WS 2024/25

Efficient Algorithms

Harald Räcke

Fakultät für Informatik TU München

https://www.moodle.tum.de/course/view.php?id=100478

Winter Term 2024/25

Part I

Organizational Matters

Harald Räcke 2/122

Part I

Organizational Matters

- *▶* Modul: IN2003
- *▶* Name: "Efficient Algorithms and Data Structures" "Effiziente Algorithmen und Datenstrukturen"
- *▶* ECTS: 8 Credit points
- *▶* Lectures:
	- *▶* 4 SWS Mon 10:00–12:00 (Room Interim2) Fri 10:00–12:00 (Room Interim2)
- *▶* Webpage:

https://www.moodle.tum.de/course/view.php?id=100478

- *▶* Required knowledge:
	- *▶* IN0001, IN0003 "Introduction to Informatics 1/2" "Einführung in die Informatik 1/2"
	- *▶* IN0007
		- "Fundamentals of Algorithms and Data Structures"
		- "Grundlagen: Algorithmen und Datenstrukturen" (GAD)
	- *▶* IN0011 "Basic Theoretic Informatics"
		- "Einführung in die Theoretische Informatik" (THEO)
	- *▶* IN0015 "Discrete Structures" "Diskrete Strukturen" (DS)
	- *▶* IN0018 "Discrete Probability Theory" "Diskrete Wahrscheinlichkeitstheorie" (DWT)

The Lecturer

▶ Harald Räcke

- *▶* Email: raecke@in.tum.de
- *▶* Room: 03.09.044
- *▶* Office hours: (by appointment)

1 Contents

- *▶* Foundations
	- *▶* Machine models
	- *▶* Efficiency measures
	- *▶* Asymptotic notation
	- *▶* Recursion
- *▶* Higher Data Structures
	- *▶* Search trees
	- *▶* Hashing
	- *▶* Priority queues
	- *▶* Union/Find data structures
- *▶* Cuts/Flows
- *▶* Matchings

Tutorials

- *▶* Omar AbdelWanis
- *▶* omar.abdelwanis@in.tum.de
- *▶* Room: 03.09.042
- *▶* Office hours: (by appointment)

Harald Räcke 6/122

2 Literatur

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman: *The design and analysis of computer algorithms*, Addison-Wesley Publishing Company: Reading (MA), 1974 Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: *Introduction to algorithms*, McGraw-Hill, 1990 **Michael T. Goodrich, Roberto Tamassia:** *Algorithm design: Foundations, analysis, and internet examples*, John Wiley & Sons, 2002

Harald Räcke 8/122

2 Literatur 18. Oct. 2024

2 Literatur

2 Literatur

3 Goals

- *▶* Gain knowledge about efficient algorithms for important problems, i.e., learn how to solve certain types of problems efficiently.
- *▶* Learn how to analyze and judge the efficiency of algorithms.
- *▶* Learn how to design efficient algorithms.

4 Modelling Issues

What do you measure?

- *▶* Memory requirement
- *▶* Running time
- *▶* Number of comparisons
- *▶* Number of multiplications
- *▶* Number of hard-disc accesses
- *▶* Program size
- *▶* Power consumption
- *▶* . . .

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- *▶* the size of the input (number of bits)
- *▶* the number of arguments

Example 1

Suppose *n* numbers from the interval {1*, . . . , N*} have to be sorted. In this case we usually say that the input length is *n* instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

4 Modelling Issues 18. Oct. 2024 Harald Räcke 15/122

4 Modelling Issues

How do you measure?

- *▶* Implementing and testing on representative inputs
	- *▶* How do you choose your inputs?
	- *▶* May be very time-consuming.
	- *▶* Very reliable results if done correctly.
	- *▶* Results only hold for a specific machine and for a specific set of inputs.
- *▶* Theoretical analysis in a specific model of computation.
	- *▶* Gives asymptotic bounds like "this algorithm always runs in time $O(n^2)$ ".
	- *▶* Typically focuses on the worst case.
	- *▶* Can give lower bounds like "any comparison-based sorting algorithm needs at least Ω*(n* log *n)* comparisons in the worst case".

Model of Computation

How to measure performance

- 1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), . . .
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

Turing Machine

- *▶* Very simple model of computation.
- *▶* Only the "current" memory location can be altered.
- *▶* Very good model for discussing computabiliy, or polynomial vs. exponential time.
- *▶* Some simple problems like recognizing whether input is of the form xx , where x is a string, have quadratic lower bound.
- \Rightarrow Not a good model for developing efficient algorithms.

Random Access Machine (RAM)

Operations

- \triangleright input operations (input tape $\rightarrow R[i]$)
	- *▶* READ *i*
- *▶* output operations (*R[i]* → output tape)
	- *▶* WRITE *i*
- *▶* register-register transfers
	- *▶ R[j]* := *R[i]*
	- ▶ $R[j] := 4$
- *▶* indirect addressing
	- $\triangleright R[i] := R[R[i]]$ loads the content of the *R[i]*-th register into the *j*-th register
	- *▶* $R[R[i]] := R[j]$

loads the content of the *j*-th into the *R[i]*-th register

Random Access Machine (RAM)

- *▶* Input tape and output tape (sequences of zeros and ones; unbounded length).
- *▶* Memory unit: infinite but countable number of registers *R[*0*], R[*1*], R[*2*], . . .* .

input tape

memory

▶ Registers hold integers.

Random Access Machine (RAM)

Operations

▶ branching (including loops) based on comparisons $\frac{1}{2}$ ump χ jumps to position x in the program; sets instruction counter to *x*; reads the next operation to perform from register *R[x] ▶* jumpz *x R[i]* jump to x if $R[i] = 0$ if not the instruction counter is increased by 1; *▶* jumpi *i* jump to $R[i]$ (indirect jump); *▶* arithmetic instructions: +, −, ×, */* $\triangleright R[i] = R[j] + R[k]$; $R[i] := -R[k]$; The jump-directives are very close to the jump-instructions contained in the assembler language of real machines. 4 Modelling Issues 18. Oct. 2024 Harald Räcke 20/122

Model of Computation

- *▶* uniform cost model Every operation takes time 1.
- *▶* logarithmic cost model

The cost depends on the content of memory cells:

- *▶* The time for a step is equal to the largest operand involved;
- *▶* The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^w , where usually $w = \log_2 n$.

