6 Recurrences

Algorithm 2 mergesort*(*list *L)* 1: $n \leftarrow size(L)$ 2: if $n \leq 1$ return L 3: $L_1 \leftarrow L[1 \cdots \lfloor \frac{n}{2} \rfloor]$ 4: $L_2 \leftarrow L[\lfloor \frac{n}{2} \rfloor + 1 \cdots n]$ 5: mergesort (L_1) 6: mergesort (L_2) 7: $L \leftarrow \text{merge}(L_1, L_2)$ 8: return *L*

This algorithm requires

$$
T(n) = T\left(\left\lceil \frac{n}{2} \right\rceil\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \mathcal{O}(n) \le 2T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \mathcal{O}(n)
$$

comparisons when $n > 1$ and 0 comparisons when $n \leq 1$.

18. Oct. 2024 Harald Räcke 11/88

Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of algorithms this theorem can be used to obtain tight asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this method.

Recurrences

How do we bring the expression for the number of comparisons $(\approx$ running time) into a closed form?

For this we need to solve the recurrence.

\overline{B} Harald Räcke 12/88 and 12/88 and

6 Recurrences 18. Oct. 2024

Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types of linear inhomogenous relations and also sometimes non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations so that it e.g. becomes linear and can therefore be solved with one of the other techniques.

6 Recurrences 18. Oct. 2024

6.1 Guessing+Induction

First we need to get rid of the θ -notation in our recurrence:

$$
T(n) \le \begin{cases} 2T(\lceil \frac{n}{2} \rceil) + cn & n \ge 2\\ 0 & \text{otherwise} \end{cases}
$$

Informal way:

Assume that instead we have

$$
T(n) \le \begin{cases} 2T(\frac{n}{2}) + cn & n \ge 2 \\ 0 & \text{otherwise} \end{cases}
$$

One way of solving such a recurrence is to guess a solution, and check that it is correct by plugging it in.

6.1 Guessing+Induction

Guess: $T(n) \leq dn \log n$. Proof. (by induction)

- *▶* base case *(*2 ≤ *n <* 16*)*: true if we choose *d* ≥ *b*.
- \blacktriangleright induction step $n/2 \rightarrow n$:

Let $n = 2^k \ge 16$. Suppose statem. is true for $n' = n/2$. We prove it for *n*:

Hence, statement is true if we choose $d \geq c$.

6.1 Guessing+Induction

Suppose we quess $T(n) \leq dn \log n$ for a constant d. Then

$$
T(n) \le 2T\left(\frac{n}{2}\right) + cn
$$

\n
$$
\le 2\left(d\frac{n}{2}\log\frac{n}{2}\right) + cn
$$

\n
$$
= dn(\log n - 1) + cn
$$

\n
$$
= dn\log n + (c - d)n
$$

\n
$$
\le dn\log n
$$

if we choose $d > c$.

Formally, this is not correct if *n* is not a power of 2. Also even in this case one would need to do an induction proof.

6.1 Guessing+Induction

How do we get a result for all values of *n*?

We consider the following recurrence instead of the original one:

 $T(n) \leq$ $\int 2T(\left[\frac{n}{2}\right]) + cn \quad n \ge 16$ *b* otherwise

Note that we can do this as for constant-sized inputs the running time is always some constant (*b* in the above case).

6.1 Guessing+Induction

We also make a quess of $T(n) \leq d n \log n$ and get

for a suitable choice of *d*.

6.2 Master Theorem

We prove the Master Theorem for the case that *n* is of the form b^ℓ , and we assume that the non-recursive case occurs for problem size 1 and incurs cost 1.

6.2 Master Theorem

Note that the cases do not cover all possibilities.

The Recursion Tree

The running time of a recursive algorithm can be visualized by a recursion tree:

6.2 Master Theorem

This gives

$$
T(n) = n^{\log_b a} + \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right).
$$

$$
\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{1}}}}}}}}}}}}}
$$

Case 2. Now suppose that
$$
f(n) \leq c n^{\log_b a}
$$
.
\n
$$
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{bi}\right)
$$
\n
$$
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{bi}\right)^{\log_b a}
$$
\n
$$
= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1
$$
\n
$$
= c n^{\log_b a} \log_b n
$$
\nHence,
\n
$$
T(n) = O(n^{\log_b a} \log_b n) \quad \Rightarrow T(n) = O(n^{\log_b a} \log n).
$$
\n[18. 0ct. 2024
\n25/88

Case 1. Now suppose that
$$
f(n) \leq cn^{\log_b a - \epsilon}
$$
.
\n
$$
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f(\frac{n}{b^i})
$$
\n
$$
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a - \epsilon}
$$
\n
$$
\frac{1}{b^{-i(\log_b a - \epsilon)} = b^{\epsilon i} (b^{\log_b a})^{-i} = b^{\epsilon i} a^{-i}} = cn^{\log_b a - \epsilon} \sum_{i=0}^{\log_b n - 1} (b^{\epsilon})^i
$$
\n
$$
\frac{\sum_{i=0}^k q^i = \frac{q^{k+1} - 1}{q - 1}}{z^n a^{-1}} = cn^{\log_b a - \epsilon} (b^{\epsilon \log_b n} - 1) / (b^{\epsilon} - 1)
$$
\n
$$
= cn^{\log_b a - \epsilon} (n^{\epsilon} - 1) / (b^{\epsilon} - 1)
$$
\nHence,
\n
$$
T(n) \leq \left(\frac{c}{b^{\epsilon} - 1} + 1\right) n^{\log_b(a)} \qquad \boxed{\Rightarrow T(n) = O(n^{\log_b a})}.
$$
\n
$$
\boxed{\text{Hint: } \text{Hardel Rate}}
$$
\n6.2 Master Theorem 18. Oct. 2024

