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Abstract. We survey results on self-organizing data structures for the
search problem and concentrate on two very popular structures: the un-
sorted linear list, and the binary search tree. For the problem of main-
taining unsorted lists, also known as the list update problem, we present
results on the competitiveness achieved by deterministic and random-
ized on-line algorithms. For binary search trees, we present results for
both on-line and off-line algorithms. Self-organizing data structures can
be used to build very effective data compression schemes. We summarize
theoretical and experimental results.

1 Introduction

This paper surveys results in the design and analysis of self-organizing data
structures for the search problem. The general search problem in pointer data
structures can be phrased as follows. The elements of a set are stored in a
collection of nodes. Each node also contains O(1) pointers to other nodes and
additional state data which can be used for navigation and self-organization.
The elements have associated key values, which may or may not be totally or-
dered (almost always they are). Various operations may be performed on the
set, including the standard dictionary operations of searching for an element,
inserting a new element, and deleting an element. Additional operations such
as set splitting or joining may be allowed. This survey considers two simple but
very popular data structures: the unsorted linear list, and the binary search tree.

A self-organizing data structure has a rule or algorithm for changing point-
ers and state data after each operation. The self-organizing rule is designed to
respond to initially unknown properties of the input request sequence, and to
get the data structure into a state that will take advantage of these properties
and reduce the time per operation. As operations occur, a self-organizing data
structure may change its state quite dramatically.

Self-organizing data structures can be compared to static or constrained data
structures. The state of a static data structure is predetermined by some strong
knowledge about the properties of the input. For example, if searches are gen-
erated according to some known probability distribution, then a linear list may
be sorted by decreasing probability of access. A constrained data structure must
satisfy some structural invariant, such as a balance constraint in a binary search
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tree. As long as the structural invariant is satisfied, the data structure does not
change.

Self-organizing data structures have several advantages over static and con-
strained data structures [64]. (a) The amortized asymptotic time of search and
update operations is usually as good as the corresponding time of constrained
structures. But when the sequence of operations has favorable properties, the
performance can be much better. (b) Self-organizing rules need no knowledge
of the properties of input sequence, but will adapt the data structure to best
suit the input. (c¢) The self-organizing rule typically results in search and update
algorithms that are simple and easy to implement. (d) Often the self-organizing
rule can be implemented without using any extra space in the nodes. (Such a rule
is called “memoryless” since it saves no information to help make its decisions.)

On the other hand, self-organizing data structures have several disadvan-
tages. (a) Although the total time of a sequence of operations is low, an indi-
vidual operation can be quite expensive. (b) Reorganization of the structure has
to be done even during search operations. Hence self-organizing data structures
may have higher overheads than their static or constraint-based cousins.

Nevertheless, self-organizing data structures represent an attractive alter-
native to constraint structures, and reorganization rules have been studied ex-
tensively for both linear lists and binary trees. Both data structures have also
received considerable attention within the study of on-line algorithms. In Sec-
tion 2 we review results for linear lists. Almost all previous work in this area has
concentrated on designing on-line algorithms for this data structure. In Section 3
we discuss binary search trees and present results on on-line and off-line algo-
rithms. Self-organizing data structures can be used to construct effective data
compression schemes. We address this application in Section 4.

2 Unsorted linear lists

The problem of representing a dictionary as an unsorted linear list is also known
as the list update problem. Consider a set S of items that has to be maintained
under a sequence of requests, where each request is one of the following opera-
tions.

Access(z). Locate item » in S.
Insert(x). Insert item z into S.
Delete(z). Delete item x from S.

Given that S shall be represented as an unsorted list, these operations can be
implemented as follows. To access an item, a list update algorithm starts at the
front of the list and searches linearly through the items until the desired item
is found. To insert a new item, the algorithm first scans the entire list to verify
that the item is not already present and then inserts the item at the end of the
list. To delete an item, the algorithm scans the list to search for the item and
then deletes it.

