5.3 Strong Duality

 $P = \max\{c^T x \mid Ax \le b, x \ge 0\}$

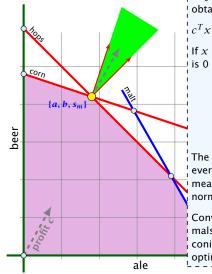
 n_A : number of variables, m_A : number of constraints

We can put the non-negativity constraints into A (which gives us unrestricted variables): $\bar{P} = \max\{c^T x \mid \bar{A}x \leq \bar{b}\}$

 $n_{ar{A}}=n_A$, $m_{ar{A}}=m_A+n_A$

Dual
$$D = \min\{\bar{b}^T y \mid \bar{A}^T y = c, y \ge 0\}.$$

5.3 Strong Duality



If we have a conic combination y of c then $b^T y$ is an upper bound of the profit we can obtain (weak duality):

$$c^T x = (\bar{A}^T y)^T x = y^T \bar{A} x \le y^T \bar{b}$$

If x and y are optimal then the duality gap is 0 (strong duality). This means

$$0 = c^T x - y^T \bar{b}$$

= $(\bar{A}^T y)^T x - y^T \bar{b}$
= $y^T (\bar{A}x - \bar{b})$

The last term can only be 0 if y_i is 0 whenever the *i*-th constraint is not tight. This means we have a conic combination of c by normals (columns of \bar{A}^T) of *tight* constraints.

Conversely, if we have x such that the normals of tight constraint (at x) give rise to a conic combination of c, we know that x is optimal.

The profit vector c lies in the cone generated by the normals for the hops and the corn constraint (the tight constraints).

Strong Duality

Theorem 2 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z^* and w^* denote the optimal solution to P and D, respectively. Then

 $z^* = w^*$

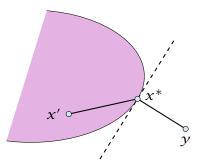
Lemma 3 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on X. Then $\min\{f(x) : x \in X\}$ exists.

(without proof)

Lemma 4 (Projection Lemma)

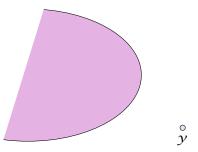
Let $X \subseteq \mathbb{R}^m$ be a non-empty convex set, and let $y \notin X$. Then there exist $x^* \in X$ with minimum distance from y. Moreover for all $x \in X$ we have $(y - x^*)^T (x - x^*) \le 0$.



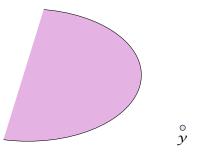
• Define f(x) = ||y - x||.

We want to apply Weierstrass but X may not be bounded.

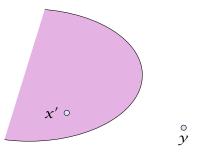
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



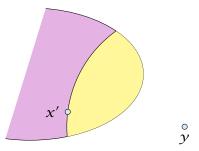
- Define f(x) = ||y x||.
- We want to apply Weierstrass but *X* may not be bounded.
- ▶ $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



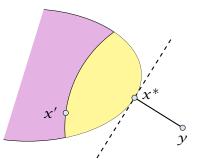
- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- ▶ Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



- Define f(x) = ||y x||.
- We want to apply Weierstrass but X may not be bounded.
- $X \neq \emptyset$. Hence, there exists $x' \in X$.
- Define $X' = \{x \in X \mid ||y x|| \le ||y x'||\}$. This set is closed and bounded.
- Applying Weierstrass gives the existence.



5.3 Strong Duality

5.3 Strong Duality

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

 $\|y - x^*\|^2$

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\|y - x^*\|^2 \le \|y - x^* - \epsilon(x - x^*)\|^2$$

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\leq \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

5.3 Strong Duality

16. Apr. 2024 20/31

 x^* is minimum. Hence $\|y - x^*\|^2 \le \|y - x\|^2$ for all $x \in X$.

