$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$
Note that $e_1 e_1^T$ is a matrix of $e_1 e_1^T$ where $e_1 e_1^T$ is a matrix of $e_1 e_1^T$ of $e_1 e_1^T$.

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \begin{bmatrix} \text{Note that } e_1 e_1^T \text{ is a matrix} \\ M \text{ that has } M_{11} = 1 \text{ and all other entries equal to 0.} \end{bmatrix}$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \left(I - \frac{2}{n+1} e_1 e_1^T \right)$$
Note that $e_1 e_1^T$ is a matrix M that has $M_{11} = 1$ and all other entries equal to 0 .

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \begin{subarray}{l} \text{Note that } e_1 e_1^T \text{ is a matrix} \\ M \text{ that has } M_{11} = 1 \text{ and all other entries equal to 0.} \\ \end{bmatrix}$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

$$\hat{Q}' = \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big)$$
Note that $e_1 e_1^T$ is a matrix M that has $M_{11} = 1$ and all other entries equal to 0 .

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

$$\hat{Q}' = \begin{pmatrix} a^2 & 0 & \dots & 0 \\ 0 & b^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & b^2 \end{pmatrix}$$

This gives

This gives
$$\hat{Q}' = \frac{n^2}{n^2-1} \Big(I - \frac{2}{n+1} e_1 e_1^T\Big) \begin{subarray}{c} \text{Note that } e_1 e_1^T \text{ is a matrix } \\ M \text{ that has } M_{11} = 1 \text{ and all } \\ \text{other entries equal to } 0. \\ \end{subarray}$$

$$b^{2} - b^{2} \frac{2}{n+1} = \frac{n^{2}}{n^{2} - 1} - \frac{2n^{2}}{(n-1)(n+1)^{2}}$$
$$= \frac{n^{2}(n+1) - 2n^{2}}{(n-1)(n+1)^{2}} = \frac{n^{2}(n-1)}{(n-1)(n+1)^{2}} = a^{2}$$

Ē

$$\bar{E}' = R(\hat{E}')$$

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^T \hat{Q}'^{-1} x \le 1 \} \end{split}$$

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^T \hat{Q}'^{-1} x \le 1 \} \\ &= \{ y \mid (R^{-1} y)^T \hat{Q}'^{-1} R^{-1} y \le 1 \} \end{split}$$

$$\begin{split} \bar{E}' &= R(\hat{E}') \\ &= \{ R(x) \mid x^T \hat{Q}'^{-1} x \le 1 \} \\ &= \{ y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1 \} \\ &= \{ y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1 \} \end{split}$$

$$\bar{E}' = R(\hat{E}')
= \{R(x) \mid x^T \hat{Q}'^{-1} x \le 1\}
= \{y \mid (R^{-1}y)^T \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R^T)^{-1} \hat{Q}'^{-1} R^{-1} y \le 1\}
= \{y \mid y^T (R\hat{Q}' R^T)^{-1} y \le 1\}
= \{y \mid y^T (R\hat{Q}' R^T)^{-1} y \le 1\}$$

Hence,

 \bar{Q}'

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$\boldsymbol{x}^T \boldsymbol{I} \boldsymbol{x} = (R\boldsymbol{x})^T (R\boldsymbol{x}) = \boldsymbol{x}^T (R^T R) \boldsymbol{x}$$

Hence,

$$\bar{Q}' = R\hat{Q}'R^T$$

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$\boldsymbol{x}^T \boldsymbol{I} \boldsymbol{x} = (R\boldsymbol{x})^T (R\boldsymbol{x}) = \boldsymbol{x}^T (R^T R) \boldsymbol{x}$$

Hence,

$$\begin{split} \bar{Q}' &= R\hat{Q}'R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1}e_1e_1^T\Big) \cdot R^T \end{split}$$

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$\boldsymbol{x}^T\boldsymbol{I}\boldsymbol{x} = (\boldsymbol{R}\boldsymbol{x})^T(\boldsymbol{R}\boldsymbol{x}) = \boldsymbol{x}^T(\boldsymbol{R}^T\boldsymbol{R})\boldsymbol{x}$$

Hence,

$$\begin{split} \bar{Q}' &= R \hat{Q}' R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \Big) \end{split}$$

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$\boldsymbol{x}^T\boldsymbol{I}\boldsymbol{x} = (\boldsymbol{R}\boldsymbol{x})^T(\boldsymbol{R}\boldsymbol{x}) = \boldsymbol{x}^T(\boldsymbol{R}^T\boldsymbol{R})\boldsymbol{x}$$