The latter model is quite realistic as the word-size of $\overline{}$ a standard computer that handles a problem of size $\overline{}$ $\overline{}$ must be at least $\log_2 n$ as otherwise the computer could $\frac{1}{2}$ either not store the problem instance or not address all i i its memory.


```
4 Modelling Issues 18. Oct. 2024
Harald Räcke 21/122
```
There are different types of complexity bounds:

▶ best-case complexity:

 $C_{bc}(n) := \min\{C(x) | |x| = n\}$

Usually easy to analyze, but not very meaningful.

▶ worst-case complexity:

$C_{\text{wc}}(n) := \max\{C(x) | |x| = n\}$

Usually moderately easy to analyze; sometimes too pessimistic.

▶ average case complexity:

$$
C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)
$$

x∈*Iⁿ*

Harald Räcke 23/122

more general: probability measure *µ*

 μ is a probability distribution over inputs of length *n*.

 $C(x)$ cost of instance

4 Modelling Issues

Example 2

- *▶* running time (for Line 3):
	- *▶* uniform model: *n* steps
	- *▶* logarithmic model:
		- $2 + 3 + 5 + \cdots + (1 + 2^n) = 2^{n+1} 1 + n = \Theta(2^n)$
- *▶* space requirement:
	- \blacktriangleright uniform model: $\mathcal{O}(1)$
	- ▶ logarithmic model: $O(2^n)$

There are different types of complexity bounds:

▶ amortized complexity:

The average cost of data structure operations over a worst case sequence of operations.

▶ randomized complexity:

The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input *x*. Then take the worst-case over all x with $|x| = n$.

4 Modelling Issues

Asymptotic Notation

Formal Definition

Let f , g denote functions from $\mathbb N$ to $\mathbb R^+$.

- *▶* $O(f) = {g | \exists c > 0 \exists n_0 \in \mathbb{N}_0 \forall n \geq n_0 : [g(n) \leq c \cdot f(n)]}$ (set of functions that asymptotically grow not faster than *f*)
- \triangleright Ω(*f*) = {*g* | ∃*c* > 0 ∃*n*₀ ∈ N₀ ∀*n* ≥ *n*₀ : [*g(n)* ≥ *c* · *f(n)*]} (set of functions that asymptotically grow not slower than *f*)
- \blacktriangleright $\Theta(f) = \Omega(f) \cap \mathcal{O}(f)$

(functions that as[ympto](#page-1-0)tically have the same growth as *f*)

- \triangleright *o*(*f*) = {*g* | ∀*c* > 0 ∃*n*₀ ∈ N₀ ∀*n* ≥ *n*₀ : [*g*(*n*) ≤ *c* · *f*(*n*)]} (set of functions that asymptotically grow slower than *f*)
- *▶* $\omega(f) = \{g \mid \forall c > 0 \exists n_0 \in \mathbb{N}_0 \ \forall n \geq n_0 : [g(n) \geq c \cdot f(n)]\}$ (set of functions that asymptotically grow faster than *f*)

5 Asymptotic Notation

We are usually not interested in exact running times, but only in an asymptotic classification of the running time, that ignores constant factors and constant additive offsets.

- *▶* We are usually interested in the running times for large values of *n*. Then constant additive terms do not play an important role.
- *▶* An exact analysis (e.g. *exactly* counting the number of operations in a RAM) may be hard, but wouldn't lead to more precise results as the computational model is already quite a distance from reality.
- *▶* A linear speed-up (i.e., by a constant factor) is always possible by e.g. implementing the algorithm on a faster machine.
- *▶* Running time should be expressed by simple functions.

Asymptotic Notation

There is an equivalent definition using limes notation (assuming that the respective limes exists). f and g are functions from \mathbb{N}_0 to \mathbb{R}^+_0 .

Asymptotic Notation

Abuse of notation

- 1. People write $f = O(q)$, when they mean $f \in O(q)$. This is not an equality (how could a function be equal to a set of functions).
- 2. People write $f(n) = O(g(n))$, when they mean $f \in O(g)$, with $f : \mathbb{N} \to \mathbb{R}^+, n \mapsto f(n)$, and $g : \mathbb{N} \to \mathbb{R}^+, n \mapsto g(n)$.
- **3.** People write e.g. $h(n) = f(n) + o(g(n))$ when they mean that there exists a function $z : \mathbb{N} \to \mathbb{R}^+, n \mapsto z(n), z \in o(g)$ such that $h(n) = f(n) + z(n)$.

3. This is particularly useful if you do not want to ignore constant factors. For example the median of *n* elements can be determined using $\frac{3}{2}n + o(n)$ comparisons.

Asymptotic Notation in Equations

How do we interpret an expression like:

 $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$

Here, Θ*(n)* stands for an anonymous function in the set Θ*(n)* that makes the expression true.

Note that $\Theta(n)$ is on the right hand side, otw. this interpretation is wrong.

Asymptotic Notation

Abuse of notation

4. People write $O(f(n)) = O(g(n))$, when they mean $O(f(n)) \subseteq O(q(n))$. Again this is not an equality.

. This is particularly useful if you do not want \overline{a} to ignore constant factors. For example the median of *n* elements can be determined using $\frac{3}{2}n + o(n)$ comparisons.

<u>_______________________</u>

Asymptotic Notation in Equations

How do we interpret an expression like:

 $2n^2 + O(n) = \Theta(n^2)$

Regardless of how we choose the anonymous function $f(n) \in \mathcal{O}(n)$ there is an anonymous function $g(n) \in \Theta(n^2)$ that makes the expression true.

Asymptotic Notation in Equations

How do we interpret an expression like:

$$
\sum_{i=1}^n \Theta(i) = \Theta(n^2)
$$

Careful!

"It is understood" that every occurence of an \mathcal{O} -symbol (or Θ*,* Ω*, o, ω*) on the left represents one anonymous function.

Asymptotic Notation in Equations

Then an asymptotic equation can be interpreted as containement btw. two sets:

$$
n^2\cdot\mathcal{O}(n)+\mathcal{O}(\log n)=\Theta(n^2)
$$

represents

$$
n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n) \subseteq \Theta(n^2)
$$

Note that the equation does not hold.

The $\Theta(i)$ -symbol on the left rep- $\frac{1}{2}$ resents one anonymous function $\frac{1}{2}$ $f : \mathbb{N} \to \mathbb{R}^+$, and then $\sum_i f(i)$ is

computed.