By convexity: $x \in X$ then $x^* + \epsilon(x - x^*) \in X$ for all $0 \le \epsilon \le 1$.

$$\begin{aligned} \|y - x^*\|^2 &\le \|y - x^* - \epsilon(x - x^*)\|^2 \\ &= \|y - x^*\|^2 + \epsilon^2 \|x - x^*\|^2 - 2\epsilon(y - x^*)^T (x - x^*) \end{aligned}$$

Hence, $(y - x^*)^T (x - x^*) \le \frac{1}{2} \epsilon ||x - x^*||^2$.

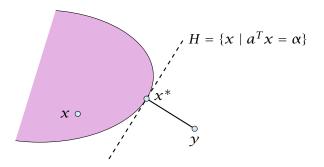
Letting $\epsilon \rightarrow 0$ gives the result.

Theorem 5 (Separating Hyperplane)

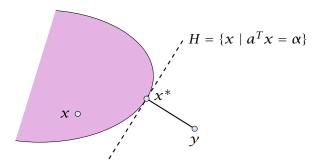
Let $X \subseteq \mathbb{R}^m$ be a non-empty closed convex set, and let $y \notin X$. Then there exists a separating hyperplane $\{x \in \mathbb{R} : a^T x = \alpha\}$ where $a \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ that separates y from X. $(a^T y < \alpha; a^T x \ge \alpha$ for all $x \in X$)

• Let $x^* \in X$ be closest point to y in X.

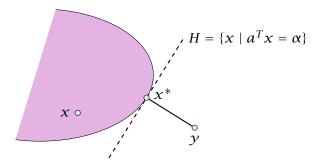
- By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$

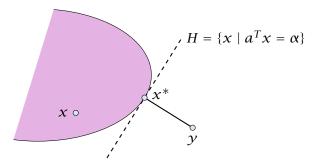


- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.

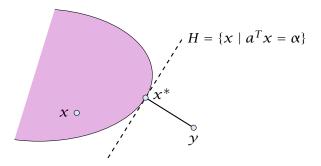
• Also, $a^T y = a^T (x^* - a) = \alpha - ||a||^2 < \alpha$



5.3 Strong Duality

16. Apr. 2024 22/31

- Let $x^* \in X$ be closest point to y in X.
- ▶ By previous lemma $(y x^*)^T (x x^*) \le 0$ for all $x \in X$.
- Choose $a = (x^* y)$ and $\alpha = a^T x^*$.
- For $x \in X$: $a^T(x x^*) \ge 0$, and, hence, $a^T x \ge \alpha$.
- Also, $a^T y = a^T (x^* a) = \alpha ||a||^2 < \alpha$



5.3 Strong Duality

16. Apr. 2024 22/31

Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Lemma 6 (Farkas Lemma)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

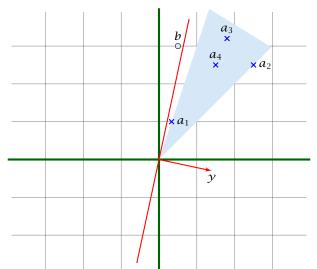
- **1.** $\exists x \in \mathbb{R}^n$ with Ax = b, $x \ge 0$
- **2.** $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$

Assume \hat{x} satisfies 1. and \hat{y} satisfies 2. Then

 $0 > y^T b = y^T A x \ge 0$

Hence, at most one of the statements can hold.

Farkas Lemma



If b is not in the cone generated by the columns of A, there exists a hyperplane y that separates b from the cone.

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that S closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let γ be a hyperplane that separates b from S. Hence, $\gamma^T b < \alpha$ and $\gamma^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow y^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \leq 0 \Rightarrow \gamma^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

Now, assume that 1. does not hold.

Consider $S = \{Ax : x \ge 0\}$ so that *S* closed, convex, $b \notin S$.

We want to show that there is y with $A^T y \ge 0$, $b^T y < 0$.

Let y be a hyperplane that separates b from S. Hence, $y^T b < \alpha$ and $y^T s \ge \alpha$ for all $s \in S$.

 $0 \in S \Rightarrow \alpha \le 0 \Rightarrow \gamma^T b < 0$

Lemma 7 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

1.
$$\exists x \in \mathbb{R}^n$$
 with $Ax \le b$, $x \ge 0$

2. $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:
1.
$$\exists x \in \mathbb{R}^n$$
 with $\begin{bmatrix} A & I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

Lemma 7 (Farkas Lemma; different version)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then exactly one of the following statements holds.

