
6 Recurrences

Algorithm 2 mergesort(listL)
1: n← size(L)
2: if n ≤ 1 return L
3: L1 ← L[1 · · · ⌊n2 ⌋]
4: L2 ← L[⌊n2 ⌋ + 1 · · ·n]
5: mergesort(L1)
6: mergesort(L2)
7: L←merge(L1, L2)
8: return L

This algorithm requires

T(n) = T
(⌈n

2

⌉)
+ T

(⌊n
2

⌋)
+O(n) ≤ 2T

(⌈n
2

⌉)
+O(n)

comparisons when n > 1 and 0 comparisons when n ≤ 1.
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Recurrences

How do we bring the expression for the number of comparisons

(≈ running time) into a closed form?

For this we need to solve the recurrence.
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Methods for Solving Recurrences

1. Guessing+Induction

Guess the right solution and prove that it is correct via

induction. It needs experience to make the right guess.

2. Master Theorem

For a lot of recurrences that appear in the analysis of

algorithms this theorem can be used to obtain tight

asymptotic bounds. It does not provide exact solutions.

3. Characteristic Polynomial

Linear homogenous recurrences can be solved via this

method.
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Methods for Solving Recurrences

4. Generating Functions

A more general technique that allows to solve certain types

of linear inhomogenous relations and also sometimes

non-linear recurrence relations.

5. Transformation of the Recurrence

Sometimes one can transform the given recurrence relations

so that it e.g. becomes linear and can therefore be solved

with one of the other techniques.
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6.1 Guessing+Induction

First we need to get rid of the O-notation in our recurrence:

T(n) ≤
{

2T
(⌈n

2

⌉)+ cn n ≥ 2

0 otherwise

Informal way:

Assume that instead we have

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 2

0 otherwise

One way of solving such a recurrence is to guess a solution, and

check that it is correct by plugging it in.
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6.1 Guessing+Induction

Suppose we guess T(n) ≤ dn logn for a constant d. Then

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

if we choose d ≥ c.

Formally, this is not correct if n is not a power of 2. Also even in

this case one would need to do an induction proof.
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6.1 Guessing+Induction

• Note that this proves the
statement for n = 2k, k ∈ N≥1, as
the statement is wrong for n = 1.

• The base case is usually omitted,
as it is the same for different
recurrences.

T(n) ≤
{

2T
(n

2

)+ cn n ≥ 16

b otw.
Guess: T(n) ≤ dn logn.

Proof. (by induction)

▶ base case (2 ≤ n < 16): true if we choose d ≥ b.

▶ induction step n/2→ n:

Let n = 2k ≥ 16. Suppose statem. is true for n′ = n/2. We

prove it for n:

T(n) ≤ 2T
(n

2

)
+ cn

≤ 2
(
d
n
2

log
n
2

)
+ cn

= dn(logn− 1)+ cn
= dn logn+ (c − d)n
≤ dn logn

Hence, statement is true if we choose d ≥ c.

6.1 Guessing+Induction

How do we get a result for all values of n?

We consider the following recurrence instead of the original one:

T(n) ≤
{

2T(
⌈n

2

⌉
)+ cn n ≥ 16

b otherwise

Note that we can do this as for constant-sized inputs the running

time is always some constant (b in the above case).
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6.1 Guessing+Induction

We also make a guess of T(n) ≤ dn logn and get

T(n) ≤ 2T
(⌈n

2

⌉)
+ cn

≤ 2
(
d
⌈n

2

⌉
log

⌈n
2

⌉)
+ cn

≤ 2
(
d(n/2+ 1) log(n/2+ 1)

)+ cn
≤ dn log

( 9
16
n
)
+ 2d logn+ cn

= dn logn+ (log 9− 4)dn+ 2d logn+ cn
≤ dn logn+ (log 9− 3.5)dn+ cn
≤ dn logn− 0.33dn+ cn
≤ dn logn

for a suitable choice of d.

⌈
n
2

⌉
≤ n

2 + 1

n
2 + 1 ≤ 9

16n

log 9
16n = logn+ (log 9− 4)

logn ≤ n
4
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6.2 Master Theorem

Lemma 1

Let a ≥ 1, b > 1 and ϵ > 0 denote constants. Consider the

recurrence

T(n) = aT
(n
b

)
+ f(n) .