Hence,

$$\begin{split} \bar{Q}' &= R \hat{Q}' R^T \\ &= R \cdot \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} e_1 e_1^T \Big) \cdot R^T \\ &= \frac{n^2}{n^2 - 1} \Big(R \cdot R^T - \frac{2}{n+1} (Re_1) (Re_1)^T \Big) \\ &= \frac{n^2}{n^2 - 1} \Big(I - \frac{2}{n+1} \frac{L^T a a^T L}{\|L^T a\|^2} \Big) \end{split}$$

Here we used the equation for Re_1 proved before, and the fact that $RR^T = I$, which holds for any rotation matrix. To see this observe that the length of a rotated vector x should not change, i.e.,

$$\boldsymbol{x}^T\boldsymbol{I}\boldsymbol{x} = (\boldsymbol{R}\boldsymbol{x})^T(\boldsymbol{R}\boldsymbol{x}) = \boldsymbol{x}^T(\boldsymbol{R}^T\boldsymbol{R})\boldsymbol{x}$$

E'

$$E' = L(\bar{E}')$$

$$E' = L(\bar{E}')$$
= $\{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$

$$E' = L(\bar{E}')$$
= $\{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$
= $\{y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1\}$

$$E' = L(\bar{E}')$$

$$= \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$E' = L(\bar{E}')$$

$$= \{L(x) \mid x^T \bar{Q}'^{-1} x \le 1\}$$

$$= \{y \mid (L^{-1}y)^T \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (L^T)^{-1} \bar{Q}'^{-1} L^{-1} y \le 1\}$$

$$= \{y \mid y^T (L\bar{Q}' L^T)^{-1} y \le 1\}$$

Hence,

Q'

$$Q' = L\bar{Q}'L^T$$

9 The Ellipsoid Algorithm

Hence,

$$Q' = L\bar{Q}'L^{T}$$

$$= L \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} \frac{L^{T}aa^{T}L}{a^{T}Qa} \right) \cdot L^{T}$$

9 The Ellipsoid Algorithm

Hence,

$$Q' = L\bar{Q}'L^{T}$$

$$= L \cdot \frac{n^{2}}{n^{2} - 1} \left(I - \frac{2}{n+1} \frac{L^{T}aa^{T}L}{a^{T}Qa} \right) \cdot L^{T}$$

$$= \frac{n^{2}}{n^{2} - 1} \left(Q - \frac{2}{n+1} \frac{Qaa^{T}Q}{a^{T}Qa} \right)$$

Incomplete Algorithm

Algorithm 1 ellipsoid-algorithm

- 1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$
- 2: **output:** point $x \in K$ or "K is empty"
- 3: *Q* ← ???
- 4: repeat
- 5: if $c \in K$ then return c
- 6: **else**
- 7: choose a violated hyperplane *a*
- 8: $c \leftarrow c \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$
 - $Q \leftarrow \frac{n^2}{n^2 1} \left(Q \frac{2}{n+1} \frac{Qaa^T Q}{a^T Qa} \right)$
- 10: endif
- 11: until ???
- 12: return "K is empty"

Repeat: Size of basic solutions

Lemma 8

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ be a bounded polyhedron. Let $L := 2\langle A \rangle + \langle b \rangle + 2n(1 + \log_2 n)$. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \leq 2^L$.

In the following we use $\delta := 2^L$.

Proof:

We can replace P by $P':=\{x\mid A'x\leq b;x\geq 0\}$ where $A'=\begin{bmatrix}A-A\end{bmatrix}$. The lemma follows by applying Lemma 3, and observing that $\langle A'\rangle=2\langle A\rangle$ and n'=2n.

Repeat: Size of basic solutions

Lemma 8

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ be a bounded polyhedron. Let $L := 2\langle A \rangle + \langle b \rangle + 2n(1 + \log_2 n)$. Then every entry x_j in a basic solution fulfills $|x_j| = \frac{D_j}{D}$ with $D_j, D \leq 2^L$.

In the following we use $\delta := 2^L$.

Proof:

We can replace P by $P':=\{x\mid A'x\leq b; x\geq 0\}$ where $A'=\begin{bmatrix}A-A\end{bmatrix}$. The lemma follows by applying Lemma 3, and observing that $\langle A'\rangle=2\langle A\rangle$ and n'=2n.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \leq x_i \leq \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \leq x_i \leq \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R:=\sqrt{n}\delta$ from the origin.

For feasibility checking we can assume that the polytop P is bounded; it is sufficient to consider basic solutions.

Every entry x_i in a basic solution fulfills $|x_i| \le \delta$.

Hence, P is contained in the cube $-\delta \le x_i \le \delta$.

