
Online AlgorithmsSusanne Albers� Stefano LeonardiyOver the past twelve years, online algorithms have received considerable research interest. Onlineproblems had been investigated already in the seventies and early eighties but an extensive,systematic study started only when Sleator and Tarjan [41] suggested comparing an onlinealgorithm to an optimal o�ine algorithm and Karlin, Manasse, Rudolph and Sleator [29] coinedthe term competitive analysis.FoundationsAn online algorithm receives the input incrementally, one piece at a time. In response to eachinput portion, the algorithm must generate output, not knowing future input. In a competitiveanalysis an online algorithm A is compared to an optimal o�ine algorithm OPT. An optimalo�ine algorithm knows the entire input sequence in advance and can process it optimally.Given an input sequence I, let CA(I) and COPT (I) denote the costs incurred by A and OPTin processing I. Algorithm A is called c-competitive if there exists a constant a such thatCA(I) � c � COPT (I) + a, for all input sequences I. An analogous de�nition can be given foronline maximization problems. We note that a competitive algorithm must perform well on allinput sequences.In the above de�nition it is assumed that A is a deterministic algorithm. Randomization oftenallows online algorithms to obtain better competitive ratios than deterministic algorithms. Ben-David et al . [13] explored the power of randomization in online algorithms. Given a randomizedonline algorithmA, an input sequence is generated by an adversary . Ben-David et al . introduceddi�erent kinds of adversaries that, when generating a new input portion, may or may not seethe outcome of the random choices made by A on previous input.Competitive analysis has been applied successfully to many interesting problems.ApplicationsIn the late eighties and early nineties, three basic online problems were studied extensively,namely paging, the k-server problem and metrical task systems. The paging problem is tomaintain a two-level memory system consisting of a small fast memory and a large slow memory.The goal is to serve a sequence of requests to memory pages so as to minimize the number ofpage faults incurred. The k-server problem, introduced by Manasse et al. [35], generalizes pagingas well as more general caching problems. The problem consists in scheduling the motion of kmobile servers that reside on points of a metric space S. Requests are issued at points in S and,�Max-Planck-Institut f�ur Informatik, Im Stadtwald, D{66123 Saarbr�ucken, Germany. E-mail:albers@mpi-sb.mpg.deyDipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza", via Salaria 113, 00198, Roma,Italy. E-mail: leon@dis.uniroma1.it 1



in response to each request, one of the servers must be sent to that point. The goal is to minimizethe total distance traveled by all the servers. Metrical task systems, introduced by Borodin etal. [16], can model a wide class of online problems. A metrical task system consists of a pair(S; d), where S is a set of n states and d is a cost matrix satisfying the triangle inequality. Entryd(i; j) is the cost of changing from state i to state j. A task system must serve a sequence oftasks with low total cost. We refer the reader to the books [15, 26, 37] for excellent presentationsof results on these problems.During the past years, apart from the three basic problems, many online problems were inves-tigated in application areas such as data structures, distributed data management, schedulingand load balancing, routing, robotics, �nancial games, graph theory, and a number of problemsarising in computer systems. We concentrate on two class of problems that have been studiedextensively by many researchers.Scheduling and load balancing problems. The general situation in online scheduling isas follows. We are given a set of m machines. A sequence of jobs arrives online. Each jobhas a processing time that may or may not be known in advance. Each job must be scheduledimmediately on one of the m machines, without knowledge of any future jobs. The goal isto optimize a given objective function. There are many problem variants, e.g., one can studyvarious machine types and various objective functions.One of the most basic scheduling problems was introduced by Graham [25] in 1966. Supposethat we are given m identical machines. Whenever a new job arrives, its processing time isknown in advance. The goal is to minimize the makespan, i.e., the completion time of the lastjob that �nishes. Graham [25] showed that the List Scheduling algorithm, which always assignsa new job to the least loaded machine is (2 � 1m)-competitive. It was unknown for about 25years whether or not there exist algorithms that achieve a competitive ratio c, c < 2, for allvalues of m. In 1992, Bartal et al. [10] gave an algorithm that is 1:986-competitive. Karger et al.[28] generalized the algorithm and proved an upper bound of 1.945. The best algorithm knownso far achieves a competitive ratio of 1.923, see [1]. Gormley and Torng [24] showed that nodeterministic online algorithm can be better than 1.853-competitive. Many problem variants ofthis basic scenario were studied where, e.g., jobs may be preempted, jobs may be rejected at apenalty, or online algorithms may use randomization. In addition, there are results for di�erentmachine types. There is also quite some work on online scheduling when job processing timesare not known in advance, see e.g. [36, 40]. We refer the reader to [39] for a comprehensivesurvey on online scheduling.In online load balancing we have again a set of m machines and a sequence of jobs that arriveonline. However, each job has a weight and a duration that may or may not be known in advance.At any time the load of a machine is the sum of the weights of the jobs present on the machineat that time. The goal is to minimize the maximum load that occurs during the processing ofthe job sequence. Note that when all the jobs have an in�nite duration, then the load balancingproblem can be seen as a scheduling problem. In the following we concentrate on load balancingproblems when jobs have unknown durations. For settings with m identical machines, Azarand Epstein [8] showed that the Greedy algorithm is (2 � 1m)-competitive. Load balancingbecomes more complicated with restricted assignments, i.e., each job can only be assigned to asubset of admissible machines. Azar et al. [6] proved that Greedy achieves a competitive ratio2