Case 1.

If f(n) = O(nlogb(a)−ϵ) then T(n) = Θ(nlogb a).

Case 2.

If f(n) = Θ(nlogb(a) logkn) then T(n) = Θ(nlogb a logk+1n),
k ≥ 0.

Case 3.

If f(n) = Ω(nlogb(a)+ϵ) and for sufficiently large n
af(nb ) ≤ cf(n) for some constant c < 1 then T(n) = Θ(f (n)).

Note that the cases do not cover all pos-
sibilities.
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6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form

bℓ, and we assume that the non-recursive case occurs for

problem size 1 and incurs cost 1.
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The Recursion Tree

The running time of a recursive algorithm can be visualized by a

recursion tree:

x f(n)

af(nb )

a2f( nb2 )

alogb n

nlogb a
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n

n
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6.2 Master Theorem

This gives

T(n) = nlogb a +
logb n−1∑
i=0

aif
(
n
bi

)
.
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Case 1. Now suppose that f(n) ≤ cnlogb a−ϵ.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤ c
logb n−1∑
i=0

ai
(
n
bi

)logb a−ϵ

= cnlogb a−ϵ
logb n−1∑
i=0

(
bϵ
)i

= cnlogb a−ϵ(bϵ logb n − 1)/(bϵ − 1)

= cnlogb a−ϵ(nϵ − 1)/(bϵ − 1)

= c
bϵ − 1

nlogb a(nϵ − 1)/(nϵ)

Hence,

T(n) ≤
(

c
bϵ − 1

+ 1
)
nlogb(a)

∑k
i=0 qi = qk+1−1

q−1

b−i(logb a−ϵ) = bϵi(blogb a)−i = bϵia−i

⇒ T(n) = O(nlogb a).
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Case 2. Now suppose that f(n) ≤ cnlogb a.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤ c
logb n−1∑
i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑
i=0

1

= cnlogb a logb n

Hence,

T(n) = O(nlogb a logb n) ⇒ T(n) = O(nlogb a logn).
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Case 2. Now suppose that f(n)≥ cnlogb a.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≥ c
logb n−1∑
i=0

ai
(
n
bi

)logb a

= cnlogb a
logb n−1∑
i=0

1

= cnlogb a logb n

Hence,

T(n) = Ω(nlogb a logb n) ⇒ T(n) = Ω(nlogb a logn).

6.2 Master Theorem 18. Oct. 2024

Harald Räcke 26/88



Case 2. Now suppose that f(n) ≤ cnlogb a(logb(n))k.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤ c
logb n−1∑
i=0

ai
(
n
bi

)logb a
·
(

logb

(
n
bi

))k

= cnlogb a
ℓ−1∑
i=0

(
logb

(
bℓ

bi

))k

= cnlogb a
ℓ−1∑
i=0

(ℓ − i)k

= cnlogb a
ℓ∑
i=1

ik

≈ c
k
nlogb aℓk+1

n = bℓ ⇒ ℓ = logb n

ℓ∑
i=1

ik ≈ 1
kℓ

k+1

⇒ T(n) = O(nlogb a logk+1n).

6.2 Master Theorem 18. Oct. 2024

Harald Räcke 27/88

Case 3. Now suppose that f(n) ≥ dnlogb a+ϵ, and that for

sufficiently large n: af(n/b) ≤ cf(n), for c < 1.

From this we get aif(n/bi) ≤ cif(n), where we assume that

n/bi−1 ≥ n0 is still sufficiently large.

T(n)−nlogb a =
logb n−1∑
i=0

aif
(
n
bi

)

≤
logb n−1∑
i=0

cif(n)+O(nlogb a)

≤ 1
1− c f(n)+O(n

logb a)

Hence,

T(n) ≤ O(f (n))

q < 1 :
∑n
i=0 qi = 1−qn+1

1−q ≤ 1
1−q

⇒ T(n) = Θ(f (n)).

Where did we use f(n) ≥ Ω(nlogb a+ϵ)?
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers

can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

101011011 A

110010001 B

0001001101

111011001

This gives that two n-bit integers can be added in time O(n).
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Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit

integer B (m ≤ n).