5 Asymptotic Notation 18. Oct. 2024 Harald Räcke 32/122

Asymptotic Notation in Equations

We can view an expression containing asymptotic notation as generating a set:

 $n^2 \cdot \mathcal{O}(n) + \mathcal{O}(\log n)$

represents

$$
\{f:\mathbb{N}\to\mathbb{R}^+\mid f(n)=n^2\cdot g(n)+h(n)
$$

with $g(n) \in O(n)$ and $h(n) \in O(\log n)$

Asymptotic Notation

Lemma 3

Let f , g be functions with the property $\exists n_0 > 0 \,\forall n \geq n_0 : f(n) > 0$ (the same for g). Then

- \blacktriangleright *c* · $f(n) \in \Theta(f(n))$ for any constant *c*
- $\blacktriangleright \Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n))$
- $\blacktriangleright \Theta(f(n)) \cdot \Theta(g(n)) = \Theta(f(n) \cdot g(n))$
- $\blacktriangleright \Theta(f(n)) + \Theta(g(n)) = \Theta(\max\{f(n), g(n)\})$

The expressions also hold for Ω*. Note that this means that* $f(n) + g(n) \in \Theta(\max\{f(n), g(n)\})$.

Asymptotic Notation

Comments

- *▶* Do not use asymptotic notation within induction proofs.
- \blacktriangleright *For any constants <i>a, b* **we have** $\log_a n = \Theta(\log_b n)$. Therefore, we will usually ignore the base of a logarithm within asymptotic notation.
- **▶** In general $\log n = \log_2 n$, i.e., we use 2 as the default base for the logarithm.

Funktionen

Funktionen

Funktionen

Funktionen

Laufzeiten

 1 Operation = 10ns; 100MHz

Alter des Universums: ca. 13.8 · 10⁹y

Asymptotic Notation

In general asymptotic classification of running times is a good measure for comparing algorithms:

- *▶* If the running time analysis is tight and actually occurs in practise (i.e., the asymptotic bound is not a purely theoretical worst-case bound), then the algorithm that has better asymptotic running time will always outperform a weaker algorithm for large enough values of *n*.
- *▶* However, suppose that I have two algorithms:
	- *▶* Algorithm A. Running time $f(n) = 1000 \log n = O(\log n)$.
	- \blacktriangleright Algorithm B. Running time $g(n) = \log^2 n$.

Clearly $f = o(q)$. However, as long as $\log n \le 1000$ Algorithm B will be more efficient.

Multiple Variables in Asymptotic Notation Example 4 ▶ $f: \mathbb{N} \to \mathbb{R}_0^+$, $f(n,m) = 1$ und $g: \mathbb{N} \to \mathbb{R}_0^+$, $g(n,m) = n - 1$ then $f = O(q)$ does not hold ▶ $f: \mathbb{N} \to \mathbb{R}_0^+$, $f(n,m) = 1$ und $g: \mathbb{N} \to \mathbb{R}_0^+$, $g(n,m) = n$ then: $f = \mathcal{O}(a)$ \blacktriangleright $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ $f: \mathbb{N}_0 \to \mathbb{R}_0^+$ $f: \mathbb{N}_0 \to \mathbb{R}_0^+$, $f(n,m) = 1$ und $g: \mathbb{N}_0 \to \mathbb{R}_0^+$, $g(n,m) = n$ then $f = O(g)$ does not hold

Multiple Variables in Asymptotic Notation

Sometimes the input for an algorithm consists of several parameters (e.g., nodes and edges of a graph (*n* and *m*)).

If we want to make asympotic statements for $n \to \infty$ and $m \to \infty$ we have to extend the definition to multiple variables.

Formal Definition

Let f,g denote functions from \mathbb{N}^d to $\mathbb{R}^+_0.$

▶ $O(f) = {g | \exists c > 0 \exists N \in \mathbb{N}_0 \forall \vec{n} \text{ with } n_i \ge N \text{ for some } i:}$ $[g(\vec{n}) \leq c \cdot f(\vec{n})]$

(set of functions that asymptotically grow not faster than *f*)

5 Asymptotic Notation 18. Oct. 2024 Harald Räcke 43/122

18. Oct. 2024

6 Recurrences

Algorithm 2 mergesort*(*list *L)* 1: $n \leftarrow size(L)$ 2: if $n \leq 1$ return L 3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{n}{2} \rfloor]$ 4: $L_2 \leftarrow L[\lfloor \frac{n}{2} \rfloor + 1 \cdots n]$ 5: mergesort (L_1) 6: mergesort (L_2) 7: $L \leftarrow \text{merge}(L_1, L_2)$ 8: return *L*

This algorithm requires

$$
T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \mathcal{O}(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \mathcal{O}(n)
$$

comparisons when $n > 1$ and 0 comparisons when $n \leq 1$.


```
6 Recurrences 18. Oct. 2024
```
Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Recurrences

How do we bring the expression for the number of comparisons $(\approx$ running time) into a closed form?

For this we need to solve the recurrence.

Harald Räcke 46/122

6 Recurrences 18. Oct. 2024

Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

6 Recurrences 18. Oct. 2024

6.1 Guessing+Induction

First we need to get rid of the θ -notation in our recurrence:

$$
T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}
$$

Informal way:

Assume that instead we have

$$
T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2 \\ 0 & \text{otherwise} \end{cases}
$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

Guess: $T(n) \leq dn \log n$. Proof. (by induction)

- *▶* base case *(*2 ≤ *n <* 16*)*: true if we choose *d* ≥ *b*.
- \blacktriangleright induction step $n/2 \rightarrow n$:

Let $n = 2^k \ge 16$. Suppose statem. is true for $n' = n/2$. We prove it for *n*:

Hence, statement is true if we choose $d \geq c$.

6.1 Guessing+Induction

Suppose we quess $T(n) \leq d n \log n$ for a constant d. Then

$$
T(n) \le 2T\left(\frac{n}{2}\right) + cn
$$

\n
$$
\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn
$$

\n
$$
= dn(\log n - 1) + cn
$$

\n
$$
= dn\log n + (c - d)n
$$

\n
$$
\le dn\log n
$$

if we choose $d > c$.

Formally, this is not correct if *n* is not a power of 2. Also even in this case one would need to do an induction proof.

6.1 Guessing+Induction

How do we get a result for all values of *n*? We consider the following recurrence instead of the original one: $T(n) \leq$ $\int 2T(\left[\frac{n}{2}\right]) + cn \quad n \ge 16$ *b* otherwise

Note that we can do this as for constant-sized inputs the running time is always some constant (*b* in the above case).