A vector in this cube has at most distance $R := \sqrt{n}\delta$ from the origin.

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

Note that the volume of P_{λ} cannot be 0

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

Note that the volume of P_{λ} cannot be 0

When can we terminate?

Let $P := \{x \mid Ax \leq b\}$ with $A \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be a bounded polytop.

Consider the following polyhedron

$$P_{\lambda} := \left\{ x \mid Ax \leq b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \right\} ,$$

where $\lambda = \delta^2 + 1$.

Note that the volume of P_{λ} cannot be 0

Lemma 9

 P_{λ} is feasible if and only if P is feasible.

<=: obvious

Lemma 9

 P_{λ} is feasible if and only if P is feasible.

←: obvious!

 \Longrightarrow

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A \, I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{p}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\} .$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A \, I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A \, I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 $ar{P}_\lambda$ is bounded since P_λ and P are bounded

⇒:

Consider the polyhedrons

$$\bar{P} = \left\{ x \mid \left[A - A \, I_m \right] x = b; x \ge 0 \right\}$$

and

$$\bar{P}_{\lambda} = \left\{ x \mid \left[A - A I_m \right] x = b + \frac{1}{\lambda} \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}; x \ge 0 \right\}.$$

P is feasible if and only if \bar{P} is feasible, and P_{λ} feasible if and only if \bar{P}_{λ} feasible.

 \bar{P}_{λ} is bounded since P_{λ} and P are bounded.

Let
$$\bar{A} = [A - A I_m]$$
.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix} 1\\ \vdots\\ 1\end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \leq (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

Let
$$\bar{A} = [A - A I_m]$$
.

 \bar{P}_{λ} feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix} 1\\ \vdots\\ 1\end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists i with

$$(\bar{A}_B^{-1}b)_i < 0 \leq (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

Let
$$\bar{A} = [A - A I_m]$$
.

 $ar{P}_{\lambda}$ feasible implies that there is a basic feasible solution represented by

$$x_B = \bar{A}_B^{-1}b + \frac{1}{\lambda}\bar{A}_B^{-1}\begin{pmatrix} 1\\ \vdots\\ 1\end{pmatrix}$$

(The other x-values are zero)

The only reason that this basic feasible solution is not feasible for \bar{P} is that one of the basic variables becomes negative.

Hence, there exists *i* with

$$(\bar{A}_B^{-1}b)_i < 0 \le (\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i$$

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \quad \Longrightarrow \quad (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)} \le -1/\delta$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{A}_B^j) \leq \delta$$
 ,

where \bar{A}_B^j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

But then

$$(\bar{A}_B^{-1}b)_i + \frac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i \leq -1/\delta + \delta/\lambda < 0$$

as we chose $\lambda = \delta^2 + 1$. Contradiction.

By Cramers rule we get

$$(\bar{A}_B^{-1}b)_i < 0 \implies (\bar{A}_B^{-1}b)_i \le -\frac{1}{\det(\bar{A}_B)} \le -1/\delta$$

and

$$(\bar{A}_B^{-1}\vec{1})_i \leq \det(\bar{A}_B^j) \leq \delta$$
 ,

where \bar{A}_B^j is obtained by replacing the j-th column of \bar{A}_B by $\vec{1}$.

But then

$$(\bar{A}_B^{-1}b)_i + rac{1}{\lambda}(\bar{A}_B^{-1}\vec{1})_i \leq -1/\delta + \delta/\lambda < 0$$
 ,

as we chose $\lambda = \delta^2 + 1$. Contradiction.

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P.

This means $Ax \leq b$.

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x+\vec{\ell}))_i$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x+\vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x+\vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x+\vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}||$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$\begin{split} (A(x+\vec{\ell}))_i &= (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell} \\ &\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r \\ &\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \end{split}$$

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

$$(A(x + \vec{\ell}))_i = (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell}$$

$$\le b_i + ||\vec{a}_i|| \cdot ||\vec{\ell}|| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle} \cdot r$$

$$\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\text{max}} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda}$$

Lemma 10

If P_{λ} is feasible then it contains a ball of radius $r:=1/\delta^3$. This has a volume of at least $r^n \mathrm{vol}(B(0,1)) = \frac{1}{\delta^{3n}} \mathrm{vol}(B(0,1))$.

Proof:

If P_{λ} feasible then also P. Let x be feasible for P. This means $Ax \leq b$.