1101×10001

10001

010001

0000000

00010001

11011101

• This is also nown as the “school
method” for multiplying integers.

• Note that the intermediate num-
bers that are generated can have
at most m+n ≤ 2n bits.

Time requirement:

▶ Computing intermediate results: O(nm).
▶ Adding m numbers of length ≤ 2n: O((m+n)m) = O(nm).
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Example: Multiplying Two Integers

A recursive approach:

Suppose that integers A and B are of length n = 2k, for some k.

AB × . . .. . . . . . . . .. . . . . . a0an−1b0bn−1 an
2−1an

2
bn

2−1bn
2

B0B1 A0A1

Then it holds that

A = A1 · 2
n
2 +A0 and B = B1 · 2

n
2 + B0

Hence,

A · B = A1B1 · 2n + (A1B0 +A0B1) · 2
n
2 +A0B0
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ←mult(A1, B1)
6: Z1 ←mult(A1, B0)+mult(A0, B1)
7: Z0 ←mult(A0, B0)
8: return Z2 · 2n + Z1 · 2

n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2 )
2T(n2 )+O(n)
T(n2 )
O(n)

We get the following recurrence:

T(n) = 4T
(n

2

)
+O(n) .
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
▶ Case 1: f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a)
▶ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
▶ Case 3: f(n) = Ω(nlogb a+ϵ) T(n) = Θ(f (n))

In our case a = 4, b = 2, and f(n) = Θ(n). Hence, we are in

Case 1, since n = O(n2−ϵ) = O(nlogb a−ϵ).

We get a running time of O(n2) for our algorithm.

=⇒ Not better then the “school method”.

6.2 Master Theorem 18. Oct. 2024

Harald Räcke 33/88

Example: Multiplying Two Integers

We can use the following identity to compute Z1:

Z1 = A1B0 +A0B1

= (A0 +A1) · (B0 + B1)−A1B1 −A0B0

= Z2︷ ︸︸ ︷
A1B1

= Z0︷ ︸︸ ︷
A0B0

Hence,
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then

2: return a0 · b0

3: split A into A0 and A1

4: split B into B0 and B1

5: Z2 ←mult(A1, B1)
6: Z0 ←mult(A0, B0)
7: Z1 ←mult(A0+A1, B0+B1)−Z2−Z0

8: return Z2 · 2n + Z1 · 2
n
2 + Z0

O(1)
O(1)
O(n)
O(n)
T(n2 )
T(n2 )
T(n2 )+O(n)
O(n)

A more precise
(correct) analysis
would say that
computing Z1

needs time
T(n2 + 1)+O(n).
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T
(n

2

)
+O(n) .

Master Theorem: Recurrence: T[n] = aT(nb )+ f(n).
▶ Case 1: f(n) = O(nlogb a−ϵ) T(n) = Θ(nlogb a)
▶ Case 2: f(n) = Θ(nlogb a logkn) T(n) = Θ(nlogb a logk+1n)
▶ Case 3: f(n) = Ω(nlogb a+ϵ) T(n) = Θ(f (n))

Again we are in Case 1. We get a running time of

Θ(nlog2 3) ≈ Θ(n1.59).

A huge improvement over the “school method”.
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6.3 The Characteristic Polynomial

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

This is the general form of a linear recurrence relation of order k
with constant coefficients (c0, ck ≠ 0).

▶ T(n) only depends on the k preceding values. This means

the recurrence relation is of order k.

▶ The recurrence is linear as there are no products of T[n]’s.

▶ If f(n) = 0 then the recurrence relation becomes a linear,

homogenous recurrence relation of order k.

Note that we ignore boundary conditions for the moment.
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6.3 The Characteristic Polynomial

Observations:

▶ The solution T[1], T[2], T[3], . . . is completely determined

by a set of boundary conditions that specify values for

T[1], . . . , T [k].
▶ In fact, any k consecutive values completely determine the

solution.

▶ k non-concecutive values might not be an appropriate set of

boundary conditions (depends on the problem).

Approach:

▶ First determine all solutions that satisfy recurrence relation.

▶ Then pick the right one by analyzing boundary conditions.