6.1 Guessing+Induction

We also make a quess of $T(n) \leq d n \log n$ and get

for a suitable choice of *d*.

6.2 Master Theorem

We prove the Master Theorem for the case that *n* is of the form b^ℓ , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

6.2 Master Theorem

Note that the cases do not cover all possibilities.

Lemma 5 *Let a* ≥ 1*, b >* 1 *and ϵ >* 0 *denote constants. Consider the recurrence* $T(n) = aT\left(\frac{n}{b}\right)$ $+ f(n)$. *Case 1. If* $f(n) = O(n^{\log_b(a) - \epsilon})$ *then* $T(n) = \Theta(n^{\log_b a})$ *. Case 2. If* $f(n) = \Theta(n^{\log_b(a)} \log^k n)$ *then* $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ *,* $k \geq 0$. *Case 3. If* $f(n) = \Omega(n^{\log_b(a) + \epsilon})$ and for sufficiently large *n* $af(\frac{n}{b}) \leq cf(n)$ *for some constant* $c < 1$ *then* $T(n) = \Theta(f(n))$ *.*

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

This gives

$$
T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right).
$$

$$
\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{1}}}}}}}}}}}}}
$$

Case 2. Now suppose that
$$
f(n) \leq c n^{\log_b a}
$$
.
\n
$$
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{bi}\right)
$$
\n
$$
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{bi}\right)^{\log_b a}
$$
\n
$$
= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1
$$
\n
$$
= c n^{\log_b a} \log_b n
$$
\nHence,
\n
$$
T(n) = O(n^{\log_b a} \log_b n) \quad \Rightarrow T(n) = O(n^{\log_b a} \log n).
$$
\n[18. 0ct. 2024]

Case 1. Now suppose that
$$
f(n) \leq cn^{\log_b a - \epsilon}
$$
.
\n
$$
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f(\frac{n}{b^i})
$$
\n
$$
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}
$$
\n
$$
\frac{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}}{2^i \left(\frac{b^{\epsilon}}{a} - \epsilon\right)^{i}} = c n^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i
$$
\n
$$
\frac{1}{2^i \left(\frac{b}{a} - \epsilon\right)^{i}} = c n^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)
$$
\n
$$
= c n^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)
$$
\n
$$
= \frac{c}{b^{\epsilon} - 1} n^{\log_b a} (n^{\epsilon} - 1) / (n^{\epsilon})
$$
\nHence,
\n
$$
T(n) \leq \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b(a)} \qquad \boxed{\Rightarrow T(n) = O(n^{\log_b a})}.
$$
\n
$$
\boxed{\text{min}_{\text{Harald Räcke}}}^{\text{6.2 Master Theorem}} \qquad \text{18. Oct. 2024}
$$
\n58/122

Case 2. Now suppose that
$$
f(n) \ge c n^{\log_b a}
$$
.
\n
$$
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f(\frac{n}{bi})
$$
\n
$$
\ge c \sum_{i=0}^{\log_b n - 1} a^i (\frac{n}{bi})^{\log_b a}
$$
\n
$$
= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1
$$
\n
$$
= c n^{\log_b a} \sum_{i=0}^{\log_b n}
$$
\nHence,
\n
$$
T(n) = \Omega(n^{\log_b a} \log_b n) \quad \Rightarrow T(n) = \Omega(n^{\log_b a} \log n).
$$
\n5.2 Master Theorem 18. Oct. 2024

Case 2. Now suppose that $f(n) \leq c n^{\log_b a} (\log_b(n))^k$.

$$
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
$$

\n
$$
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k
$$

\n
$$
\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = cn^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k
$$

\n
$$
= cn^{\log_b a} \sum_{i=0}^{\ell-1} (\ell - i)^k
$$

\n
$$
= cn^{\log_b a} \sum_{i=1}^{\ell} \frac{i^k}{k^k} \approx \frac{1}{k} \ell^{k+1}
$$

\n
$$
\approx \frac{c}{k} n^{\log_b a} \ell^{k+1} \qquad \Rightarrow T(n) = O(n^{\log_b a} \log^{k+1} n).
$$

\n18. Oct. 2024
\n6.2 Master Theorem
\n18. Oct. 2024
\n6.1/122

Example: Multiplying Two Integers

Suppose we want to multiply two *n*-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers *A* and *B*:

1 1 0 1 1 0 1 0 1 *A* 1 0 0 0 1 0 0 1 1 *B* 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0

This gives that two *n*-bit integers can be added in time $\mathcal{O}(n)$.

Case 3. Now suppose that $f(n) \geq dn^{\log_b a + \epsilon}$, and that for sufficiently large *n*: $af(n/b) \leq cf(n)$, for $c < 1$.

From this we get $a^if(n/b^i) \leq c^if(n)$, where we assume that $n/b^{i-1} \geq n_0$ is still sufficiently large.

Example: Multiplying Two Integers

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer $B(m \leq n)$.

Time requirement:

- *▶* Computing intermediate results: O*(nm)*.
- *▶* Adding *m* numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$.

 $\begin{array}{c} 0.2 \text{ Master} \end{array}$ Harald Räcke 64/122

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers \boldsymbol{A} and \boldsymbol{B} are of length $n=2^k$, for some k .

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- *►* Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- \blacktriangleright *Case 2:* $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- \blacktriangleright Case 3: *f*(*n*) = Ω(*n*^{log_{*b*} *a*+*€*) *T*(*n*) = $\Theta(f(n))$}

In our case $a = 4$, $b = 2$, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

⇒ Not better then the "school method".

Harald Räcke 67/122

Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) \enspace .
$$

6.2 Master Theorem 18. Oct. 2024 Harald Räcke 66/122

Example: Multiplying Two Integers

We can use the following identity to compute *Z*1:

$$
Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0
$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

 $b.2$ Master Theorem **68/122**
 $\begin{bmatrix} 68/122 \end{bmatrix}$ Harald Räcke

 $T(\frac{n}{2} + 1) + O(n)$.