1.
$$\exists x \in \mathbb{R}^n$$
 with $Ax \leq b$, $x \geq 0$

2. $\exists y \in \mathbb{R}^m$ with $A^T y \ge 0$, $b^T y < 0$, $y \ge 0$

Rewrite the conditions:

1.
$$\exists x \in \mathbb{R}^n$$
 with $\begin{bmatrix} A \ I \end{bmatrix} \cdot \begin{bmatrix} x \\ s \end{bmatrix} = b, x \ge 0, s \ge 0$
2. $\exists y \in \mathbb{R}^m$ with $\begin{bmatrix} A^T \\ I \end{bmatrix} y \ge 0, b^T y < 0$

$$P: z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

$$D: w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z and w denote the optimal solution to P and D, respectively (i.e., P and D are non-empty). Then

z = w.

 $z \leq w$: follows from weak duality

- $z \leq w$: follows from weak duality
- $z \ge w$:

- $z \leq w$: follows from weak duality
- $z \ge w$:
- We show $z < \alpha$ implies $w < \alpha$.

 $z \leq w$: follows from weak duality

 $z \ge w$:

We show $z < \alpha$ implies $w < \alpha$.

$\exists x \in \mathbb{R}^n$			
s.t.	Ax	\leq	b
	$-c^T x$	\leq	$-\alpha$
	x	\geq	0

 $z \leq w$: follows from weak duality

 $z \ge w$:

We show $z < \alpha$ implies $w < \alpha$.

$\exists x \in \mathbb{R}^n$				$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$	
s.t.	Ax	\leq	b	s.t. $A^T y - c v \ge$	0
	$-c^T x$	\leq	$-\alpha$	$b^T y - \alpha v < $	0
	x	\geq	0	$y, v \geq$	0

 $z \leq w$: follows from weak duality

 $z \geq w$:

We show $z < \alpha$ implies $w < \alpha$.

$\exists x \in \mathbb{R}^n$	$\exists y \in \mathbb{R}^m; v \in \mathbb{R}$
s.t. $Ax \leq b$	s.t. $A^T y - cv \ge 0$
$-c^T x \leq -\alpha$	$b^T y - \alpha v < 0$
$x \ge 0$	$y, v \geq 0$

From the definition of α we know that the first system is infeasible; hence the second must be feasible.

$$\exists y \in \mathbb{R}^{m} ; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \geq 0$
 $b^{T}y - \alpha v < 0$
 $y, v \geq 0$

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$
s.t. $A^{T}y - cv \geq 0$
 $b^{T}y - \alpha v < 0$
 $y, v \geq 0$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$

s.t. $A^T y \ge 0$
 $b^T y < 0$
 $y \ge 0$

is feasible.

5.3 Strong Duality

$$\exists y \in \mathbb{R}^{m}; v \in \mathbb{R}$$

s.t. $A^{T}y - cv \geq 0$
 $b^{T}y - \alpha v < 0$
 $y, v \geq 0$

If the solution y, v has v = 0 we have that

$$\exists y \in \mathbb{R}^m$$

s.t. $A^T y \ge 0$
 $b^T y < 0$
 $y \ge 0$

is feasible. By Farkas lemma this gives that LP P is infeasible. Contradiction to the assumption of the lemma.

- Hence, there exists a solution y, v with v > 0.
- We can rescale this solution (scaling both y and v) s.t. v = 1.
- Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1. Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but $b^T y < \alpha$. This means that $w < \alpha$.

Hence, there exists a solution y, v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then γ is feasible for the dual but $b^T \gamma < \alpha$. This means that $w < \alpha$.

Definition 9 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem () and a parameter Suppose that 0 < 0.00 () 0 < 0.00
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills

Definition 9 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

Definition 9 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- > We can prove this by providing an optimal basis for the dual.

A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

Definition 9 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP?
- Is LP in co-NP? yes!
- Is LP in P?

Proof:

- Given a primal maximization problem *P* and a parameter *α*.
 Suppose that *α* > opt(*P*).
- We can prove this by providing an optimal basis for the dual.
- A verifier can check that the associated dual solution fulfills all dual constraints and that it has dual cost < α.</p>

