
5.3 Strong Duality

P = max{cTx | Ax ≤ b,x ≥ 0}
nA: number of variables, mA: number of constraints

We can put the non-negativity constraints into A (which gives us

unrestricted variables): P̄ = max{cTx | Āx ≤ b̄}
nĀ = nA, mĀ =mA +nA

Dual D = min{b̄Ty | ĀTy = c,y ≥ 0}.

16. Apr. 2024

Harald Räcke 14/31



5.3 Strong Duality

hops

m
alt

corn

ale

b
ee

r

p
ro

fi
t
c

{a, b, sm}

The profit vector c lies in the cone generated by the normals for

the hops and the corn constraint (the tight constraints).

If we have a conic combination y of c then
bTy is an upper bound of the profit we can
obtain (weak duality):

cTx = (ĀTy)Tx = yT Āx ≤ yT b̄
If x and y are optimal then the duality gap
is 0 (strong duality). This means

0 = cTx −yT b̄
= (ĀTy)Tx −yT b̄
= yT (Āx − b̄)

The last term can only be 0 if yi is 0 when-
ever the i-th constraint is not tight. This
means we have a conic combination of c by
normals (columns of ĀT ) of tight constraints.

Conversely, if we have x such that the nor-
mals of tight constraint (at x) give rise to a
conic combination of c, we know that x is
optimal.



Strong Duality

Theorem 2 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z∗

and w∗ denote the optimal solution to P and D, respectively.

Then

z∗ = w∗
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Lemma 3 (Weierstrass)

Let X be a compact set and let f(x) be a continuous function on

X. Then min{f(x) : x ∈ X} exists.

(without proof)
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Lemma 4 (Projection Lemma)

Let X ⊆ Rm be a non-empty convex set, and let y ∉ X. Then there

exist x∗ ∈ X with minimum distance from y. Moreover for all

x ∈ X we have (y − x∗)T (x − x∗) ≤ 0.

y

x∗

x′
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Proof of the Projection Lemma
▶ Define f(x) = ∥y − x∥.
▶ We want to apply Weierstrass but X may not be bounded.
▶ X ≠ ∅. Hence, there exists x′ ∈ X.
▶ Define X′ = {x ∈ X | ∥y −x∥ ≤ ∥y −x′∥}. This set is closed

and bounded.
▶ Applying Weierstrass gives the existence.

y
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Proof of the Projection Lemma (continued)

x∗ is minimum. Hence ∥y − x∗∥2 ≤ ∥y − x∥2 for all x ∈ X.

By convexity: x ∈ X then x∗ + ϵ(x − x∗) ∈ X for all 0 ≤ ϵ ≤ 1.

∥y − x∗∥2 ≤ ∥y − x∗ − ϵ(x − x∗)∥2

= ∥y − x∗∥2 + ϵ2∥x − x∗∥2 − 2ϵ(y − x∗)T (x − x∗)

Hence, (y − x∗)T (x − x∗) ≤ 1
2ϵ∥x − x∗∥2.

Letting ϵ → 0 gives the result.
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Theorem 5 (Separating Hyperplane)

Let X ⊆ Rm be a non-empty closed convex set, and let y ∉ X.

Then there exists a separating hyperplane {x ∈ R : aTx = α}
where a ∈ Rm, α ∈ R that separates y from X. (aTy < α;

aTx ≥ α for all x ∈ X)
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Proof of the Hyperplane Lemma
▶ Let x∗ ∈ X be closest point to y in X.

▶ By previous lemma (y − x∗)T (x − x∗) ≤ 0 for all x ∈ X.

▶ Choose a = (x∗ −y) and α = aTx∗.

▶ For x ∈ X : aT (x − x∗) ≥ 0, and, hence, aTx ≥ α.

▶ Also, aTy = aT (x∗ − a) = α− ∥a∥2 < α

H = {x | aTx = α}

y

x∗

x
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Lemma 6 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then

0 > yTb = yTAx ≥ 0

Hence, at most one of the statements can hold.
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0 > yTb = yTAx ≥ 0

Hence, at most one of the statements can hold.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 23/31



Lemma 6 (Farkas Lemma)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax = b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0

Assume x̂ satisfies 1. and ŷ satisfies 2. Then
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Farkas Lemma

b

y

a1

a2

a3

a4

If b is not in the cone generated by the columns of A, there exists

a hyperplane y that separates b from the cone.