Case 2. Now suppose that
$$
f(n) \ge c n^{\log_b a}
$$
.
\n
$$
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f(\frac{n}{bi})
$$
\n
$$
\ge c \sum_{i=0}^{\log_b n - 1} a^i (\frac{n}{bi})^{\log_b a}
$$
\n
$$
= c n^{\log_b a} \sum_{i=0}^{\log_b n - 1} 1
$$
\n
$$
= c n^{\log_b a} \log_b n
$$
\nHence,
\n
$$
T(n) = \Omega(n^{\log_b a} \log_b n) \quad \Rightarrow T(n) = \Omega(n^{\log_b a} \log n).
$$
\n5.2 Master Theorem 18. Oct. 2024

Case 2. Now suppose that $f(n) \leq c n^{\log_b a} (\log_b(n))^k$.

$$
T(n) - n^{\log_b a} = \sum_{i=0}^{\log_b n - 1} a^i f\left(\frac{n}{b^i}\right)
$$

\n
$$
\leq c \sum_{i=0}^{\log_b n - 1} a^i \left(\frac{n}{b^i}\right)^{\log_b a} \cdot \left(\log_b \left(\frac{n}{b^i}\right)\right)^k
$$

\n
$$
\boxed{n = b^{\ell} \Rightarrow \ell = \log_b n} = cn^{\log_b a} \sum_{i=0}^{\ell-1} \left(\log_b \left(\frac{b^{\ell}}{b^i}\right)\right)^k
$$

\n
$$
= cn^{\log_b a} \sum_{i=0}^{\ell-1} (\ell - i)^k
$$

\n
$$
= cn^{\log_b a} \sum_{i=1}^{\ell} i^k \approx \frac{1}{k} \ell^{k+1}
$$

\n
$$
\approx \frac{c}{k} n^{\log_b a} \ell^{k+1} \qquad \Rightarrow T(n) = O(n^{\log_b a} \log^{k+1} n).
$$

\n18. Oct. 2024
\n27/88

Example: Multiplying Two Integers

Suppose we want to multiply two *n*-bit Integers, but our registers can only perform operations on integers of constant size.

For this we first need to be able to add two integers *A* and *B*:

1 1 0 1 1 0 1 0 1 *A* 1 0 0 0 1 0 0 1 1 *B* 1 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 0

This gives that two *n*-bit integers can be added in time $\mathcal{O}(n)$.

Case 3. Now suppose that $f(n) \geq dn^{\log_b a + \epsilon}$, and that for sufficiently large *n*: $af(n/b) \leq cf(n)$, for $c < 1$.

From this we get $a^if(n/b^i) \leq c^if(n)$, where we assume that $n/b^{i-1} \geq n_0$ is still sufficiently large.

Example: Multiplying Two Integers

Suppose that we want to multiply an *n*-bit integer *A* and an *m*-bit integer *B* ($m \le n$).

Time requirement:

- *▶* Computing intermediate results: O*(nm)*.
- *▶* Adding *m* numbers of length $\leq 2n$: $\mathcal{O}((m+n)m) = \mathcal{O}(nm)$.

Example: Multiplying Two Integers

A recursive approach:

Suppose that integers \boldsymbol{A} and \boldsymbol{B} are of length $n=2^k$, for some k .

Example: Multiplying Two Integers

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- *►* Case 1: $f(n) = O(n^{\log_b a \epsilon})$ $T(n) = \Theta(n^{\log_b a})$
- \blacktriangleright *Case 2:* $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- \blacktriangleright Case 3: *f*(*n*) = Ω(*n*^{log_{*b*} *a*+*€*) *T*(*n*) = $\Theta(f(n))$}

In our case $a = 4$, $b = 2$, and $f(n) = \Theta(n)$. Hence, we are in Case 1, since $n = O(n^{2-\epsilon}) = O(n^{\log_b a - \epsilon})$.

We get a running time of $\mathcal{O}(n^2)$ for our algorithm.

⇒ Not better then the "school method".

Harald Räcke 33/88

Example: Multiplying Two Integers

18. Oct. 2024

We get the following recurrence:

$$
T(n) = 4T\left(\frac{n}{2}\right) + \mathcal{O}(n) \enspace .
$$

Harald Räcke 32/88

Example: Multiplying Two Integers

We can use the following identity to compute *Z*1:

$$
Z_1 = A_1 B_0 + A_0 B_1 = Z_2 = Z_0
$$

= $(A_0 + A_1) \cdot (B_0 + B_1) - A_1 B_1 - A_0 B_0$

Hence,

 $T(\frac{n}{2})$

 $\overline{\mathbb{L}}$

Example: Multiplying Two Integers

We get the following recurrence:

$$
T(n) = 3T(\frac{n}{2}) + O(n) .
$$

Master Theorem: Recurrence: $T[n] = aT(\frac{n}{b}) + f(n)$.