In serving requests a list update algorithm incurs cost. If a request is an
access or a delete operation, then the incurred cost is 7, where ¢ is the position of



the requested item in the list. If the request is an insertion, then the cost is n+1,
where n is the number of items in the list before the insertion. While processing
a request sequence, a list update algorithm may rearrange the list. Immediately
after an access or insertion, the requested item may be moved at no extra cost
to any position closer to the front of the list. These exchanges are called free
exchanges. Using free exchanges, the algorithm can lower the cost on subsequent
requests. At any time two adjacent items in the list may be exchanged at a cost
of 1. These exchanges are called paid exchanges.

The cost model defined above is called the standard model. Manasse et al. [53]
and Reingold et al. [61] introduced the P?¢ cost model. In the P? model there
are no free exchanges and each paid exchange costs d. In this survey, we will
present results both for the standard and the P? model. However, unless other-
wise stated, we will always assume the standard cost model.

We are interested in list update algorithms that serve a request sequence so
that the total cost incurred on the entire sequence is as small as possible. Of
particular interest are on-line algorithms, i.e., algorithms that serve each request
without knowledge of any future requests. In [64], Sleator and Tarjan suggested
comparing the quality of an on-line algorithm to that of an optimal off-line
algorithm. An optimal off-line algorithm knows the entire request sequence in
advance and can serve it with minimum cost. Given a request sequence o, let
C4(0) denote the cost incurred by an on-line algorithm A in serving o, and let
Copr(o) denote the cost incurred by an optimal off-line algorithm OPT. Then
the on-line algorithm A is called e-competitive if there is a constant @ such that
for all size lists and all request sequences o,

CA(O') < C-COPT(O') + a.

The factor ¢ is also called the competitive ratio. Here we assume that A is a
deterministic algorithm. The competitive ratio of a randomized on-line algorithm
has to be defined in a more careful way, see Section 2.2. In Sections 2.1 and 2.2 we
will present results on the competitiveness that can be achieved by deterministic
and randomized on-line algorithms.

At present it is unknown whether the problem of computing an optimal way
to process a given request sequence is NP-hard. The fastest optimal off-line
algorithm currently known is due to Reingold and Westbrook [60] and runs in
time O(2"n!m), where n is the size of the list and m is the length of the request
sequence.

Linear lists are one possibility to represent a dictionary. Certainly, there
are other data structures such as balanced search trees or hash tables that,
depending on the given application, can maintain a dictionary in a more efficient
way. In general, linear lists are useful when the dictionary is small and consists
of only a few dozen items [15]. Furthermore, list update algorithms have been
used as subroutines in algorithms for computing point maxima and convex hulls
[14,31]. Recently, list update techniques have been very successfully applied in
the development of data compression algorithms [18]. We discuss this application
in detail in Section 4.



2.1 Deterministic on-line algorithms

There are three well-known deterministic on-line algorithms for the list update
problem.

e Move-To-Front: Move the requested item to the front of the list.

e Transpose: Exchange the requested item with the immediately preceding
item in the list.

¢ Frequency-Count: Maintain a frequency count for each item in the list.
Whenever an item is requested, increase its count by 1. Maintain the list so
that the items always occur in nonincreasing order of frequency count.

Other deterministic on-line algorithms that have been proposed in the literature
are variants of the above algorithms, see [17,32,35,42,47,62,40,64,74]. Rivest [62],
for instance, introduced a move-ahead-k heuristic that moves a requested item
k positions ahead. Gonnet et al. [32] and Kan and Ross [41] considered a k-in-
a-row rule, where an item is only moved after it is requested k times in a row.
This strategy can be combined both with the Move-To-Front and Transpose
algorithms.

The formulations of list update algorithms generally assume that a request
sequence consists of accesses only. It is obvious how to extend the algorithms so
that they can also handle insertions and deletions. On an insertion, the algorithm
first appends the new item at the end of the list and then executes the same
steps as if the item was requested for the first time. On a deletion, the algorithm
first searches for the item and then just removes it.