Proof of Farkas Lemma

Now, assume that 1. does not hold.

Consider S = {Ax : x ≥ 0} so that S closed, convex, b ∉ S.

We want to show that there is y with ATy ≥ 0, bTy < 0.

Let y be a hyperplane that separates b from S. Hence, yTb < α
and yT s ≥ α for all s ∈ S.

0 ∈ S ⇒ α ≤ 0 ⇒ yTb < 0

yTAx ≥ α for all x ≥ 0. Hence, yTA ≥ 0 as we can choose x
arbitrarily large.
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Lemma 7 (Farkas Lemma; different version)

Let A be an m×n matrix, b ∈ Rm. Then exactly one of the

following statements holds.

1. ∃x ∈ Rn with Ax ≤ b, x ≥ 0

2. ∃y ∈ Rm with ATy ≥ 0, bTy < 0, y ≥ 0

Rewrite the conditions:

1. ∃x ∈ Rn with
[
A I
]
·
[
x
s

]
= b, x ≥ 0, s ≥ 0

2. ∃y ∈ Rm with

[
AT

I

]
y ≥ 0, bTy < 0
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Proof of Strong Duality

P : z = max{cTx | Ax ≤ b,x ≥ 0}

D: w = min{bTy | ATy ≥ c,y ≥ 0}

Theorem 8 (Strong Duality)

Let P and D be a primal dual pair of linear programs, and let z
and w denote the optimal solution to P and D, respectively (i.e., P
and D are non-empty). Then

z = w .
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Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn
s.t. Ax ≤ b

−cTx ≤ −α
x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 28/31



Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn
s.t. Ax ≤ b

−cTx ≤ −α
x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 28/31



Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn
s.t. Ax ≤ b

−cTx ≤ −α
x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 28/31



Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn
s.t. Ax ≤ b

−cTx ≤ −α
x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 28/31



Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn
s.t. Ax ≤ b

−cTx ≤ −α
x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 28/31



Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn
s.t. Ax ≤ b

−cTx ≤ −α
x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 28/31



Proof of Strong Duality

z ≤ w: follows from weak duality

z ≥ w:

We show z < α implies w < α.

∃x ∈ Rn
s.t. Ax ≤ b

−cTx ≤ −α
x ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

From the definition of α we know that the first system is

infeasible; hence the second must be feasible.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 28/31



Proof of Strong Duality

∃y ∈ Rm;v ∈ R
s.t. ATy − cv ≥ 0

bTy −αv < 0

y,v ≥ 0

If the solution y,v has v = 0 we have that

∃y ∈ Rm
s.t. ATy ≥ 0

bTy < 0

y ≥ 0

is feasible.

By Farkas lemma this gives that LP P is infeasible.

Contradiction to the assumption of the lemma.
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Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but bTy < α. This means that

w < α.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 30/31



Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but bTy < α. This means that

w < α.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 30/31



Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but bTy < α. This means that

w < α.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 30/31



Proof of Strong Duality

Hence, there exists a solution y,v with v > 0.

We can rescale this solution (scaling both y and v) s.t. v = 1.

Then y is feasible for the dual but bTy < α. This means that

w < α.

5.3 Strong Duality 16. Apr. 2024

Harald Räcke 30/31



Fundamental Questions

Definition 9 (Linear Programming Problem (LP))

Let A ∈ Qm×n, b ∈ Qm, c ∈ Qn, α ∈ Q. Does there exist x ∈ Qn
s.t. Ax = b, x ≥ 0, cTx ≥ α?

Questions:

▶ Is LP in NP?

▶ Is LP in co-NP? yes!

▶ Is LP in P?

Proof:

▶ Given a primal maximization problem P and a parameter α.

Suppose that α > opt(P).
▶ We can prove this by providing an optimal basis for the dual.

▶ A verifier can check that the associated dual solution fulfills

all dual constraints and that it has dual cost < α.
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