6.2 Master Theorem 18. Oct. 2024

 $\mathcal{O}(1)$ $\mathcal{O}(1)$ $O(n)$ $O(n)$ $T(\frac{n}{2})$ $T(\frac{n}{2})$

 $O(n)$

Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n) = 3T(\frac{n}{2}) + O(n) .
$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- *►* Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ *T*(*n*) = $\Theta(n^{\log_b a})$
- \blacktriangleright *Case 2:* $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- \blacktriangleright *Case 3:* $f(n) = \Omega(n^{\log_b a + \epsilon})$ $T(n) = \Theta(f(n))$

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

6.3 The Characteristic Polynomial

Observations:

- *▶* The solution *T [*1*], T [*2*], T [*3*], . . .* is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k].$
- *▶* In fact, any *k* consecutive values completely determine the solution.
- *▶ k* non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- *▶* First determine all solutions that satisfy recurrence relation.
- *▶* Then pick the right one by analyzing boundary conditions.
- *▶* First consider the homogenous case.

6.3 The Characteristic Polynomial 18. Oct. 2024

6.3 The Characteristic Polynomial

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order *k* with constant coefficients $(c_0, c_k \neq 0)$.

- \blacktriangleright *T*(*n*) only depends on the *k* preceding values. This means the recurrence relation is of order *k*.
- *▶* The recurrence is linear as there are no products of *T [n]*'s.
- \blacktriangleright If $f(n) = 0$ then the recurrence relation becomes a linear, homogenous recurrence relation of order *k*.

Note that we ignore boundary conditions for the moment.

The Homogenous Case

The solution space

 $S = \Big\{ \, \mathcal{T} = T[1], T[2], T[3], \ldots \,\bigm\vert \, \, \mathcal{T}$ fulfills recurrence relation $\Big\}$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

 $c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \cdots + c_k \cdot \lambda^{n-k} = 0$

for all $n > k$.

The Homogenous Case

Dividing by *λ ⁿ*−*^k* gives that all these constraints are identical to

 $c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \cdots + c_k = 0$ | {z } characteristic polynomial *P [λ]*

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the *k* (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$
\alpha_1\lambda_1^n+\alpha_2\lambda_2^n+\cdots+\alpha_k\lambda_k^n
$$

is a solution for arbitrary values *αⁱ* .

6.3 The Characteristic Polynomial 18. Oct. 2024 Harald Räcke 73/122

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_i's$ such that these conditions are met:

$$
\alpha_1 \cdot \lambda_1 + \alpha_2 \cdot \lambda_2 + \cdots + \alpha_k \cdot \lambda_k = T[1]
$$
\n
$$
\alpha_1 \cdot \lambda_1^2 + \alpha_2 \cdot \lambda_2^2 + \cdots + \alpha_k \cdot \lambda_k^2 = T[2]
$$
\n
$$
\vdots
$$
\n
$$
\alpha_1 \cdot \lambda_1^k + \alpha_2 \cdot \lambda_2^k + \cdots + \alpha_k \cdot \lambda_k^k = T[k]
$$

The Homogenous Case

Lemma 6

*Assume that the characteristic polynomial has k distinct roots λ*1*, . . . , λk. Then all solutions to the recurrence relation are of the form*

 $\alpha_1 \lambda_1^n + \alpha_2 \lambda_2^n + \cdots + \alpha_k \lambda_k^n$.

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions *T [i]* and I want to see whether I can choose the $\alpha_i's$ such that these conditions are met:

We show that the column vectors are linearly independent. Then the above equation has a solution.

18. Oct. 2024

Computing the Determinant

$$
\begin{vmatrix}\n\lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
\lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k\n\end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix}\n1 & 1 & \cdots & 1 & 1 \\
\lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_k^{k-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda_k^{k-2} & \lambda_2^{k-1} & \lambda_2^{k-1} & \lambda_2^{k-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{k-2} & \lambda_k^{k-1}\n\end{vmatrix}
$$
\n
$$
= \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix}\n1 & \lambda_1 & \cdots & \lambda_1^{k-2} & \lambda_1^{k-1} \\
1 & \lambda_2 & \cdots & \lambda_k^{k-2} & \lambda_2^{k-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{k-2} & \lambda_k^{k-1}\n\end{vmatrix}
$$
\n
$$
= \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix}\n1 & \lambda_1 & \cdots & 1 & 1 \\
1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{k-2} & \lambda_k^{k-1}\n\end{vmatrix}
$$
\n
$$
= \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix}\n1 & \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
1 & \lambda_2 & \cdots & \lambda_2^{k-2} & \lambda_2^{k-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{
$$

Computing the Determinant 1 $\lambda_1 - \lambda_1 \cdot 1$ · · $\lambda_1^{k-2} - \lambda_1 \cdot \lambda_1^{k-3}$ $\lambda_1^{k-1} - \lambda_1 \cdot \lambda_1^{k-2}$ 1 $\lambda_2 - \lambda_1 \cdot 1$ · $\lambda_2^{k-2} - \lambda_1 \cdot \lambda_2^{k-3}$ $\lambda_2^{k-1} - \lambda_1 \cdot \lambda_2^{k-2}$
: : : 1 $\lambda_k - \lambda_1 \cdot 1$ · · $\lambda_k^{k-2} - \lambda_1 \cdot \lambda_k^{k-3}$ $\lambda_k^{k-1} - \lambda_1 \cdot \lambda_k^{k-2}$ = $1 \qquad 0 \qquad \cdots \qquad 0 \qquad 0$ 1 $(\lambda_2 - \lambda_1) \cdot 1$ · · · $(\lambda_2 - \lambda_1) \cdot \lambda_2^{k-3}$ $(\lambda_2 - \lambda_1) \cdot \lambda_2^{k-2}$
: : : 1 $(\lambda_k - \lambda_1) \cdot 1 \quad \cdots \quad (\lambda_k - \lambda_1) \cdot \lambda_k^{k-3} \quad (\lambda_k - \lambda_1) \cdot \lambda_k^{k-2}$ 6.3 The Characteristic Polynomial 18. Oct. 2024 المساحة المساحة المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة المستخدمة المس
19/122- 19/122

Computing the Determinant

$$
\begin{vmatrix}\n1 & \lambda_1 & \lambda_1^{k-2} & \lambda_1^{k-1} \\
1 & \lambda_2 & \lambda_2^{k-2} & \lambda_2^{k-1} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \lambda_k^{k-2} & \lambda_k^{k-1}\n\end{vmatrix} =
$$
\n
$$
\begin{vmatrix}\n1 & \lambda_1 - \lambda_1 & 1 & \lambda_1^{k-2} - \lambda_1 & \lambda_1^{k-3} & \lambda_1^{k-1} - \lambda_1 & \lambda_1^{k-2} \\
1 & \lambda_2 - \lambda_1 & 1 & \lambda_2^{k-2} - \lambda_1 & \lambda_2^{k-3} & \lambda_2^{k-1} - \lambda_1 & \lambda_2^{k-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k - \lambda_1 & 1 & \lambda_k^{k-2} - \lambda_1 & \lambda_k^{k-3} & \lambda_k^{k-1} - \lambda_1 & \lambda_k^{k-2}\n\end{vmatrix}
$$
\n6.3 The Characteristic Polynomial
\n6.3 The Characteristic Polynomial
\n18. Oct. 2024
\n78/122