In the following, we concentrate on the three algorithms Move-To-Front,
Transpose and Frequency-Count. We note that Move-To-Front and Transpose
are memoryless strategies, i.e., they do not need any extra memory to decide
where a requested item should be moved. Thus, from a practical point of view,
they are more attractive than Frequency-Count. Sleator and Tarjan [64] analyzed
the competitive ratios of the three algorithms.

Theorem 1. The Move-To-Front algorithm is 2-competitive.

Proof. Consider a request sequence o = o(1),0(2),...,0(m) of length m. First
suppose that o consists of accesses only. We will compare simultaneous runs
of Move-To-Front and OPT on ¢ and evaluate on-line and ofl-line cost using a
potential function @. For an introduction to amortized analysis using potential
functions, see Tarjan [70].

The potential function we use is the number of inversions in Move-To-Front’s
list with respect to OPT’s list. An tnversion is a pair z,y of items such that
z occurs before y Move-To-Front’s list and after y in OPT’s list. We assume
without loss of generality that Move-To-Front and OPT start with the same list
so that the initial potential is 0.

For any t, 1 <t < m, let Cyrr(t) and Copr(t) denote the actual cost in-
curred by Move-To-Front and OPT in serving o(t). Furthermore, let &(t) denote



the potential after o(t) is served. The amortized cost incurred by Move-To-Front
on o(t) is defined as Cyrp(t) + $(1) — $(t — 1). We will show that for any ¢,

CMTF(t) —|—@(t) — @(t — 1) < QCOPT(t) —1. (1)

Summing this expression for all ¢ we obtain Y ;- Cayrr(t) + @(m) — $(0) <
Yot 2Copr(t) —m, ie., Cyrr(o) < 2Copr (o) — m+ @(0) — & (m). Since the
initial potential is 0 and the final potential is non-negative, the theorem follows.

In the following we will show inequality (1) for an arbitrary ¢. Let x be
the item requested by o(?). Let k denote the number of items that precede
in Move-To-Front’s and OPT’s list. Furthermore, let [ denote the number of
items that precede = in Move-To-Front’s list but follow # in OPT’s list. We have
CMTF(t) =k+I[+1and COPT(t) >k+ 1.

When Move-To-Front serves o(t) and moves z to the front of the list, [
inversions are destroyed and at most & new inversions are created. Thus

CMTF(t) —|—@(t) — @(t — 1) < CMTF(t) +k—1 = 2k+1
< QCOPT(t) — 1.

Any paid exchange made by OPT when serving o(¢) can increase the potential
by 1, but OPT also pays 1. We conclude that inequality (1) holds.

The arguments above can be extended easily to analyze an insertion or dele-
tion. On an insertion, Cprrr(t) = Copr(t) = n+ 1, where n is the number of
items in the list before the insertion, and at most n new inversions are created.
On a deletion, [ inversions are removed and no new inversion is created. O

Bentley and McGeoch [15] proved a weaker version of Theorem 1. They
showed that on any sequence of accesses, the cost incurred by Move-To-Front is
at most twice the cost of the optimum static off-line algorithm. The optimum
static off-line algorithm first arranges the items in order of decreasing request
frequencies and does no further exchanges while serving the request sequence.

The proof of Theorem 1 shows that Move-To-Front is (2 — %)—competitive,
where n is the maximum number of items ever contained in the dictionary.
Trani [37] gave a refined analysis of the Move-To-Front rule and proved that it
is (2 — %_I_l)—competitive.

Sleator and Tarjan [64] showed that, in terms of competitiveness, Move-To-
Front is superior to Transpose and Frequency-Count.

Proposition 2. The algorithms Transpose and Frequency-Count are not c-com-
petitive for any constant c.