of m2=3(1 + o(1)) and that no online algorithm can be better than 
(pm)-competitive. In asubsequent paper, Azar et al. [9] gave a matching upper bound of O(pm). For load balancingon related machines, i.e. machines may have di�erent speeds, Azar et al. [9] presented a 20-competitive algorithm and proved that no online algorithm can have a competitive ratio smallerthan 3� o(1). We refer the reader to [7] for a comprehensive survey on online load balancing.Network routing problems. These problems have been considered in many di�erent avorsand were studied starting from the virtual circuit routing problem. Consider a communicationnetwork where every link has a given maximum capacity. The input instance is formed by asequence of communication requests. In response to each request, we must establish a virtualcircuit on a path connecting two nodes of the network, at a given bandwidth, for a givenduration. Aspnes et al. [2] gave an O(log n)-competitive algorithm for the problem of minimizingthe maximum load on a link of a network of n nodes, when connection requests have unlimitedduration. The algorithm uses the idea of associating with every link a cost that is exponentialin the fraction of the link capacity already assigned to ongoing circuits. The cost associatedwith a link of the network can be seen as the value assigned to a dual variable associated withthe link itself in a linear programming formulation of the problem. The algorithm then routesevery request on a minimum cost circuit.The load balancing problem on networks is a generalization of the load balancing problem onunrelated parallel machines, from which a matching 
(log n) lower bounds is obtained [6]. Theproblem with limited duration has been considered in [9]. The virtual circuit routing problemhas also been studied in its throughput version, the so called call control problem [22], wherea bene�t is associated with every request, requests can be accepted or discarded, while linkcapacities must not be exceeded. In [3] an algorithm with logarithmic competitive ratio ispresented for maximizing the bene�t obtained from accepted requests, under the assumptionthat the bandwidth request is at most a logarithmic fraction of any link capacity. For the case ofbandwidth request exceeding a logarithmic fraction of the link capacity, the problem is basicallyreduced to the online version of the edge-disjoint path problem. In this case, deterministicalgorithms fail to be competitive even for simple network topologies such as line or tree networks.A very high lower bound has been proved for general algorithms even if randomization is used[11]. However, randomized algorithms with competitive ratio O(log n) have been presented fora set of speci�c topologies like trees [4, 5], meshes [5, 30], and a class of planar graphs [30]. In[32] the problem of designing randomized algorithms combining a good competitive ratio and agood variance for the online edge-disjoint path problem has been considered.A class of interesting routing problems also arises in wavelength division multiplexing (WDM)optical networks. In the basic case, every communication request must be assigned with a speci�cwavelength, obeying the constraint that communication requests assigned with same wavelengthare routed on edge-disjoint paths. Competitive online algorithms for routing communicationsin optical networks have for instance been studied in [11, 12]. A large variety of other onlinenetwork routing problems has been considered: calls can be preempted and/or rerouted at somelater time, the bene�t obtained from a call can be proportional to the amount of assignedresources, collective communication, e.g. multicast communication, has been addressed. For acomprehensive survey of the main techniques that are used and of the main results in the areawe refer the reader to [15, 33]. 3



Perspectives of online algorithmsRestricting an adversary: Competitive analysis is a strong worst-case performance measure.For some problems, such as paging, the competitive ratios of online algorithms are much higherthan the corresponding performance ratios observed in practice. A line of research is concernedwith evaluating online algorithms on restricted classes of request sequences. In other words, thepower of an adversary is limited. In [17, 27], competitive paging algorithms with access graphare studied. Access graphs can model more realistic request sequences that exhibit locality ofreference. It was shown that, using the access graph, it is possible to overcome some negativeaspects of conventional competitive paging results [17, 20, 21, 27]. With respect to online�nancial games, Raghavan [38] introduced a statistical adversary: The input generated by theadversary must satisfy certain statistical assumptions. In [19], Chou et al. developed furtherresults in this model. More generally, Koutsoupias and Papadimitriou [31] proposed the di�useadversary model. An adversary must generate an input according to a probability distributionD that belongs to a class � of possible distributions known to the online algorithm.Learning theory: Concepts from computational learning theory have been applied recently tothe area of online algorithms. The problem of predicting from expert advice in its simple formconsiders an algorithm that has to predict repeatedly the value of a f0; 1g function, e.g. if itwill rain or or not rain on a sequence of days. The algorithm receives as input the advice ofn experts. After having formulated its prediction, the algorithm is told the real answer. Thefuture advice of every expert will be biased by the correctness of the advice received in the past.Several results were presented showing competitiveness against an expert that made a fewestnumber of mistakes [18, 34]. Interesting relations with competitive analysis also arise from thework on learning from examples (see [14] for a survey on online learning algorithms).Game and decision theory: Concepts in game theory also have been related recently to com-petitive analysis. Borodin and El-Yaniv [15] study the relationship between mixed as well asbehavioral strategies and randomized online algorithms proving that mixed randomized memory-less online algorithms can achieve strictly better competitive ratios than behavioral randomizedalgorithms. Borodin and El-Yaniv also compare competitive analysis with other possible opti-mality criteria developed during a number of decades in decision theory. For a comprehensivediscussion of these subjects we refer to [15].Experiments: Recently work has started to test experimentally the ideas that were developedin the area of competitive online algorithms. Paging algorithms in the access graph model oftenuse the idea of evicting the page that is furthest in the graph to the page currently accessed.Fiat and Ros�en [21] implemented an algorithm based on a re�nement of this idea. The accessgraph is not even part of the input but is learned from the sequence itself. The algorithm hasbeen shown to beat LRU on traces observed in practice. Algorithms for online virtual circuitrouting have also been implemented [23] and favorably compared with popular greedy strategies.References[1] S. Albers. Better bounds for online scheduling. In Proc. 29th Annual ACM Symp. on Theoryof Computing, 130-139, 1997. 4
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