- *►* Case 1: $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ *T*(*n*) = $\Theta(n^{\log_b a})$
- \blacktriangleright *Case 2:* $f(n) = \Theta(n^{\log_b a} \log^k n)$ $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- \blacktriangleright Case 3: *f*(*n*) = Ω(*n*^{log_{*b*} *a*+*€*) *T*(*n*) = $\Theta(f(n))$}

Again we are in Case 1. We get a running time of $\Theta(n^{\log_2 3}) \approx \Theta(n^{1.59})$.

A huge improvement over the "school method".

6.3 The Characteristic Polynomial

Observations:

- *▶* The solution *T [*1*], T [*2*], T [*3*], . . .* is completely determined by a set of boundary conditions that specify values for $T[1], \ldots, T[k].$
- *▶* In fact, any *k* consecutive values completely determine the solution.
- *▶ k* non-concecutive values might not be an appropriate set of boundary conditions (depends on the problem).

Approach:

- *▶* First determine all solutions that satisfy recurrence relation.
- *▶* Then pick the right one by analyzing boundary conditions.
- *▶* First consider the homogenous case.

6.3 The Characteristic Polynomial 18. Oct. 2024

6.3 The Characteristic Polynomial

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

This is the general form of a linear recurrence relation of order *k* with constant coefficients $(c_0, c_k \neq 0)$.

- \blacktriangleright *T*(*n*) only depends on the *k* preceding values. This means the recurrence relation is of order *k*.
- *▶* The recurrence is linear as there are no products of *T [n]*'s.
- \blacktriangleright If $f(n) = 0$ then the recurrence relation becomes a linear, homogenous recurrence relation of order *k*.

Note that we ignore boundary conditions for the moment.

The Homogenous Case

The solution space

 $S = \Big\{ \, \mathcal{T} = T[1], T[2], T[3], \ldots \,\bigm\vert \, \, \mathcal{T}$ fulfills recurrence relation $\Big\}$

is a vector space. This means that if $\mathcal{T}_1, \mathcal{T}_2 \in S$, then also $\alpha \mathcal{T}_1 + \beta \mathcal{T}_2 \in S$, for arbitrary constants α, β .

How do we find a non-trivial solution?

We guess that the solution is of the form λ^n , $\lambda \neq 0$, and see what happens. In order for this guess to fulfill the recurrence we need

 $c_0\lambda^n + c_1\lambda^{n-1} + c_2 \cdot \lambda^{n-2} + \cdots + c_k \cdot \lambda^{n-k} = 0$

for all $n > k$.

The Homogenous Case

Dividing by *λ ⁿ*−*^k* gives that all these constraints are identical to

 $c_0 \lambda^k + c_1 \lambda^{k-1} + c_2 \cdot \lambda^{k-2} + \cdots + c_k = 0$ | {z } characteristic polynomial *P [λ]*

This means that if λ_i is a root (Nullstelle) of $P[\lambda]$ then $T[n] = \lambda_i^n$ is a solution to the recurrence relation.

Let $\lambda_1, \ldots, \lambda_k$ be the *k* (complex) roots of $P[\lambda]$. Then, because of the vector space property

$$
\alpha_1\lambda_1^n+\alpha_2\lambda_2^n+\cdots+\alpha_k\lambda_k^n
$$

is a solution for arbitrary values *αⁱ* .

6.3 The Characteristic Polynomial 18. Oct. 2024 $\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\Bigarrow{\Pi^{1}}}}}}}}}}}$ Harald Räcke 39/88

The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions $T[i]$ and I want to see whether I can choose the $\alpha_i's$ such that these conditions are met:

$$
\alpha_1 \cdot \lambda_1 + \alpha_2 \cdot \lambda_2 + \cdots + \alpha_k \cdot \lambda_k = T[1]
$$
\n
$$
\alpha_1 \cdot \lambda_1^2 + \alpha_2 \cdot \lambda_2^2 + \cdots + \alpha_k \cdot \lambda_k^2 = T[2]
$$
\n
$$
\vdots
$$
\n
$$
\alpha_1 \cdot \lambda_1^k + \alpha_2 \cdot \lambda_2^k + \cdots + \alpha_k \cdot \lambda_k^k = T[k]
$$

The Homogenous Case

Lemma 2

*Assume that the characteristic polynomial has k distinct roots λ*1*, . . . , λk. Then all solutions to the recurrence relation are of the form*

 $\alpha_1 \lambda_1^n + \alpha_2 \lambda_2^n + \cdots + \alpha_k \lambda_k^n$.

Proof.

There is one solution for every possible choice of boundary conditions for $T[1], \ldots, T[k]$.

We show that the above set of solutions contains one solution for every choice of boundary conditions.


```
The Characteristic Polynomial 18. Oct. 2024
```
The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions *T [i]* and I want to see whether I can choose the $\alpha_i's$ such that these conditions are met:

We show that the column vectors are linearly independent. Then the above equation has a solution.