Computing the Determinant

$$
\begin{vmatrix}\n1 & 0 & \cdots & 0 & 0 \\
1 & (\lambda_2 - \lambda_1) \cdot 1 & \cdots & (\lambda_2 - \lambda_1) \cdot \lambda_2^{k-3} & (\lambda_2 - \lambda_1) \cdot \lambda_2^{k-2} \\
\vdots & \vdots & & \vdots \\
1 & (\lambda_k - \lambda_1) \cdot 1 & \cdots & (\lambda_k - \lambda_1) \cdot \lambda_k^{k-3} & (\lambda_k - \lambda_1) \cdot \lambda_k^{k-2} \\
\prod_{i=2}^k (\lambda_i - \lambda_1) & \prod_{i=2}^k \lambda_i & \lambda_k^{k-3} & \lambda_k^{k-2} \\
1 & \lambda_k & \lambda_k^{k-3} & \lambda_k^{k-2}\n\end{vmatrix} = \n\begin{vmatrix}\n1 & \lambda_2 & \lambda_2^{k-3} & \lambda_2^{k-2} \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_k & \lambda_k^{k-3} & \lambda_k^{k-2}\n\end{vmatrix}
$$
\n6.3 The Characteristic Polynomial 18. Oct. 2024

Computing the Determinant

Repeating the above steps gives:

$$
\begin{vmatrix}\n\lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
\lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k\n\end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \prod_{i > \ell} (\lambda_i - \lambda_\ell)
$$

Hence, if all λ_i 's are different, then the determinant is non-zero.

This means

$$
c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \cdots + c_k (n-k) \lambda_i^{n-k-1} = 0
$$

Hence,

$$
c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \cdots + c_k (n-k) \lambda_i^{n-k} = 0
$$

$$
T[n]
$$

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$. To see this consider the polynomial

 $P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \cdots + c_k \lambda^{n-k}$

Since λ_i is a root we can write this as $Q[\lambda] \cdot (\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root *λⁱ* .

 $\boxed{\prod}_{\text{hargld}}$ Harald Räcke 82/122

6.3 The Characteristic Polynomial 18. Oct. 2024

The Homogeneous Case

Suppose λ_i has multiplicity *j*. We know that

$$
c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \cdots + c_k (n-k) \lambda_i^{n-k} = 0
$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

 $c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \cdots + c_k (n-k)^2 \lambda_i^{n-k} = 0$

We can continue $j - 1$ times.

Hence, $n^{\ell} \lambda_i^n$ is a solution for $\ell \in 0, \ldots, j-1$.

The Homogeneous Case

Lemma 7

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

 $c_0T[n] + c_1T[n-1] + \cdots + c_kT[n-k] = 0$

Let λ_i , $i = 1, ..., m$ *be the (complex) roots of* $P[\lambda]$ *with multiplicities ℓⁱ . Then the general solution to the recurrence is given by*

$$
T[n] = \sum_{i=1}^m \sum_{j=0}^{\ell_i-1} \alpha_{ij} \cdot (n^j \lambda_i^n) .
$$

The full proof is omitted. We have only shown that any choice of α_{ij} 's is a solution to the recurrence.

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n
$$

T[0] = 0 gives $\alpha + \beta = 0$.

 $T[1] = 1$ gives

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1\Longrightarrow \alpha-\beta=\frac{2}{\sqrt{5}}
$$

$$
\left[\begin{array}{c}\right]\left[\begin{array}{c}\right]\end{array}\right]\left[\begin{array}{c}\right]\end{array}
$$
 Harald Räc

Harald Räcke 87/122

Example: Fibonacci Sequence

 $T[0] = 0$ $T[1] = 1$ $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

 $λ² – λ – 1$

Finding the roots, gives

$$
\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)
$$

6.3 The Characteristic Polynomial 18. Oct. 2024 Harald Räcke 86/122

```
Example: Fibonacci Sequence
   Hence, the solution is
                     1
                    √
5
                       \left( \frac{1+\sqrt{5}}{2} \right)2
                                 \setminus^n−
                                       \sqrt{1-\sqrt{5}}2
                                               \binom{n}{k}6.3 The Characteristic Polynomial 18. Oct. 2024
      Harald Räcke 88/122
```
The Inhomogeneous Case

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

with $f(n) \neq 0$.

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

6.3 The Characteristic Polynomial 18. Oct. 2024 Figure 12 6.3 The Characteristic Polynomial 18. UCC. 2024
B9/122
B9/122

The Inhomogeneous Case

Example:

 $T[n] = T[n-1]+1$ $T[0] = 1$

Then,

 $T[n-1] = T[n-2]+1$ $(n \ge 2)$

Subtracting the first from the second equation gives,

$$
T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)
$$

or

 $T[n] = 2T[n-1] - T[n-2]$ (n ≥ 2)

I get a completely determined recurrence if I add $T[0] = 1$ and $T[1] = 2.$

The Inhomogeneous Case

The general solution of the recurrence relation is

 $T(n) = T_h(n) + T_p(n)$

where T_h is any solution to the homogeneous equation, and T_p is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

6.3 The Characteristic Polynomial 18. Oct. 2024 Harald Räcke 90/122

The Inhomogeneous Case Example: Characteristic polynomial: ${\lambda^2 - 2\lambda + 1 \over (\lambda - 1)^2} = 0$ Then the solution is of the form $T[n] = \alpha 1^n + \beta n 1^n = \alpha + \beta n$ $T[0] = 1$ gives $\alpha = 1$. $T[1] = 2$ gives $1 + \beta = 2 \implies \beta = 1$. 6.3 The Characteristic Polynomial 18. Oct. 2024 6.3 The Characteristic Polynomial $\begin{bmatrix} 6.3 \end{bmatrix}$ Harald Räcke 901y122

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied

 $r + 1$ times to obtain a homogeneous equation:

 $T[n] = T[n-1] + n^2$

Shift:

 $T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$

Difference:

 $T[n] - T[n-1] = T[n-1] - T[n-2] + 2n-1$

 $T[n] = 2T[n-1] - T[n-2] + 2n - 1$

 $T[n] = 2T[n-1] - T[n-2] + 2n - 1$

Shift:

$$
T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1
$$

= 2T[n-2] - T[n-3] + 2n - 3

Difference:

$$
T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1
$$

- 2T[n-2] + T[n-3] - 2n + 3

$$
T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2
$$

and so on...