Recently, Albers [4] presented another deterministic on-line algorithm for
the list update problem. The algorithm belongs to the Timestamp(p) family of
algorithms that were introduced in the context of randomized on-line algorithms
and that are defined for any real number p € [0, 1]. For p = 0, the algorithm is
deterministic and can be formulated as follows.

Algorithm Timestamp(0): Insert the requested item, say «, in front of the
first item in the list that precedes x in the list and that has been requested at



most once since the last request to x. If there is no such item or if  has not
been requested so far, then leave the position of z unchanged.

Theorem 3. The Timestamp(0) algorithm is 2-competitive.

Note that Timestamp(0) is not memoryless. We need information on past re-
quests in order to determine where a requested item should be moved. In fact, in
the most straightforward implementation of the algorithm we need a second pass
through the list to find the position where the accessed item must be inserted.
Often, such a second pass through the list does not harm the benefit of a list
update algorithm. When list update algorithms are applied in the area of data
compression, the positions of the accessed items are of primary importance, see
Section 4.

The Timestamp(0) algorithm is interesting because it has a better overall
performance than Move-To-Front. The algorithm achieves a competitive ratio
of 2, as does Move-To-Front. However, as we shall see in Section 2.3, Time-
stamp(0) is considerably better than Move-To-Front on request sequences that
are generated by probability distributions.

El-Yaniv [29] recently presented a new family of deterministic on-line algo-
rithms for the list update problem. This family also contains the algorithms
Move-To-Front and Timestamp(0). The following algorithm is defined for every
integer k& > 1.

Algorithm MRI(k): Insert the requested item, say , just after the last item
in the list that precedes x in the list and was requested at least k4 1 times since
the last request to x. If there is no such item or if x has not been requested so
far, then move x to the front of the list.

El-Yaniv [29] showed that MRI(1) and TIMESTAMP(0) are equivalent and
also proved the following theorem.

Theorem 4. For every integer k > 1, the MRI(k) algorithm is 2-competitive.

Bachrach and El-Yaniv [10] recently presented an extensive experimental
study of list update algorithms. The request sequences used were derived from
the Calgary Compression Corpus [77]. In many cases, members of the MRI family
were among the best algorithms.

Karp and Raghavan [42] developed a lower bound on the competitiveness that
can be achieved by deterministic on-line algorithms. This lower bound implies
that Move-To-Front, Timestamp(0) and MRI(k) have an optimal competitive
ratio.

Theorem 5. Let A be a deterministic on-line algorithm for the list update prob-
lem. If A is c-competitive, then ¢ > 2.

Proof. Consider a list of n items. We construct a request sequence that consists of
accesses only. Each request is made to the item that is stored at the last position
in A’s list. On a request sequence o of length m generated in this way, A incurs
a cost of C'a(c) = mn. Let OPT’ be the optimum static off-line algorithm. OPT’



first sorts the items in the list in order of nonincreasing request frequencies and
then serves o without making any further exchanges. When rearranging the list,
OPT' incurs a cost of at most n(n — 1)/2. Then the requests in o can be served
at a cost of at most m(n + 1)/2. Thus Copr(o) < m(n+1)/2+n(n—1)/2. For
long request sequences, the additive term of n(n —1)/2 can be neglected and we
obtain

CA(O') Z n2_-|r—ll 'COPT(O')-

The theorem follows because the competitive ratio must hold for all list lengths.
O

The proof shows that the lower bound is actually 2 — ni-l—l’ where n is the number

of items in the list. Thus, the upper bound given by Irani on the competitive
ratio of the Move-To-Front rule is tight.

Next we consider list update algorithms for other cost models. Reingold et
al. [61] gave a lower bound on the competitiveness achieved by deterministic
on-line algorithms.

Theorem 6. Let A be a deterministic on-line algorithm for the list update prob-
lem in the P® model. If A is c-competitive, then ¢ > 3.