Computing the Determinant

$$
\begin{vmatrix}\n\lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
\lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\
\vdots & \vdots & \vdots & \vdots \\
\lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k\n\end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix}\n1 & 1 & \cdots & 1 & 1 \\
\lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_{k-1}^{k-1} & \lambda_k^{k-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda_k^{k-2} & \lambda_2^{k-1} & \lambda_2^{k-1} & \lambda_2^{k-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{k-2} & \lambda_k^{k-1}\n\end{vmatrix}
$$
\n
$$
= \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix}\n1 & \lambda_1 & \cdots & \lambda_1^{k-2} & \lambda_1^{k-1} \\
1 & \lambda_2 & \cdots & \lambda_k^{k-2} & \lambda_2^{k-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{k-2} & \lambda_k^{k-1}\n\end{vmatrix}
$$
\n
$$
= \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix}\n1 & \lambda_1 & \cdots & 1 & 1 \\
1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{k-2} & \lambda_k^{k-1}\n\end{vmatrix}
$$
\n
$$
= \prod_{i=1}^k \lambda_i \cdot \begin{vmatrix}\n1 & \lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
1 & \lambda_2 & \cdots & \lambda_2^{k-2} & \lambda_2^{k-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{
$$

Computing the Determinant 1 $\lambda_1 - \lambda_1 \cdot 1$ · · $\lambda_1^{k-2} - \lambda_1 \cdot \lambda_1^{k-3}$ $\lambda_1^{k-1} - \lambda_1 \cdot \lambda_1^{k-2}$ 1 $\lambda_2 - \lambda_1 \cdot 1$ · $\lambda_2^{k-2} - \lambda_1 \cdot \lambda_2^{k-3}$ $\lambda_2^{k-1} - \lambda_1 \cdot \lambda_2^{k-2}$
: : : 1 $\lambda_k - \lambda_1 \cdot 1$ · · $\lambda_k^{k-2} - \lambda_1 \cdot \lambda_k^{k-3}$ $\lambda_k^{k-1} - \lambda_1 \cdot \lambda_k^{k-2}$ = $1 \qquad 0 \qquad \cdots \qquad 0 \qquad 0$ 1 $(\lambda_2 - \lambda_1) \cdot 1$ · · · $(\lambda_2 - \lambda_1) \cdot \lambda_2^{k-3}$ $(\lambda_2 - \lambda_1) \cdot \lambda_2^{k-2}$
: : : 1 $(\lambda_k - \lambda_1) \cdot 1 \quad \cdots \quad (\lambda_k - \lambda_1) \cdot \lambda_k^{k-3} \quad (\lambda_k - \lambda_1) \cdot \lambda_k^{k-2}$ 6.3 The Characteristic Polynomial 18. Oct. 2024 Harald Räcke 45/88

Computing the Determinant

$$
\begin{vmatrix}\n1 & \lambda_1 & \lambda_1^{k-2} & \lambda_1^{k-1} \\
1 & \lambda_2 & \lambda_2^{k-2} & \lambda_2^{k-1} \\
\vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \lambda_k^{k-2} & \lambda_k^{k-1}\n\end{vmatrix} =
$$
\n
$$
\begin{vmatrix}\n1 & \lambda_1 - \lambda_1 & 1 & \lambda_1^{k-2} - \lambda_1 & \lambda_1^{k-3} & \lambda_1^{k-1} - \lambda_1 & \lambda_1^{k-2} \\
1 & \lambda_2 - \lambda_1 & 1 & \lambda_2^{k-2} - \lambda_1 & \lambda_2^{k-3} & \lambda_2^{k-1} - \lambda_1 & \lambda_2^{k-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k - \lambda_1 & 1 & \lambda_k^{k-2} - \lambda_1 & \lambda_k^{k-3} & \lambda_k^{k-1} - \lambda_1 & \lambda_k^{k-2}\n\end{vmatrix}
$$
\n6.3 The Characteristic Polynomial
\n6.3 The Characteristic Polynomial
\n18. Oct. 2024

Computing the Determinant

$$
\begin{vmatrix}\n1 & 0 & \cdots & 0 & 0 \\
1 & (\lambda_2 - \lambda_1) \cdot 1 & \cdots & (\lambda_2 - \lambda_1) \cdot \lambda_2^{k-3} & (\lambda_2 - \lambda_1) \cdot \lambda_2^{k-2} \\
\vdots & \vdots & \vdots & \vdots \\
1 & (\lambda_k - \lambda_1) \cdot 1 & \cdots & (\lambda_k - \lambda_1) \cdot \lambda_k^{k-3} & (\lambda_k - \lambda_1) \cdot \lambda_k^{k-2} \\
\prod_{i=2}^k (\lambda_i - \lambda_1) & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{k-3} & \lambda_k^{k-2}\n\end{vmatrix} =
$$
\n
$$
\begin{vmatrix}\n\frac{k}{\lambda_1} & \lambda_2 & \cdots & \lambda_2^{k-3} & \lambda_2^{k-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & \lambda_k & \cdots & \lambda_k^{k-3} & \lambda_k^{k-2}\n\end{vmatrix}
$$
\n6.3 The Characteristic Polynomial
\n6.3 The Characteristic Polynomial
\n6.3 The Characteristic Polynomial
\n18. Oct. 2024
\n46/88

Computing the Determinant

Repeating the above steps gives:

$$
\begin{vmatrix}\n\lambda_1 & \lambda_2 & \cdots & \lambda_{k-1} & \lambda_k \\
\lambda_1^2 & \lambda_2^2 & \cdots & \lambda_{k-1}^2 & \lambda_k^2 \\
\vdots & \vdots & & \vdots & \vdots \\
\lambda_1^k & \lambda_2^k & \cdots & \lambda_{k-1}^k & \lambda_k^k\n\end{vmatrix} = \prod_{i=1}^k \lambda_i \cdot \prod_{i > \ell} (\lambda_i - \lambda_\ell)
$$

Hence, if all λ_i 's are different, then the determinant is non-zero.