▶ First consider the homogenous case.
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The Homogenous Case

The solution space

S =
{
T = T[1], T[2], T[3], . . . ∣∣ T fulfills recurrence relation

}
is a vector space. This means that if T1,T2 ∈ S, then also

αT1 + βT2 ∈ S, for arbitrary constants α,β.

How do we find a non-trivial solution?

We guess that the solution is of the form λn, λ ≠ 0, and see what

happens. In order for this guess to fulfill the recurrence we need

c0λn + c1λn−1 + c2 · λn−2 + · · · + ck · λn−k = 0

for all n ≥ k.
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The Homogenous Case

Dividing by λn−k gives that all these constraints are identical to

c0λk + c1λk−1 + c2 · λk−2 + · · · + ck = 0c0λk + c1λk−1 + c2 · λk−2 + · · · + ck︸ ︷︷ ︸
characteristic polynomial P[λ]

This means that if λi is a root (Nullstelle) of P[λ] then T[n] = λni
is a solution to the recurrence relation.

Let λ1, . . . , λk be the k (complex) roots of P[λ]. Then, because of

the vector space property

α1λn1 +α2λn2 + · · · +αkλnk

is a solution for arbitrary values αi.
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The Homogenous Case

Lemma 2

Assume that the characteristic polynomial has k distinct roots

λ1, . . . , λk. Then all solutions to the recurrence relation are of the

form

α1λn1 +α2λn2 + · · · +αkλnk .

Proof.

There is one solution for every possible choice of boundary

conditions for T[1], . . . , T [k].

We show that the above set of solutions contains one solution for

every choice of boundary conditions.
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The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:

α1 · λ1 + α2 · λ2 + · · · + αk · λk = T[1]
α1 · λ2

1 + α2 · λ2
2 + · · · + αk · λ2

k = T[2]
...

α1 · λk1 + α2 · λk2 + · · · + αk · λkk = T[k]
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The Homogenous Case

Proof (cont.).

Suppose I am given boundary conditions T[i] and I want to see

whether I can choose the α′is such that these conditions are met:
λ1 λ2 · · · λk
λ2

1 λ2
2 · · · λ2

k
...

λk1 λk2 · · · λkk




α1

α2
...

αk

 =

T[1]
T[2]

...

T[k]


We show that the column vectors are linearly independent. Then

the above equation has a solution.
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Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

λ1 λ2 · · · λk−1 λk
λ2

1 λ2
2 · · · λ2

k−1 λ2
k

...
...

...
...

λk1 λk2 · · · λkk−1 λkk

∣∣∣∣∣∣∣∣∣∣∣
=

k∏
i=1

λi ·

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1 1
λ1 λ2 · · · λk−1 λk
...

...
...

...
λk−1

1 λk−1
2 · · · λk−1

k−1 λk−1
k

∣∣∣∣∣∣∣∣∣∣∣

=
k∏
i=1

λi ·

∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−2
1 λk−1

1

1 λ2 · · · λk−2
2 λk−1

2
...

...
...

...
1 λk · · · λk−2

k λk−1
k

∣∣∣∣∣∣∣∣∣∣∣
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Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 λ1 · · · λk−2
1 λk−1

1

1 λ2 · · · λk−2
2 λk−1

2
...

...
...

...
1 λk · · · λk−2

k λk−1
k

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 λ1−λ1 ·1 · · · λk−2
1 −λ1 ·λk−3

1 λk−1
1 −λ1 ·λk−2

1

1 λ2−λ1 ·1 · · · λk−2
2 −λ1 ·λk−3

2 λk−1
2 −λ1 ·λk−2

2
...

...
...

...
1 λk−λ1 ·1 · · · λk−2

k −λ1 ·λk−3
k λk−1

k −λ1 ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣
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Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 λ1−λ1 ·1 · · · λk−2
1 −λ1 ·λk−3

1 λk−1
1 −λ1 ·λk−2

1

1 λ2−λ1 ·1 · · · λk−2
2 −λ1 ·λk−3

2 λk−1
2 −λ1 ·λk−2

2
...

...
...

...
1 λk−λ1 ·1 · · · λk−2

k −λ1 ·λk−3
k λk−1

k −λ1 ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0

1 (λ2 − λ1) ·1 · · · (λ2 − λ1) ·λk−3
2 (λ2 − λ1) ·λk−2

2
...