Below we will give a family of deterministic algorithms for the P? model.
The best algorithm in this family achieves a competitive ratio that is approxi-
mately 4.56-competitive. We defer presenting this result until the discussion of
randomized algorithms for the P model, see Section 2.2.

Sleator and Tarjan considered another generalized cost model. Let f be a
nondecreasing function from the positive integers to the nonnegative reals. Sup-
pose that an access to the i-th item in the list costs f(¢) and that an insertion
costs f(n + 1), where n is the number of items in the list before the insertion.
Let the cost of a paid exchange of items ¢ and ¢ 4+ 1 be Af(¢) = f(i + 1) — f(i).
The function f is convex if Af(i) > Af(i + 1) for all i. Sleator and Tarjan [64]
analyzed the Move-To-Front algorithm for convex cost functions. As usual, n
denotes the maximum number of items contained in the dictionary.

Theorem 7. If f is convex, then
Curr(o) < 2-Copr(o) + X712 (f(n) — (i)
for all request sequences o that consist only of accesses and insertions.

The term Zfz_ll(f(n) — f(?)) accounts for the fact that the initial lists given to
Move-To-Front and OPT may be different. If the lists are the same, the term can
be omitted in the inequality. Theorem 7 can be extended to request sequences
that include deletions if the total cost for deletions does not exceed the total
cost incurred for insertions. Here we assume that a deletion of the i-th item in
the list costs f(i).



2.2 Randomized on-line algorithms

The competitiveness of a randomized on-line algorithm is defined with respect
to an adversary. Ben-David et al. [13] introduced three kinds of adversaries.
They differ in the way a request sequence is generated and how the adversary is
charged for serving the sequence.

e Oblivious Adversary: The oblivious adversary has to generate a complete
request sequence in advance, before any requests are served by the on-line al-
gorithm. The adversary is charged the cost of the optimum off-line algorithm
for that sequence.

e Adaptive On-line Adversary: This adversary may observe the on-line
algorithm and generate the next request based on the algorithm’s (random-
ized) answers to all previous requests. The adversary must serve each request
on-line, i.e., without knowing the random choices made by the on-line algo-
rithm on the present or any future request.

e Adaptive Off-line Adversary: This adversary also generates a request
sequence adaptively. However, it is charged the optimum off-line cost for
that sequence.

A randomized on-line algorithm A is called c-competitive against any obliv-
ious adversary if there is a constant a such that for all size lists and all request
sequences o generated by an oblivious adversary, E[C4(0)] < ¢- Copr(c) + a.
The expectation is taken over the random choices made by A.

Given a randomized on-line algorithm A and an adaptive on-line (adaptive
off-line) adversary ADV, let E[C4] and E[C4pv] denote the expected costs
incurred by A and ADV in serving a request sequence generated by ADV. A
randomized on-line algorithm A is called c-competitive against any adaptive
on-line (adaptive off-line) adversary if there is a constant a such that for all
size lists and all adaptive on-line (adaptive off-line) adversaries ADV, E[Cy4] <
¢ E[Capv] + a, where the expectation is taken over the random choices made
by A.

Ben-David et al. [13] investigated the relative strength of the adversaries with
respect to on-line problems that can be formulated as a request-answer game,
see [13] for details. They showed that if there is a randomized on-line algorithm
that is c-competitive against any adaptive off-line adversary, then there is also
a c-competitive deterministic on-line algorithm. This immediately implies that
no randomized on-line algorithm for the list update problem can be better than
2-competitive against any adaptive off-line adversary. Reingold et al. [61] proved
a similar result for adaptive on-line adversaries.

Theorem 8. If a randomized on-line algorithm for the list update problem is
c-competitive against any adaptive on-line adversary, then ¢ > 2.

The optimal competitive ratio that can be achieved by randomized on-line
algorithms against oblivious adversaries has not been determined yet. In the
following we present upper and lower bounds known on this ratio.