This means

$$
c_0 n \lambda_i^{n-1} + c_1 (n-1) \lambda_i^{n-2} + \cdots + c_k (n-k) \lambda_i^{n-k-1} = 0
$$

Hence,

$$
c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \cdots + c_k (n-k) \lambda_i^{n-k} = 0
$$

$$
\underbrace{\tau[n]}_{T[n-1]}
$$

The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λ_i with multiplicity (Vielfachheit) at least 2. Then not only is λ_i^n a solution to the recurrence but also $n\lambda_i^n$. To see this consider the polynomial

 $P[\lambda] \cdot \lambda^{n-k} = c_0 \lambda^n + c_1 \lambda^{n-1} + c_2 \lambda^{n-2} + \cdots + c_k \lambda^{n-k}$

Since λ_i is a root we can write this as $Q[\lambda] \cdot (\lambda - \lambda_i)^2$. Calculating the derivative gives a polynomial that still has root *λⁱ* .

6.3 The Characteristic Polynomial 18. Oct. 2024 Harald Räcke 48/88

The Homogeneous Case

Suppose λ_i has multiplicity *j*. We know that

$$
c_0 n \lambda_i^n + c_1 (n-1) \lambda_i^{n-1} + \cdots + c_k (n-k) \lambda_i^{n-k} = 0
$$

(after taking the derivative; multiplying with λ ; plugging in λ_i)

Doing this again gives

 $c_0 n^2 \lambda_i^n + c_1 (n-1)^2 \lambda_i^{n-1} + \cdots + c_k (n-k)^2 \lambda_i^{n-k} = 0$

We can continue $j - 1$ times.

Hence, $n^{\ell} \lambda_i^n$ is a solution for $\ell \in 0, \ldots, j-1$.

18. Oct. 2024

The Homogeneous Case

Lemma 3

Let $P[\lambda]$ denote the characteristic polynomial to the recurrence

 $c_0T[n] + c_1T[n-1] + \cdots + c_kT[n-k] = 0$

Let λ_i , $i = 1, ..., m$ be the (complex) roots of $P[\lambda]$ with *multiplicities ℓⁱ . Then the general solution to the recurrence is given by*

$$
T[n] = \sum_{i=1}^m \sum_{j=0}^{\ell_i-1} \alpha_{ij} \cdot (n^j \lambda_i^n) .
$$

The full proof is omitted. We have only shown that any choice of α_{ij} 's is a solution to the recurrence.

Example: Fibonacci Sequence

Hence, the solution is of the form

$$
\alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n
$$

T[0] = 0 gives $\alpha + \beta = 0$.

 $T[1] = 1$ gives

$$
\alpha\left(\frac{1+\sqrt{5}}{2}\right)+\beta\left(\frac{1-\sqrt{5}}{2}\right)=1\Longrightarrow \alpha-\beta=\frac{2}{\sqrt{5}}
$$

$$
\prod_{\text{Harald } R_i}
$$

Harald Räcke 53/88

Example: Fibonacci Sequence

 $T[0] = 0$ $T[1] = 1$ $T[n] = T[n-1] + T[n-2]$ for $n \ge 2$

The characteristic polynomial is

 $λ² – λ – 1$

Finding the roots, gives

$$
\lambda_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \left(1 \pm \sqrt{5} \right)
$$

6.3 The Characteristic Polynomial 18. Oct. 2024 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array}$ Harald Räcke $\begin{array}{c} \end{array} \end{array}$

```
Example: Fibonacci Sequence
   Hence, the solution is
                     1
                    √
5
                       \left( \frac{1+\sqrt{5}}{2} \right)2
                                 \setminus^n−
                                      \sqrt{1-\sqrt{5}}2
                                               \binom{n}{k}6.3 The Characteristic Polynomial 18. Oct. 2024
      Harald Räcke 54/88
```
The Inhomogeneous Case

Consider the recurrence relation:

 $c_0T(n) + c_1T(n-1) + c_2T(n-2) + \cdots + c_kT(n-k) = f(n)$

with $f(n) \neq 0$.

While we have a fairly general technique for solving homogeneous, linear recurrence relations the inhomogeneous case is different.

6.3 The Characteristic Polynomial 18. Oct. 2024 $\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\text{Hards}}}}}}}$ Harald Räcke 6.3 The Characteristic Polynomial 6.3 The SNS 35/88

The Inhomogeneous Case

Example:

 $T[n] = T[n-1]+1$ $T[0] = 1$

Then,

 $T[n-1] = T[n-2]+1$ $(n \ge 2)$

Subtracting the first from the second equation gives,

$$
T[n] - T[n-1] = T[n-1] - T[n-2] \qquad (n \ge 2)
$$

or

 $T[n] = 2T[n-1] - T[n-2]$ (n ≥ 2)

I get a completely determined recurrence if I add $T[0] = 1$ and $T[1] = 2.$

The Inhomogeneous Case

The general solution of the recurrence relation is

 $T(n) = T_h(n) + T_p(n)$

where T_h is any solution to the homogeneous equation, and T_p is one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.