...
...

...
1 (λk − λ1) ·1 · · · (λk − λ1) ·λk−3

k (λk − λ1) ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣

6.3 The Characteristic Polynomial 18. Oct. 2024

Harald Räcke 45/88

Computing the Determinant

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0

1 (λ2 − λ1) ·1 · · · (λ2 − λ1) ·λk−3
2 (λ2 − λ1) ·λk−2

2
...

...
...

...
1 (λk − λ1) ·1 · · · (λk − λ1) ·λk−3

k (λk − λ1) ·λk−2
k

∣∣∣∣∣∣∣∣∣∣∣
=

k∏
i=2

(λi − λ1) ·

∣∣∣∣∣∣∣∣∣
1 λ2 · · · λk−3

2 λk−2
2

...
...

...
...

1 λk · · · λk−3
k λk−2

k

∣∣∣∣∣∣∣∣∣
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Computing the Determinant

Repeating the above steps gives:∣∣∣∣∣∣∣∣∣∣∣

λ1 λ2 · · · λk−1 λk
λ2

1 λ2
2 · · · λ2

k−1 λ2
k

...
...

...
...

λk1 λk2 · · · λkk−1 λkk

∣∣∣∣∣∣∣∣∣∣∣
=

k∏
i=1

λi ·
∏
i>ℓ

(λi − λℓ)

Hence, if all λi’s are different, then the determinant is non-zero.
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The Homogeneous Case

What happens if the roots are not all distinct?

Suppose we have a root λi with multiplicity (Vielfachheit) at least

2. Then not only is λni a solution to the recurrence but also nλni .

To see this consider the polynomial

P[λ] · λn−k = c0λn + c1λn−1 + c2λn−2 + · · · + ckλn−k

Since λi is a root we can write this as Q[λ] · (λ−λi)2. Calculating

the derivative gives a polynomial that still has root λi.
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This means

c0nλn−1
i + c1(n− 1)λn−2

i + · · · + ck(n− k)λn−k−1
i = 0

Hence,

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0︸ ︷︷ ︸

T[n]
︸ ︷︷ ︸

T[n−1]
︸ ︷︷ ︸

T[n−k]
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The Homogeneous Case

Suppose λi has multiplicity j. We know that

c0nλni + c1(n− 1)λn−1
i + · · · + ck(n− k)λn−ki = 0

(after taking the derivative; multiplying with λ; plugging in λi)

Doing this again gives

c0n2λni + c1(n− 1)2λn−1
i + · · · + ck(n− k)2λn−ki = 0

We can continue j − 1 times.

Hence, nℓλni is a solution for ℓ ∈ 0, . . . , j − 1.
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The Homogeneous Case

Lemma 3

Let P[λ] denote the characteristic polynomial to the recurrence

c0T[n]+ c1T[n− 1]+ · · · + ckT[n− k] = 0

Let λi, i = 1, . . . ,m be the (complex) roots of P[λ] with

multiplicities ℓi. Then the general solution to the recurrence is

given by

T[n] =
m∑
i=1

ℓi−1∑
j=0

αij · (njλni ) .

The full proof is omitted. We have only shown that any choice of

αij’s is a solution to the recurrence.
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Example: Fibonacci Sequence

T[0] = 0

T[1] = 1

T[n] = T[n− 1]+ T[n− 2] for n ≥ 2

The characteristic polynomial is

λ2 − λ− 1

Finding the roots, gives

λ1/2 = 1
2
±
√

1
4
+ 1 = 1

2

(
1±

√
5
)
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Example: Fibonacci Sequence

Hence, the solution is of the form

α
(

1+√5
2

)n
+ β

(
1−√5

2

)n

T[0] = 0 gives α+ β = 0.

T[1] = 1 gives

α
(

1+√5
2

)
+ β

(
1−√5

2

)
= 1 =⇒ α− β = 2√

5
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Example: Fibonacci Sequence

Hence, the solution is

1√
5

[(
1+√5

2

)n
−
(

1−√5
2

)n]
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The Inhomogeneous Case

Consider the recurrence relation:

c0T(n)+ c1T(n− 1)+ c2T(n− 2)+ · · · + ckT(n− k) = f(n)

with f(n) ≠ 0.

