5.3 Strong Duality

P =max{cTx | Ax <b,x =0}
na: number of variables, m4: number of constraints

We can put the non-negativity constraints into A (which gives us
unrestricted variables): P = max{cTx | Ax < b}

Ny =MNA, My =MA +NA

Dual D = min{bTy | ATy = ¢,y = 0}.
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Strong Duality

Theorem 2 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z*

and w* denote the optimal solution to P and D, respectively.
Then

=w
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Lemma 3 (Weierstrass)
Let X be a compact set and let f(x) be a continuous function on
X. Then min{f(x) : x € X} exists.

(without proof)
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Lemma 4 (Projection Lemma)

Let X = R™ be a non-empty convex set, and let v ¢ X. Then there
exist x* € X with minimum distance from . Moreover for all

x € X we have (y —x*)T(x —x*) <0.
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Proof of the Projection Lemma
> Define f(x) = ||y — x|

20
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Proof of the Projection Lemma
> Define f(x) =y — x]l.
> We want to apply Weierstrass but X may not be bounded.
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> We want to apply Weierstrass but X may not be bounded.
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Proof of the Projection Lemma
> Define f(x) =y — x]l.
> We want to apply Weierstrass but X may not be bounded.
> X + &. Hence, there exists x’ € X.
» Define X' = {x € X | ||y — x|l <y —x'[|}. This set is closed
and bounded.

20
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Proof of the Projection Lemma

Define f(x) = [y — x|

> We want to apply Weierstrass but X may not be bounded.

> X + &. Hence, there exists x’ € X.

» Define X' = {x € X | ||y — x|l <y —x'[|}. This set is closed
and bounded.

Applying Weierstrass gives the existence.

v

v
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Proof of the Projection Lemma (continued)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy = x*|1%
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)
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Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.

m 5.3 Strong Duality
Harald Racke 20/31



Proof of the Projection Lemma (continued)

x* is minimum. Hence ||y — x*[|? < ||y — x/||? for all x € X.

By convexity: x € X then x* + e(x —x*) e Xforall0 <€ < 1.

Iy —x*1? < [ly — x* —e(x —x*)|?
=y = x*[I? + €llx — x*)1? = 2e(y — x*)T(x — x*)

Hence, (y — x*)T(x — x*) < %ellx —x*|2.

Letting € — 0 gives the result.
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Theorem 5 (Separating Hyperplane)

Let X < R™ be a non-empty closed convex set, and let y ¢ X.
Then there exists a separating hyperplane {x € R: alx = o}

where a € R™, o € R that separates y from X. (a’y < «;
alx = « for all x € X)
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Proof of the Hyperplane Lemma

> Let x* € X be closest point to v in X.

JH={x]alx =&}
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Proof of the Hyperplane Lemma
> Let x* € X be closest point to v in X.

> By previous lemma (v — x*)T(x —x*) <0 forall x € X.

JH={x]alx =&}
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Proof of the Hyperplane Lemma
> Let x* € X be closest point to v in X.
> By previous lemma (v — x*)T(x —x*) <0 forall x € X.

» Choose a = (x* —y)and x = alx*.
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Proof of the Hyperplane Lemma

> Let x* € X be closest point to v in X.

> By previous lemma (v — x*)T(x —x*) <0 forall x € X.
» Choose a = (x* —y)and x = alx*.
>

Forx € X :al(x —x*) = 0, and, hence, a’x > «.
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Proof of the Hyperplane Lemma
> Let x* € X be closest point to v in X.
By previous lemma (v — x*)T(x — x*) < 0 for all x € X.
Choose a = (x* —y) and @ = al x*.
Forx € X :al(x —x*) = 0, and, hence, a’x > «.

Also,a’y =al(x* —a) =« - |lal? < «

m 5.3 Strong Duality
Harald Racke 22/31



Lemma 6 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R*"withAx =b, x>0
2. 3y e R with ATy =0,bTy <0
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Lemma 6 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx = b, x =0
2. 3y e R with ATy =0,bTy <0
Assume X satisfies 1. and y satisfies 2. Then

0>yTh=yTAx >0
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Lemma 6 (Farkas Lemma)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx =b,x >0
2. 3y e R with ATy =0,bTy <0

Assume X satisfies 1. and y satisfies 2. Then

0>yTh=yTAx >0

Hence, at most one of the statements can hold.
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Farkas Lemma
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If b is not in the cone generated by the columns of A, there exists
a hyperplane y that separates b from the cone.
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Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy > 0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0.