6.3 The Characteristic Polynomial 18. Oct. 2024 Harald Räcke 56/88

The Inhomogeneous Case

If $f(n)$ is a polynomial of degree r this method can be applied

 $r + 1$ times to obtain a homogeneous equation:

 $T[n] = T[n-1] + n^2$

Shift:

 $T[n-1] = T[n-2] + (n-1)^2 = T[n-2] + n^2 - 2n + 1$

Difference:

 $T[n] - T[n-1] = T[n-1] - T[n-2] + 2n-1$

 $T[n] = 2T[n-1] - T[n-2] + 2n - 1$

Shift:

$$
T[n-1] = 2T[n-2] - T[n-3] + 2(n-1) - 1
$$

= 2T[n-2] - T[n-3] + 2n - 3

Difference:

$$
T[n] - T[n-1] = 2T[n-1] - T[n-2] + 2n - 1
$$

- 2T[n-2] + T[n-3] - 2n + 3

$$
T[n] = 3T[n-1] - 3T[n-2] + T[n-3] + 2
$$

and so on...

6.4 Generating Functions

Definition 4 (Generating Function)

Let $(a_n)_{n\geq 0}$ be a sequence. The corresponding

▶ generating function (Erzeugendenfunktion) is

$$
F(z) := \sum_{n\geq 0} a_n z^n ;
$$

▶ exponential generating function (exponentielle Erzeugendenfunktion) is

$$
F(z) := \sum_{n\geq 0} \frac{a_n}{n!} z^n.
$$

 $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{1} & \text{1} &$

6.4 Generating Functions 18. Oct. 2024

6.4 Generating Functions

Example 5

1. The generating function of the sequence $(1,0,0,\ldots)$ is

 $F(z) = 1$.

2. The generating function of the sequence $(1, 1, 1, ...)$ is

$$
F(z) = \frac{1}{1-z}
$$

.

6.4 Generating Functions 18. Oct. 2024

6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale Potenzreihe).

Then the generating function is an algebraic object.

- Let $f = \sum_{n\geq 0} a_n z^n$ and $g = \sum_{n\geq 0} b_n z^n$.
- \blacktriangleright Equality: *f* and *g* are equal if $a_n = b_n$ for all *n*.
- ▶ Addition: $f + g := \sum_{n \geq 0} (a_n + b_n) z^n$.
- ▶ **Multiplication:** $f \cdot g := \sum_{n \geq 0} c_n z^n$ with $c_n = \sum_{p=0}^n a_p b_{n-p}$.

There are no convergence issues here.

6.4 Generating Functions

What does
$$
\sum_{n\geq 0} z^n = \frac{1}{1-z}
$$
 mean in the algebraic view?

It means that the power series $1 - z$ and the power series $\sum_{n\geq 0} z^n$ are invers, i.e.,

$$
(1-z)\cdot\left(\sum_{n\geq 0}^{\infty}z^n\right)=1.
$$

This is well-defined.

6.4 Generating Functions 18. Oct. 2024

Harald Räcke 65/88

6.4 Generating Functions

The arithmetic view:

We view a power series as a function $f: \mathbb{C} \to \mathbb{C}$.

Then, it is important to think about convergence/convergence radius etc.

6.4 Generating Functions

Suppose we are given the generating function

> \sum *n*≥0 $z^n = \frac{1}{1-z}$ 1 − *z*

.

 $\frac{1}{2}$ Formally the derivative of a formal power series $\sum_{n\geq 0}a_nz^n$ is defined as $\sum_{n\geq 0}$ na_nz^{n-1} .

The known rules for differentiation work for this definition. In particular, e.g. the derivative of $\frac{1}{1-z}$ is $\frac{1}{(1-z)^2}$.

Note that this requires a proof if we consider power series as algebraic objects. However, we did not prove this in the lecture.

We can compute the derivative:

Hence, the generating function of the sequence $a_n = n + 1$ is $1/(1-z)^2$.

6.4 Generating Functions

We can repeat this

$$
\sum_{n\geq 0} (n+1)z^n = \frac{1}{(1-z)^2} .
$$

Derivative:

$$
\underbrace{\sum_{n\geq 1} n(n+1)z^{n-1}}_{\sum_{n\geq 0} (n+1)(n+2)z^n} = \frac{2}{(1-z)^3}
$$

Hence, the generating function of the sequence $a_n = (n+1)(n+2)$ is $\frac{2}{(1-z)^3}$.

6.4 Generating Functions 18. Oct. 2024 Harald Räcke 67/88

6.4 Generating Functions

Computing the k -th derivative of $\sum z^n$.

$$
\sum_{n\geq k} n(n-1)\cdot \ldots \cdot (n-k+1)z^{n-k} = \sum_{n\geq 0} (n+k)\cdot \ldots \cdot (n+1)z^n
$$

$$
= \frac{k!}{(1-z)^{k+1}}.
$$

Hence:

$$
\sum_{n\geq 0} {n+k \choose k} z^n = \frac{1}{(1-z)^{k+1}}.
$$

The generating function of the sequence $a_n = \binom{n+k}{k}$ is $\frac{1}{(1-z)^{k+1}}$.