Randomized on-line algorithms against oblivious adversaries The intu-
ition behind all randomized on-line algorithms for the list update problem is to
move requested items in a more conservative way than Move-To-Front, which is
still the classical deterministic algorithm.

The first randomized on-line algorithm for the list update problem was pre-
sented by Irani [37,38] and is called Split algorithm. Each item « in the list main-
tains a pointer xz.split that points to some other item in the list. The pointer of
each item either points to the item itself or to an item that precedes it in the
list.

Algorithm Split: The algorithm works as follows.
Initialization:

For all items « in the list, set z.split + x.
If item x is requested:
For all items y with y.split = x, set y.split < item behind z in the list.
With probability 1/2:
Move z to the front of the list.
With probability 1/2:
Insert x before item x.split.
If y preceded = and z.split = y.split, then set y.split + .
Set x.split to the first item in the list.

Theorem 9. The Split algorithm is (15/8)-competitive against any oblivious
adversary.

We note that (15/8) = 1.875. Trani [37,38] showed that the Split algorithm is not
better than 1.75-competitive in the i — 1 cost model. In the ¢ — 1 cost model, an
access to the ¢-th item in the list costs ¢ — 1 rather than ¢. The ¢ — 1 cost model
is often useful to analyze list update algorithms. Compared to the standard
¢ cost model, where an access to the ¢-th items costs ¢, the ¢ — 1 cost model
always incurs a smaller cost; for any request sequence o and any algorithm A,
the cost difference is m, where m is the length of o. Thus, a lower bound on the
competitive ratio developed for a list update algorithm in the i — 1 cost model
does not necessarily hold in the ¢ cost model. On the other hand, any upper
bound achieved in the ¢ — 1 cost model also holds in the i cost model.

A simple and easily implementable list update rule was proposed by Reingold
et al. [61].

Algorithm Bit: Each item in the list maintains a bit that is complemented
whenever the item is accessed. If an access causes a bit to change to 1, then
the requested item is moved to the front of the list. Otherwise the list remains
unchanged. The bits of the items are initialized independently and uniformly at
random.

Theorem 10. The Bit algorithm is 1.75-competitive against any oblivious ad-
versary.



Reingold et al. analyzed Bit using an elegant modification of the potential func-
tion given in the proof of Theorem 1. Again, an inversion is a pair of items z,y
such that & occurs before y in Bit’s list and after y in OPT’s list. An inversion
has type 1 if y’s bit is 0 and type 2 if y’s bit is 1. Now, the potential is defined
as the number of type 1 inversions plus twice the number of type 2 inversions.

The upper bound for Bit is tight in the ¢ — 1 cost model [61]. Tt was also
shown that in the 7 cost model, i.e. in the standard model, Bit is not better than
1.625-competitive [3].

Reingold et al. [61] gave a generalization of the Bit algorithm. Let [ be a
positive integer and L be a non-empty subset of {0.1....,{ — 1}. The algorithm
Counter(l, L) works as follows. Each item in the list maintains a mod [ counter.
Whenever an item z is accessed, the counter of = is decremented by 1 and,
if the new value is in L, the item x is moved to the front of the list. The
counters of the items are initialized independently and uniformly at random
to some value in {0.1....,1 — 1}. Note that Bit is Counter(2,{1}). Reingold et
al. chose parameters [ and L so that the resulting Counter(/, L) algorithm is
better than 1.75-competitive. It is worthwhile to note that the algorithms Bit
and Counter(/, L) make random choices only during an initialization phase and
run completely deterministically thereafter.

The Counter algorithms can be modified [61]. Consider a Counter(/, {0})
algorithm that is changed as follows. Whenever the counter of an item reaches
0, the counter is reset to j with probability p;, 1 < j < [—1. Reingold et al. [61]
gave a value for [ and a resetting distribution on the p;’s so that the algorithm
achieves a competitive ratio of V3~ 1.73.

Another family of randomized on-line algorithms was given by Albers [4].
The following algorithm works for any real number p € [0.1].