While we have a fairly general technique for solving homogeneous,

linear recurrence relations the inhomogeneous case is different.
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The Inhomogeneous Case

The general solution of the recurrence relation is

T(n) = Th(n)+ Tp(n) ,

where Th is any solution to the homogeneous equation, and Tp is

one particular solution to the inhomogeneous equation.

There is no general method to find a particular solution.
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The Inhomogeneous Case

Example:

T[n] = T[n− 1]+ 1 T[0] = 1

Then,

T[n− 1] = T[n− 2]+ 1 (n ≥ 2)

Subtracting the first from the second equation gives,

T[n]− T[n− 1] = T[n− 1]− T[n− 2] (n ≥ 2)

or

T[n] = 2T[n− 1]− T[n− 2] (n ≥ 2)

I get a completely determined recurrence if I add T[0] = 1 and

T[1] = 2.
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The Inhomogeneous Case

Example: Characteristic polynomial:

λ2 − 2λ+ 1 = 0λ2 − 2λ+ 1︸ ︷︷ ︸
(λ−1)2

Then the solution is of the form

T[n] = α1n + βn1n = α+ βn

T[0] = 1 gives α = 1.

T[1] = 2 gives 1+ β = 2 =⇒ β = 1.
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The Inhomogeneous Case
If f(n) is a polynomial of degree r this method can be applied

r + 1 times to obtain a homogeneous equation:

T[n] = T[n− 1]+n2

Shift:

T[n− 1] = T[n− 2]+ (n− 1)2 = T[n− 2]+n2 − 2n+ 1

Difference:

T[n]− T[n− 1] = T[n− 1]− T[n− 2]+ 2n− 1

T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1

T[n] = 2T[n− 1]− T[n− 2]+ 2n− 1

Shift:

T[n− 1] = 2T[n− 2]− T[n− 3]+ 2(n− 1)− 1

= 2T[n− 2]− T[n− 3]+ 2n− 3

Difference:

T[n]− T[n− 1] =2T[n− 1]− T[n− 2]+ 2n− 1

− 2T[n− 2]+ T[n− 3]− 2n+ 3

T[n] = 3T[n− 1]− 3T[n− 2]+ T[n− 3]+ 2

and so on...

6.4 Generating Functions

Definition 4 (Generating Function)

Let (an)n≥0 be a sequence. The corresponding

▶ generating function (Erzeugendenfunktion) is

F(z) :=
∑
n≥0

anzn ;

▶ exponential generating function (exponentielle

Erzeugendenfunktion) is

F(z) :=
∑
n≥0

an
n!
zn .

6.4 Generating Functions 18. Oct. 2024

Harald Räcke 61/88

6.4 Generating Functions

Example 5

1. The generating function of the sequence (1,0,0, . . .) is

F(z) = 1 .

2. The generating function of the sequence (1,1,1, . . .) is

F(z) = 1
1− z .
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6.4 Generating Functions

There are two different views:

A generating function is a formal power series (formale

Potenzreihe).

Then the generating function is an algebraic object.

Let f =∑n≥0 anzn and g =∑n≥0 bnzn.

▶ Equality: f and g are equal if an = bn for all n.

▶ Addition: f + g :=∑n≥0(an + bn)zn.

▶ Multiplication: f · g :=∑n≥0 cnzn with cn =
∑n
p=0 apbn−p.

There are no convergence issues here.
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6.4 Generating Functions

The arithmetic view:

We view a power series as a function f : C→ C.

Then, it is important to think about convergence/convergence

radius etc.
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6.4 Generating Functions

What does
∑
n≥0 zn = 1

1−z mean in the algebraic view?

It means that the power series 1− z and the power series∑
n≥0 zn are invers, i.e.,

(
1− z

)
·
( ∞∑
n≥0

zn
)
= 1 .

This is well-defined.
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6.4 Generating Functions

Suppose we are given the generating

function

∑
n≥0

zn = 1
1− z .

We can compute the derivative:

∑
n≥1

nzn−1 = 1
(1− z)2

∑
n≥1

nzn−1

︸ ︷︷ ︸∑
n≥0(n+1)zn

Hence, the generating function of the sequence an = n+ 1

is 1/(1− z)2.