6.4 Generating Functions

Definition 8 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

▶ generating function (Erzeugendenfunktion) is

$$
F(z) := \sum_{n\geq 0} a_n z^n ;
$$

▶ exponential generating function (exponentielle Erzeugendenfunktion) is

$$
F(z) := \sum_{n\geq 0} \frac{a_n}{n!} z^n.
$$

 $\begin{array}{c|c|c|c|c|c|c|c|c} \hline \text{b.4} & \text{Lenerating functions} \ \hline \text{B1} & \text{Hardld Räcke} \ \hline \end{array}$

6.4 Generating Functions 18. Oct. 2024

6.4 Generating Functions

Example 9

1. The generating function of the sequence $(1,0,0,\ldots)$ is

 $F(z) = 1$.

2. The generating function of the sequence $(1, 1, 1, ...)$ is

$$
F(z)=\frac{1}{1-z}.
$$

6.4 Generating Functions 18. Oct. 2024

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

- Let $f = \sum_{n\geq 0} a_n z^n$ and $g = \sum_{n\geq 0} b_n z^n$.
- \blacktriangleright Equality: *f* and *g* are equal if $a_n = b_n$ for all *n*.
- ▶ Addition: $f + g := \sum_{n \geq 0} (a_n + b_n) z^n$.
- ▶ **Multiplication:** $f \cdot g := \sum_{n \geq 0} c_n z^n$ with $c_n = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

6.4 Generating Functions

What does
$$
\sum_{n\geq 0} z^n = \frac{1}{1-z}
$$
 mean in the algebraic view?

It means that the power series $1 - z$ and the power series $\sum_{n\geq 0} z^n$ are invers, i.e.,

$$
(1-z)\cdot\left(\sum_{n\geq 0}^{\infty}z^n\right)=1.
$$

This is well-defined.

6.4 Generating Functions 18. Oct. 2024

Harald Räcke 99/122

6.4 Generating Functions

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

6.4 Generating Functions

Suppose we are given the generating function

> \sum *n*≥0 $z^n = \frac{1}{1-z}$ 1 − *z*

.

 $\frac{1}{2}$ Formally the derivative of a formal power series $\sum_{n\geq 0}a_nz^n$ is defined as $\sum_{n\geq 0}$ na_nz^{n-1} .

The known rules for differentiation work for this definition. In particular, e.g. the derivative of $\frac{1}{1-z}$ is $\frac{1}{(1-z)^2}$.

Note that this requires a proof if we consider power series as algebraic objects. However, we did not prove this in the lecture.

We can compute the derivative:

Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

6.4 Generating Functions

We can repeat this

$$
\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} .
$$

Derivative:

$$
\underbrace{\sum_{n\geq 1} n(n+1)z^{n-1}}_{\sum_{n\geq 0}(n+1)(n+2)z^n} = \frac{2}{(1-z)^3}
$$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-z)^3}$.

6.4 Generating Functions 18. Oct. 2024 Harald Räcke 101/122

6.4 Generating Functions

Computing the k -th derivative of $\sum z^n$.

$$
\sum_{n\geq k} n(n-1)\cdot \ldots \cdot (n-k+1)z^{n-k} = \sum_{n\geq 0} (n+k)\cdot \ldots \cdot (n+1)z^n
$$

$$
= \frac{k!}{(1-z)^{k+1}}.
$$

Hence:

$$
\sum_{n\geq 0} {n+k \choose k} z^n = \frac{1}{(1-z)^{k+1}}
$$

.

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

6.4 Generating Functions

We know

$$
\sum_{n\geq 0} y^n = \frac{1}{1-y}
$$

Hence,

 \sum *n*≥0 $a^n z^n = \frac{1}{1-z}$ 1 − *az*

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$
A(z) = \sum_{n\geq 0} a_n z^n
$$

= $a_0 + \sum_{n\geq 1} (a_{n-1} + 1) z^n$
= $1 + z \sum_{n\geq 1} a_{n-1} z^{n-1} + \sum_{n\geq 1} z^n$
= $z \sum_{n\geq 0} a_n z^n + \sum_{n\geq 0} z^n$
= $zA(z) + \sum_{n\geq 0} z^n$
= $zA(z) + \frac{1}{1-z}$

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Solving for *A(z)* gives \sum *n*≥0 $a_n z^n = A(z) = \frac{1}{(1 - z)^n}$ $\frac{1}{(1-z)^2} = \sum_{n\geq 0}$ *n*≥0 $(n+1)z^n$ Hence, $a_n = n + 1$. 6.4 Generating Functions 18. Oct. 2024 Harald Räcke 106/122

Some Generating Functions

 6.4 Generating Functions $\begin{array}{c} \hline \end{array}$ Harald Räcke 107/122

6.4 Generating Functions 18. Oct. 2024

Some Generating Functions

6.4 Generating Functions 18. Oct. 2024

Solving Recursions with Generating Functions

- 1. Set $A(z) = \sum_{n \geq 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by *A(z)*.
- 4. Solving for $A(z)$ gives an equation of the form $A(z) = f(z)$, where hopefully $f(z)$ is a simple function.
- 5. Write *f (z)* as a formal power series. Techniques:
	- *▶* partial fraction decomposition (Partialbruchzerlegung)
	- *▶* lookup in tables
- 6. The coefficients of the resulting power series are the *an*.

