Flows

Definition 3
An (s,1)-flow in a (complete) directed graph G = (V,V X V,c) is a
function f : V XV — Rjj that satisfies

1. For each edge (x, y)

0<fxy <cCxy .

(capacity constraints)
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Flows

Definition 3
An (s,1)-flow in a (complete) directed graph G = (V,V X V,c) is a
function f : V XV — Rjj that satisfies

1. For each edge (x, y)

0<fxy <cCxy .

(capacity constraints)
2. Foreachv e V' \ {s,t}

vax = fov .

(flow conservation constraints)
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Flows

Definition 4
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -
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Flows

Definition 4
The value of an (s, t)-flow f is defined as

val(f) = > fox = > fxs -

Maximum Flow Problem:
Find an (s, t)-flow with maximum value.
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LP-Formulation of Maxflow

max Dz fsz— 22 fzs
s.t. V(z,w) eV xV o £ Cow Yaw
Vw =s,t 2, fow—2:fwz = 0 Pw
fzw = 0
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LP-Formulation of Maxflow

max 2z Sz =22 Szs
st. V(z,w)eVxV Tow £ Cow ow
Vw #s,t X, fow—2zfwz = 0 Pw
fzw = O
min 2 xy) Cxalxy
s.t. fxy 6,y £5,8)1 1xy—1px+lp, = O
Ssy (¥ £5,8): 145y +1py = 1
Joes (52 32 8, ) ¢ 10xs—1py = =1
Sfiy (¥ #=5,t): 181y +1lpy =2 O
Sxt (x #5,0): 105 —1px > 0
Sfot: 145, > 1
Sis: 10 > -1
Lscy > 0
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LP-Formulation of Maxflow

min
s.t.

Sy (X, ¥ = 5,t):

> (xy) Exylxy

Ssy (¥ #=5,t): 14— 1+
Jxs (x #s,t): 10y s—1px+
Sty (¥ =5,0): 14— O+
fxt (x #58,t): 10y —1px+
fst: 10— 1+
fts : l‘gts_ 0+

1xy—1px+1py

Ipy
1
Ipy
0
0
1

‘exy

vV IV IV IV IV IV IV

2

S O O © O o o O
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LP-Formulation of Maxflow

min
s.t.

Sy (X, ¥ = 5,t):
Ssy (v #5,0):
fxs (x =5s,t):
Jiy (v =5,8):
fxt (x =5s,t):
Soe:

Sts:

> (xy) Exylxy

18xy—1px+1py =

105 — ps+1lpy

HWxs—1px+ ps
141y— pi+lp,
Wxt—1px+ pi
Wsi— ps+ pr
Wis— pe+ ps

Uxy

vV IV IV IV IV IV

2

S O O © O O o O

with p =0 and p; = 1.
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Oy = 0
Ps = 1
pt = 0
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LP-Formulation of Maxflow

min Z(xy) nygxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pt = 0

We can interpret the £, value as assigning a length to every edge.
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LP-Formulation of Maxflow

min Z(xy) Cxylxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pe = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).
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LP-Formulation of Maxflow

min Z(xy) Cxylxy

s.t. fxy: 1éxy—1px+lp, = O
Yy = 0
Ps = 1
pe = 0

We can interpret the £, value as assigning a length to every edge.

The value py for a variable, then can be seen as the distance of x to t
(where the distance from s to t is required to be 1 since ps = 1).

The constraint px < {x, + p, then simply follows from triangle
inequality (d(x,t) <d(x,y) +d(y,t) > d(x,t) < #Xy +d(y,t)).
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a cut
in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.
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One can show that there is an optimum LP-solution for the dual
problem that gives an integral assignment of variables.

This means px = 1 or px = 0 for our case. This gives rise to a cut
in the graph with vertices having value 1 on one side and the
other vertices on the other side. The objective function then
evaluates the capacity of this cut.

This shows that the Maxflow/Mincut theorem follows from linear
programming duality.
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