Formally the derivative of a formal
power series

∑
n≥0 anz

n is defined
as
∑
n≥0 nanzn−1.

The known rules for differentiation
work for this definition. In partic-
ular, e.g. the derivative of 1

1−z is
1

(1−z)2 .

Note that this requires a proof if we
consider power series as algebraic
objects. However, we did not prove
this in the lecture.
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6.4 Generating Functions

We can repeat this

∑
n≥0

(n+ 1)zn = 1
(1− z)2 .

Derivative: ∑
n≥1

n(n+ 1)zn−1 = 2
(1− z)3

∑
n≥1

n(n+ 1)zn−1

︸ ︷︷ ︸∑
n≥0(n+1)(n+2)zn

Hence, the generating function of the sequence

an = (n+ 1)(n+ 2) is 2
(1−z)3 .
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6.4 Generating Functions

Computing the k-th derivative of
∑
zn.∑

n≥k
n(n− 1) · . . . · (n− k+ 1)zn−k =

∑
n≥0

(n+ k) · . . . · (n+ 1)zn

= k!
(1− z)k+1 .

Hence: ∑
n≥0

(
n+ k
k

)
zn = 1

(1− z)k+1 .

The generating function of the sequence an =
(
n+k
k

)
is 1

(1−z)k+1 .
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6.4 Generating Functions

∑
n≥0

nzn =
∑
n≥0

(n+ 1)zn −
∑
n≥0

zn

= 1
(1− z)2 −

1
1− z

= z
(1− z)2

The generating function of the sequence an = n is z
(1−z)2 .
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6.4 Generating Functions

We know ∑
n≥0

yn = 1
1−y

Hence,

∑
n≥0

anzn = 1
1− az

The generating function of the sequence fn = an is 1
1−az .
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Example: an = an−1 + 1, a0 = 1
Suppose we have the recurrence an = an−1 + 1 for n ≥ 1 and

a0 = 1.

A(z) =
∑
n≥0

anzn

= a0 +
∑
n≥1

(an−1 + 1)zn

= 1+ z
∑
n≥1

an−1zn−1 +
∑
n≥1

zn

= z
∑
n≥0

anzn +
∑
n≥0

zn

= zA(z)+
∑
n≥0

zn

= zA(z)+ 1
1− z
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Example: an = an−1 + 1, a0 = 1

Solving for A(z) gives

∑
n≥0

anzn = A(z) = 1
(1− z)2 =

∑
n≥0

(n+ 1)zn

Hence, an = n+ 1.

6.4 Generating Functions 18. Oct. 2024

Harald Räcke 72/88

Some Generating Functions

n-th sequence element generating function

1
1

1− z
n+ 1

1
(1− z)2(

n+k
k

)
1

(1− z)k+1

n
z

(1− z)2

an
1

1− az
n2

z(1+ z)
(1− z)3

1
n! ez
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Some Generating Functions

n-th sequence element generating function

cfn cF

fn + gn F +G
∑n
i=0 fign−i F ·G

fn−k (n ≥ k); 0 otw. zkF

∑n
i=0 fi

F(z)
1− z

nfn z
dF(z)

dz

cnfn F(cz)
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Solving Recursions with Generating Functions

1. Set A(z) =∑n≥0 anzn.

2. Transform the right hand side so that boundary condition

and recurrence relation can be plugged in.

3. Do further transformations so that the infinite sums on the

right hand side can be replaced by A(z).

4. Solving for A(z) gives an equation of the form A(z) = f(z),
where hopefully f(z) is a simple function.

5. Write f(z) as a formal power series.
Techniques:
▶ partial fraction decomposition (Partialbruchzerlegung)
▶ lookup in tables

6. The coefficients of the resulting power series are the an.
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Example: an = 2an−1, a0 = 1

1. Set up generating function:

A(z) =
∑
n≥0

anzn

2. Transform right hand side so that recurrence can be plugged

in:

A(z) = a0 +
∑
n≥1

anzn

2. Plug in:

A(z) = 1+
∑
n≥1

(2an−1)zn
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Example: an = 2an−1, a0 = 1

3. Transform right hand side so that infinite sums can be

replaced by A(z) or by simple function.