Example:
$$
a_n = 2a_{n-1}, a_0 = 1
$$

1. Set up generating function:

$$
A(z) = \sum_{n\geq 0} a_n z^n
$$

2. Transform right hand side so that recurrence can be plugged in:

$$
A(z) = a_0 + \sum_{n\geq 1} a_n z^n
$$

2. Plug in:

$$
A(z) = 1 + \sum_{n\geq 1} (2a_{n-1})z^n
$$

Example:
$$
a_n = 2a_{n-1}, a_0 = 1
$$

3. Transform right hand side so that infinite sums can be replaced by *A(z)* or by simple function.

$$
A(z) = 1 + \sum_{n\geq 1} (2a_{n-1})z^n
$$

= 1 + 2z $\sum_{n\geq 1} a_{n-1}z^{n-1}$
= 1 + 2z $\sum_{n\geq 0} a_n z^n$
= 1 + 2z · A(z)

4. Solve for *A(z)*.

$$
A(z) = \frac{1}{1 - 2z}
$$

6.4 Generating Functions 18. Oct. 2024 $\begin{array}{c|c|c|c|c|c|c|c|c} \hline \multicolumn{3}{c|c|c|c|c} \multicolumn{3}{c|c|c|c} \multicolumn{3}{c|c|c} \multicolumn{3$

Example: $a_n = 2a_{n-1}$, $a_0 = 1$

5. Rewrite $f(z)$ as a power series:

$$
\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n\geq 0} 2^n z^n
$$

6.4 Generating Functions 18. Oct. 2024

Example:
$$
a_n = 3a_{n-1} + n
$$
, $a_0 = 1$

1. Set up generating function:

$$
A(z) = \sum_{n\geq 0} a_n z^n
$$

Example:
$$
a_n = 3a_{n-1} + n
$$
, $a_0 = 1$

4. Solve for *A(z)*:

$$
A(z) = 1 + 3zA(z) + \frac{z}{(1 - z)^2}
$$

gives

$$
A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}
$$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

2./3. Transform right hand side:

$$
A(z) = \sum_{n\geq 0} a_n z^n
$$

= $a_0 + \sum_{n\geq 1} a_n z^n$
= $1 + \sum_{n\geq 1} (3a_{n-1} + n) z^n$
= $1 + 3z \sum_{n\geq 1} a_{n-1} z^{n-1} + \sum_{n\geq 1} n z^n$
= $1 + 3z \sum_{n\geq 0} a_n z^n + \sum_{n\geq 0} n z^n$
= $1 + 3zA(z) + \frac{z}{(1-z)^2}$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}
$$

This gives

$$
z^{2} - z + 1 = A(1 - z)^{2} + B(1 - 3z)(1 - z) + C(1 - 3z)
$$

= $A(1 - 2z + z^{2}) + B(1 - 4z + 3z^{2}) + C(1 - 3z)$
= $(A + 3B)z^{2} + (-2A - 4B - 3C)z + (A + B + C)$

Example:
$$
a_n = 3a_{n-1} + n
$$
, $a_0 = 1$

5. Write *f (z)* as a formal power series:

This leads to the following conditions:

$$
A + B + C = 1
$$

$$
2A + 4B + 3C = 1
$$

$$
A + 3B = 1
$$

which gives

$$
A = \frac{7}{4} \quad B = -\frac{1}{4} \quad C = -\frac{1}{2}
$$

6.5 Transformation of the Recurrence

Example 10 $f_0 = 1$ $f_1 = 2$

Define

 $g_n := \log f_n$.

*f*_{*n*} = *f*_{*n*−1} · *f*_{*n*−2} for $n \ge 2$.

Then

*g*_{*n*} = *g*_{*n*−1} + *g*_{*n*−2} for *n* ≥ 2 $g_1 = \log 2 = 1$ (for $\log = \log_2$), $g_0 = 0$ $g_n = F_n$ (*n*-th Fibonacci number) $f_n = 2^{F_n}$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write *f (z)* as a formal power series:

$$
A(z) = \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2}
$$

\n
$$
= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n
$$

\n
$$
= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2}(n + 1)\right) z^n
$$

\n
$$
= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2}n - \frac{3}{4}\right) z^n
$$

\n6. This means $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.
\n
$$
\boxed{\text{Hint} \text{ } \text{hardl} \text{ } \text{Räcke}}
$$

\n6.4 Generating Functions
\n18. Oct. 2024
\n118/122

6.5 Transformation of the Recurrence

Example 11

$$
f_1 = 1
$$

 $f_n = 3f_{\frac{n}{2}} + n$; for $n = 2^k, k \ge 1$;

Define

 $g_k := f_{2^k}$.

Then:

$$
g_0 = 1
$$

$$
g_k = 3g_{k-1} + 2^k, k \ge 1
$$

6.5 Transformation of the Recurrence 18. Oct. 2024

Harald Räcke 120/122

6.5 Transformation of the Recurrence 18. Oct. 2024 $\begin{array}{|c|c|c|}\n\hline\n\text{H}}\n\hline\n\text{H}}\n\end{array}$ Harald Räcke **119/122**
119/122

6 Recurrences

We get

$$
g_k = 3 [g_{k-1}] + 2^k
$$

= 3 [3g_{k-2} + 2^{k-1}] + 2^k
= 3² [g_{k-2}] + 32^{k-1} + 2^k
= 3² [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^k
= 3³ g_{k-3} + 3²2^{k-2} + 32^{k-1} + 2^k
= 2^k \cdot \sum_{i=0}^{k} (\frac{3}{2})^i
= 2^k \cdot \frac{(\frac{3}{2})^{k+1} - 1}{1/2} = 3^{k+1} - 2^{k+1}

Harald Räcke 121/122

6.5 Transformation of the Recurrence 18. Oct. 2024

6 Recurrences

Let $n = 2^k$:

$$
g_k = 3^{k+1} - 2^{k+1}, \text{ hence}
$$

\n
$$
f_n = 3 \cdot 3^k - 2 \cdot 2^k
$$

\n
$$
= 3(2^{\log 3})^k - 2 \cdot 2^k
$$

\n
$$
= 3(2^k)^{\log 3} - 2 \cdot 2^k
$$

\n
$$
= 3n^{\log 3} - 2n
$$

6 Recurrences Bibliography [MS08] Kurt Mehlhorn, Peter Sanders: *Algorithms and Data Structures — The Basic Toolbox*, Springer, 2008 [CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: *Introduction to algorithms (3rd ed.)*, MIT Press and McGraw-Hill, 2009 [Liu85] Chung Laung Liu: *Elements of Discrete Mathematics* McGraw-Hill, 1985 The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the "Substitution method" which roughly corresponds to "Guessing+induction". Chapters 4.4, 4.5, 4.6 of this book cover the master theorem. [Method](#page-6-0)s using the characteristic p[olynomia](#page-1-0)l and generating functions can be found in [Liu85] Chapter 10. 6.5 Transformation of the Recurrence 18. Oct. 2024 6.5 Transformation of the Recurrence 18. Oct. 2024
123/122 Harald Räcke