6.4 Generating Functions

We know

$$
\sum_{n\geq 0} y^n = \frac{1}{1-y}
$$

Hence,

 \sum *n*≥0 $a^n z^n = \frac{1}{1-z}$ 1 − *az*

The generating function of the sequence $f_n = a^n$ is $\frac{1}{1-az}$.

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Suppose we have the recurrence $a_n = a_{n-1} + 1$ for $n \ge 1$ and $a_0 = 1$.

$$
A(z) = \sum_{n\geq 0} a_n z^n
$$

= $a_0 + \sum_{n\geq 1} (a_{n-1} + 1) z^n$
= $1 + z \sum_{n\geq 1} a_{n-1} z^{n-1} + \sum_{n\geq 1} z^n$
= $z \sum_{n\geq 0} a_n z^n + \sum_{n\geq 0} z^n$
= $zA(z) + \sum_{n\geq 0} z^n$
= $zA(z) + \frac{1}{1-z}$

Some Generating Functions

 $\begin{array}{|c|c|c|}\n\hline\n\text{H}}\n\hline\n\text{H}}\n\hline\n\text{H}^{\text{H}}\n\hline\n\text{H}\n\end{array}$ Harald Räcke **6.4** Generating Functions **73/88**

6.4 Generating Functions 18. Oct. 2024

Example: $a_n = a_{n-1} + 1$, $a_0 = 1$

Solving for *A(z)* gives \sum *n*≥0 $a_n z^n = A(z) = \frac{1}{(1 - z)^n}$ $\frac{1}{(1-z)^2} = \sum_{n\geq 0}$ *n*≥0 $(n+1)z^n$ Hence, $a_n = n + 1$. 6.4 Generating Functions 18. Oct. 2024 Harald Räcke 72/88

Some Generating Functions

6.4 Generating Functions 18. Oct. 2024

Solving Recursions with Generating Functions

- 1. Set $A(z) = \sum_{n \geq 0} a_n z^n$.
- 2. Transform the right hand side so that boundary condition and recurrence relation can be plugged in.
- 3. Do further transformations so that the infinite sums on the right hand side can be replaced by *A(z)*.
- 4. Solving for $A(z)$ gives an equation of the form $A(z) = f(z)$, where hopefully $f(z)$ is a simple function.
- 5. Write *f (z)* as a formal power series. Techniques:
	- *▶* partial fraction decomposition (Partialbruchzerlegung)
	- *▶* lookup in tables
- 6. The coefficients of the resulting power series are the *an*.

Example:
$$
a_n = 2a_{n-1}, a_0 = 1
$$

1. Set up generating function:

$$
A(z) = \sum_{n\geq 0} a_n z^n
$$

2. Transform right hand side so that recurrence can be plugged in:

$$
A(z) = a_0 + \sum_{n \ge 1} a_n z^n
$$

2. Plug in:

$$
A(z) = 1 + \sum_{n\geq 1} (2a_{n-1})z^n
$$

Example:
$$
a_n = 2a_{n-1}, a_0 = 1
$$

3. Transform right hand side so that infinite sums can be replaced by *A(z)* or by simple function.

$$
A(z) = 1 + \sum_{n\geq 1} (2a_{n-1})z^n
$$

= 1 + 2z $\sum_{n\geq 1} a_{n-1}z^{n-1}$
= 1 + 2z $\sum_{n\geq 0} a_n z^n$
= 1 + 2z · A(z)

4. Solve for *A(z)*.

$$
A(z) = \frac{1}{1 - 2z}
$$

Example: $a_n = 2a_{n-1}$, $a_0 = 1$

5. Rewrite $f(z)$ as a power series:

$$
\sum_{n\geq 0} a_n z^n = A(z) = \frac{1}{1 - 2z} = \sum_{n\geq 0} 2^n z^n
$$

6.4 Generating Functions 18. Oct. 2024

Example:
$$
a_n = 3a_{n-1} + n
$$
, $a_0 = 1$

1. Set up generating function:

$$
A(z) = \sum_{n\geq 0} a_n z^n
$$

Example:
$$
a_n = 3a_{n-1} + n
$$
, $a_0 = 1$

4. Solve for *A(z)*:

$$
A(z) = 1 + 3zA(z) + \frac{z}{(1 - z)^2}
$$

gives

$$
A(z) = \frac{(1-z)^2 + z}{(1-3z)(1-z)^2} = \frac{z^2 - z + 1}{(1-3z)(1-z)^2}
$$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

2./3. Transform right hand side:

$$
A(z) = \sum_{n\geq 0} a_n z^n
$$

= $a_0 + \sum_{n\geq 1} a_n z^n$
= $1 + \sum_{n\geq 1} (3a_{n-1} + n) z^n$
= $1 + 3z \sum_{n\geq 1} a_{n-1} z^{n-1} + \sum_{n\geq 1} n z^n$
= $1 + 3z \sum_{n\geq 0} a_n z^n + \sum_{n\geq 0} n z^n$
= $1 + 3zA(z) + \frac{z}{(1-z)^2}$

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write $f(z)$ as a formal power series:

We use partial fraction decomposition:

$$
\frac{z^2 - z + 1}{(1 - 3z)(1 - z)^2} \stackrel{!}{=} \frac{A}{1 - 3z} + \frac{B}{1 - z} + \frac{C}{(1 - z)^2}
$$