Let $\vec{\ell}$ with $\|\vec{\ell}\| \leq r$. Then

$$\begin{split} (A(x+\vec{\ell}))_i &= (Ax)_i + (A\vec{\ell})_i \le b_i + \vec{a}_i^T \vec{\ell} \\ &\le b_i + \|\vec{a}_i\| \cdot \|\vec{\ell}\| \le b_i + \sqrt{n} \cdot 2^{\langle a_{\max} \rangle} \cdot r \\ &\le b_i + \frac{\sqrt{n} \cdot 2^{\langle a_{\max} \rangle}}{\delta^3} \le b_i + \frac{1}{\delta^2 + 1} \le b_i + \frac{1}{\lambda} \end{split}$$

Hence, $x + \vec{\ell}$ is feasible for P_{λ} which proves the lemma.

$$e^{-\frac{i}{2(n+1)}}\cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$e^{-\frac{i}{2(n+1)}} \cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

Hence,

i

$$e^{-\frac{i}{2(n+1)}}\cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$e^{-\frac{i}{2(n+1)}}\cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1) \ln \left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))} \right)$$
$$= 2(n+1) \ln \left(n^n \delta^n \cdot \delta^{3n} \right)$$

$$e^{-\frac{i}{2(n+1)}}\cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$
$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$
$$= 8n(n+1)\ln(\delta) + 2(n+1)n\ln(n)$$

$$e^{-\frac{i}{2(n+1)}}\cdot \operatorname{vol}(B(0,R)) < \operatorname{vol}(B(0,r))$$

$$i > 2(n+1)\ln\left(\frac{\operatorname{vol}(B(0,R))}{\operatorname{vol}(B(0,r))}\right)$$

$$= 2(n+1)\ln\left(n^n\delta^n \cdot \delta^{3n}\right)$$

$$= 8n(n+1)\ln(\delta) + 2(n+1)n\ln(n)$$

$$= \mathcal{O}(\operatorname{poly}(n) \cdot L)$$

Algorithm 1 ellipsoid-algorithm

1: **input:** point $c \in \mathbb{R}^n$, convex set $K \subseteq \mathbb{R}^n$, radii R and r

2: with
$$K \subseteq B(c, R)$$
, and $B(x, r) \subseteq K$ for some x
3: **output:** point $x \in K$ or " K is empty"

4:
$$Q \leftarrow \operatorname{diag}(R^2, \dots, R^2)$$
 // i.e., $L = \operatorname{diag}(R, \dots, R)$

5: **repeat**
6: **if**
$$c \in K$$
 then return c

if
$$C \in K$$
 then return C

13: return "K is empty"

choose a violated hy
$$1 - Qa$$

$$c \leftarrow c - \frac{1}{m+1} \frac{Qa}{\sqrt{a}}$$

$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{aTC}}$$

$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{a^T Qa}}$$

$$c^2$$
 (c^2)

$$n^2 - 1 \qquad n + 1 \quad a^T Q a$$

11: endif
12: until
$$\det(Q) \le r^{2n}$$
 // i.e., $\det(L) \le r^n$

10:
$$Q \leftarrow \frac{n^2}{n^2 - 1} \left(Q - \frac{2}{n+1} \frac{Q a a^T Q}{a^T Q a} \right)$$

$$c \leftarrow c - \frac{1}{n+1} \frac{Qa}{\sqrt{aTQa}}$$

$$\frac{Qa}{1\sqrt{a^TQa}}$$

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- ightharpoonup or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a ball of radius is contained inned in
- an initial ball 31 c. 31 with radius 4 that contains
- a separation oracle for

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- a guarantee that a tall of radius is contained in
- an hittal bail so . . . with ratifus so that contains
- a separation oracle for

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- ightharpoonup a guarantee that a ball of radius r is contained in K,
- ightharpoonup an initial ball B(c,R) with radius R that contains K,
- ightharpoonup a separation oracle for K.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- ightharpoonup a guarantee that a ball of radius r is contained in K,
- \blacktriangleright an initial ball B(c,R) with radius R that contains K,
- a separation oracle for K.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- riangleright certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- ightharpoonup a guarantee that a ball of radius r is contained in K,
- ▶ an initial ball B(c,R) with radius R that contains K,
- ightharpoonup a separation oracle for K.

Let $K \subseteq \mathbb{R}^n$ be a convex set. A separation oracle for K is an algorithm A that gets as input a point $x \in \mathbb{R}^n$ and either

- ightharpoonup certifies that $x \in K$,
- or finds a hyperplane separating x from K.

We will usually assume that A is a polynomial-time algorithm.

In order to find a point in K we need

- ightharpoonup a guarantee that a ball of radius r is contained in K,
- ▶ an initial ball B(c,R) with radius R that contains K,
- ightharpoonup a separation oracle for K.