A(z) = 1+
∑
n≥1

(2an−1)zn

= 1+ 2z
∑
n≥1

an−1zn−1

= 1+ 2z
∑
n≥0

anzn

= 1+ 2z ·A(z)

4. Solve for A(z).

A(z) = 1
1− 2z
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Example: an = 2an−1, a0 = 1

5. Rewrite f(z) as a power series:

∑
n≥0

anzn = A(z) = 1
1− 2z

=
∑
n≥0

2nzn
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Example: an = 3an−1 + n, a0 = 1

1. Set up generating function:

A(z) =
∑
n≥0

anzn
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Example: an = 3an−1 + n, a0 = 1

2./3. Transform right hand side:

A(z) =
∑
n≥0

anzn

= a0 +
∑
n≥1

anzn

= 1+
∑
n≥1

(3an−1 +n)zn

= 1+ 3z
∑
n≥1

an−1zn−1 +
∑
n≥1

nzn

= 1+ 3z
∑
n≥0

anzn +
∑
n≥0

nzn

= 1+ 3zA(z)+ z
(1− z)2
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Example: an = 3an−1 + n, a0 = 1

4. Solve for A(z):

A(z) = 1+ 3zA(z)+ z
(1− z)2

gives

A(z) = (1− z)2 + z
(1− 3z)(1− z)2 =

z2 − z + 1
(1− 3z)(1− z)2
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

We use partial fraction decomposition:

z2 − z + 1
(1− 3z)(1− z)2

!= A
1− 3z

+ B
1− z +

C
(1− z)2

This gives

z2 − z + 1 = A(1− z)2 + B(1− 3z)(1− z)+ C(1− 3z)

= A(1− 2z + z2)+ B(1− 4z + 3z2)+ C(1− 3z)

= (A+ 3B)z2 + (−2A− 4B − 3C)z + (A+ B + C)
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

This leads to the following conditions:

A+ B + C = 1

2A+ 4B + 3C = 1

A+ 3B = 1

which gives

A = 7
4

B = −1
4

C = −1
2
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Example: an = 3an−1 + n, a0 = 1

5. Write f(z) as a formal power series:

A(z) = 7
4
· 1

1− 3z
− 1

4
· 1

1− z −
1
2
· 1
(1− z)2

= 7
4
·
∑
n≥0

3nzn − 1
4
·
∑
n≥0

zn − 1
2
·
∑
n≥0

(n+ 1)zn

=
∑
n≥0

(7
4
· 3n − 1

4
− 1

2
(n+ 1)

)
zn

=
∑
n≥0

(7
4
· 3n − 1

2
n− 3

4

)
zn

6. This means an = 7
43n − 1

2n− 3
4 .
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6.5 Transformation of the Recurrence

Example 6
f0 = 1

f1 = 2

fn = fn−1 · fn−2 for n ≥ 2 .

Define

gn := logfn .

Then

gn = gn−1 + gn−2 for n ≥ 2

g1 = log 2 = 1(for log = log2), g0 = 0

gn = Fn (n-th Fibonacci number)

fn = 2Fn
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6.5 Transformation of the Recurrence

Example 7

f1 = 1

fn = 3fn
2
+n; for n = 2k, k ≥ 1 ;

Define

gk := f2k .

Then:

g0 = 1

gk = 3gk−1 + 2k, k ≥ 1
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6 Recurrences

We get

gk = 3
[
gk−1

]+ 2k

= 3
[
3gk−2 + 2k−1

]
+ 2k

= 32 [gk−2
]+ 32k−1 + 2k

= 32
[
3gk−3 + 2k−2

]
+ 32k−1 + 2k

= 33gk−3 + 322k−2 + 32k−1 + 2k

= 2k ·
k∑
i=0

(3
2

)i

= 2k · (
3
2)
k+1 − 1
1/2

= 3k+1 − 2k+1
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6 Recurrences

Let n = 2k:

gk = 3k+1 − 2k+1, hence

fn = 3 · 3k − 2 · 2k

= 3(2log 3)k − 2 · 2k

= 3(2k)log 3 − 2 · 2k

= 3nlog 3 − 2n .
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