This gives

$$
z^{2} - z + 1 = A(1 - z)^{2} + B(1 - 3z)(1 - z) + C(1 - 3z)
$$

= $A(1 - 2z + z^{2}) + B(1 - 4z + 3z^{2}) + C(1 - 3z)$
= $(A + 3B)z^{2} + (-2A - 4B - 3C)z + (A + B + C)$

Example:
$$
a_n = 3a_{n-1} + n
$$
, $a_0 = 1$

5. Write *f (z)* as a formal power series:

This leads to the following conditions:

$$
A + B + C = 1
$$

$$
2A + 4B + 3C = 1
$$

$$
A + 3B = 1
$$

which gives

$$
A = \frac{7}{4} \quad B = -\frac{1}{4} \quad C = -\frac{1}{2}
$$

6.5 Transformation of the Recurrence

Example 6

 $f_0 = 1$ $f_1 = 2$ *f*_{*n*} = *f*_{*n*−1} · *f*_{*n*−2} for $n \ge 2$.

Define

 $g_n := \log f_n$.

Then

*g*_{*n*} = *g*_{*n*−1} + *g*_{*n*−2} for *n* ≥ 2 $g_1 = \log 2 = 1$ (for $\log = \log_2$), $g_0 = 0$ $g_n = F_n$ (*n*-th Fibonacci number) $f_n = 2^{F_n}$

Harald Räcke 6.5 Transformation of the Recurrence **85/88**
BS/88
BS/88

6.5 Transformation of the Recurrence 18. Oct. 2024

Example: $a_n = 3a_{n-1} + n$, $a_0 = 1$

5. Write *f (z)* as a formal power series:

$$
A(z) = \frac{7}{4} \cdot \frac{1}{1 - 3z} - \frac{1}{4} \cdot \frac{1}{1 - z} - \frac{1}{2} \cdot \frac{1}{(1 - z)^2}
$$

\n
$$
= \frac{7}{4} \cdot \sum_{n \ge 0} 3^n z^n - \frac{1}{4} \cdot \sum_{n \ge 0} z^n - \frac{1}{2} \cdot \sum_{n \ge 0} (n + 1) z^n
$$

\n
$$
= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{4} - \frac{1}{2}(n + 1)\right) z^n
$$

\n
$$
= \sum_{n \ge 0} \left(\frac{7}{4} \cdot 3^n - \frac{1}{2}n - \frac{3}{4}\right) z^n
$$

\n6. This means $a_n = \frac{7}{4}3^n - \frac{1}{2}n - \frac{3}{4}$.
\n
$$
\boxed{\text{Hint} \text{ } \text{hard} \text{ } \text{Räcke}} \qquad \qquad \text{6.4 Generating Functions} \qquad \qquad \text{18. Oct. 2024} \qquad \text{84/88}
$$

6.5 Transformation of the Recurrence

Example 7

$$
f_1 = 1
$$

 $f_n = 3f_{\frac{n}{2}} + n$; for $n = 2^k, k \ge 1$;

Define

 $g_k := f_{2^k}$.

Then:

$$
g_0 = 1
$$

$$
g_k = 3g_{k-1} + 2^k, k \ge 1
$$

6.5 Transformation of the Recurrence 18. Oct. 2024

6 Recurrences

We get

$$
g_k = 3 [g_{k-1}] + 2^k
$$

= 3 [3g_{k-2} + 2^{k-1}] + 2^k
= 3² [g_{k-2}] + 32^{k-1} + 2^k
= 3² [3g_{k-3} + 2^{k-2}] + 32^{k-1} + 2^k
= 3³ g_{k-3} + 3²2^{k-2} + 32^{k-1} + 2^k
= 2^k \cdot \sum_{i=0}^{k} (\frac{3}{2})^i
= 2^k \cdot \frac{(\frac{3}{2})^{k+1} - 1}{1/2} = 3^{k+1} - 2^{k+1}

Harald Räcke 87/88

6.5 Transformation of the Recurrence 18. Oct. 2024

6 Recurrences

Let $n = 2^k$:

$$
g_k = 3^{k+1} - 2^{k+1}, \text{ hence}
$$

\n
$$
f_n = 3 \cdot 3^k - 2 \cdot 2^k
$$

\n
$$
= 3(2^{\log 3})^k - 2 \cdot 2^k
$$

\n
$$
= 3(2^k)^{\log 3} - 2 \cdot 2^k
$$

\n
$$
= 3n^{\log 3} - 2n
$$

6 Recurrences Bibliography [MS08] Kurt Mehlhorn, Peter Sanders: *Algorithms and Data Structures — The Basic Toolbox*, Springer, 2008 [CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: *Introduction to algorithms (3rd ed.)*, MIT Press and McGraw-Hill, 2009 [Liu85] Chung Laung Liu: *Elements of Discrete Mathematics* McGraw-Hill, 1985 The Karatsuba method can be found in [MS08] Chapter 1. Chapter 4.3 of [CLRS90] covers the "Substitution method" which roughly corresponds to "Guessing+induction". Chapters 4.4, 4.5, 4.6 of this book cover the master theorem. Methods using the characteristic polynomial and generating functions can be found in [Liu85] Chapter 10. 6.5 Transformation of the Recurrence 18. Oct. 2024 6.5 Transformation of the Recurrence 18. Oct. 2024
89/88 **B** Rarald Räcke