Proof of Farkas Lemma

Now, assume that 1. does not hold.
Consider S = {Ax : x = 0} so that S closed, convex, b ¢ S.
We want to show that there is y with ATy > 0, bTy < 0.

Let v be a hyperplane that separates b from S. Hence, y'h < «
and y's > «forall s € S.

0eS=a<0=>yTb<0

yTAx = « for all x = 0. Hence, yTA > 0 as we can choose x
arbitrarily large.



Lemma 7 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy >0,bTy <0,y =0
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Lemma 7 (Farkas Lemma; different version)
Let A be an m x n matrix, b € R™. Then exactly one of the
following statements holds.

1. Ix e R" withAx <b,x =0
2. 3y e R™ withATy >0,bTy <0,y =0

Rewrite the conditions:

1. dx € R™ with [AI]-[?}=b,sz,szO

AT
2. Hyemeith[I]yzO,bTy<0
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Proof of Strong Duality

P: z =max{cIx | Ax < b,x = 0}

D: w=min{bTy |ATy > ¢,y =0}

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e., P
and D are non-empty). Then

zZ=Ww .
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Proof of Strong Duality
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Proof of Strong Duality

z < w: follows from weak duality
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Proof of Strong Duality

w: follows from weak duality

N
IA

zZ=Ww:
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Proof of Strong Duality

w: follows from weak duality

N
IA

z > w:
We show z < o implies w < «.
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Proof of Strong Duality

w: follows from weak duality

N
IA

z > w:
We show z < o implies w < «.

dx € R"
s.t. Ax < b
—-cI'x < -«
x = 0
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < o implies w < «.

dx € R" dy e R"™;v e R
s.t. Ax < b st. ATy —cv = 0
—-cI'x < -« bTy —axv < 0
x > 0 y, v = 0
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Proof of Strong Duality

N
IA

w: follows from weak duality

z > w:
We show z < o implies w < «.

dx € R" dy e R"™;v e R
s.t. Ax < b st. ATy —cv = 0
—-cI'x < -« bTy —axv < 0
x > 0 y, v = 0

From the definition of o« we know that the first system is
infeasible; hence the second must be feasible.
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Proof of Strong Duality

dy e R"™;v e R

st. ATy —cv = 0
by —axv < 0
y, v = 0
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Proof of Strong Duality

dy e R"™;v e R

st. ATy —cv = 0
bTy —ov < 0
y,v = 0

If the solution y,v has v = 0 we have that

dy e R™
s.t. ATy = 0
bTy < 0
y = 0

is feasible.
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Proof of Strong Duality

dy e R"™;v e R

st. ATy —cv = 0
bTy —ov < 0
y,v = 0

If the solution y,v has v = 0 we have that

dy e R™
s.t. ATy = 0
bTy < 0
y = 0

is feasible. By Farkas lemma this gives that LP P is infeasible.
Contradiction to the assumption of the lemma.
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Proof of Strong Duality
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both v and v) s.t. v = 1.
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Proof of Strong Duality

Hence, there exists a solution y, v with v > 0.
We can rescale this solution (scaling both v and v) s.t. v = 1.

Then v is feasible for the dual but b7y < «. This means that

w < K.
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Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ceQm xe Q. Does there exist x € Q"
st. Ax =b,x=0,cl'x>=a?

Questions:
> Is LP in NP?
» Is LP in co-NP? yes!
» Is LPin P?
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Definition 9 (Linear Programming Problem (LP))
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» Is LP in NP?
» Is LP in co-NP? yes!
» Is LP in P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).
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Fundamental Questions

Definition 9 (Linear Programming Problem (LP))
Let A e Q™" beQ™, ceQm xe Q. Does there exist x € Q"
st. Ax=b,x>0,cTx > o?

Questions:
» Is LP in NP?
» Is LP in co-NP? yes!
» Is LP in P?

Proof:
» Given a primal maximization problem P and a parameter «.
Suppose that « > opt(P).
> We can prove this by providing an optimal basis for the dual.
> A verifier can check that the associated dual solution fulfills
all dual constraints and that it has dual cost < «.
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