Algorithm Timestamp(p): Each request to an item, say x, is served as follows.
With probability p execute Step (a).
(a) Move z to the front of the list.
With probability 1 — p execute Step (b).
(b) Insert # in front of the first item in the list that precedes  and
(i) that was not requested since the last request to x
or
(ii) that was requested exactly once since the last request to # and the
corresponding request was served using Step (b) of the algorithm.
If there is no such item or if x is requested for the first time, then leave the
position of z unchanged.

Theorem 11. For any real number p € [0,1], the algorithm Timestamp(p) is
c-competitive against any oblivious adversary, where ¢ = max{2—p, 1+p(2—p)}.

Setting p = (3 — v/5)/2, we obtain a $-competitive algorithm, where & = (1 +
\/5)/2 ~ 1.62 is the Golden Ratio. The family of Timestamp algorithms also
includes two deterministic algorithms. For p = 1, we obtain the Move-To-Front
rule. On the other hand, setting p = 0, we obtain the Timestamp(0) algorithm
that was already described in Section 2.1.
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In order to implement Timestamp(p) we have to maintain, for each item in
the list, the times of the two last requests to that item. If these two times are
stored with the item, then after each access the algorithm needs a second pass
through the list to find the position where the requested item should be inserted.
Note that such a second pass is also needed by the Split algorithm. In the case
of the Split algorithm, this second pass is necessary because pointers have to be
updated.

Interestingly, it is possible to combine the algorithms Bit and Timestamp(0),
see Albers et al. [6]. This combined algorithm achieves the best competitive ratio
that is currently known for the list update problem.

Algorithm Combination: With probability 4/5 the algorithm serves a request
sequence using Bit, and with probability 1/5 it serves a request sequence using
Timestamp(0).

Theorem 12. The algorithm Combination is 1.6-competitive against any obliv-
ious adversary.

Proof. The analysis consists of two parts. In the first part we show that given any
request sequence o, the cost incurred by Combination and OPT can be divided
into costs that are caused by each unordered pair {«, y} of items « and y. Then,
in the second part, we compare on-line and off-line cost for each pair {«, y}. This
method of analyzing cost by considering pairs of items was first introduced by
Bentley and McGeoch [15] and later used in [4,37]. In the following we always
assume that serving a request to the i-th item in the list incurs a cost of i — 1
rather than ¢. Clearly, if Combination is 1.6-competitive in this ¢ — 1 cost model,
it is also 1.6-competitive in the ¢-cost model.

Let o = o(1),0(2),...,0(m) be an arbitrary request sequence of length m.
For the reduction to pairs we need some notation. Let .S be the set of items in the
list. Consider any list update algorithm A that processes o. For any ¢ € [1,m]
and any item x € S, let C4(t, ) be the cost incurred by item x when A serves
o(t). More precisely, C4(t,z) = 1 if item « precedes the item requested by o (%)
in A’s list at time #; otherwise C4(¢,2) = 0. If A does not use paid exchanges,
then the total cost C'4(o) incurred by A on o can be written as

S > Caltbr)=>" > Calt,n)

te[l,m]zeS €S te[l,m]

2.2, 2 Calto)

TzES y€eS tell,m]

Ca(o)

o(t)=y

= Z ( Z CA(tay) + Z CA(tax))'
{z v} t€[l,m] t€[1,m]
»2y  o(t)=x o(t)=y

For any unordered pair {, y} of items z # y, let o,y be the request sequence
that is obtained from ¢ if we delete all requests that are neither to x nor to y.
Let Cgrr(0sy) and Crs(o4y) denote the costs that Bit and Timestamp(0) incur
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in serving o,y on a two item list that consist of only z and y. Obviously, if Bit
serves o on the long list, then the relative position of z and y changes in the
same way as if Bit serves o, on the two item list. The same property holds
for Timestamp(0). This follows from Lemma 13, which can easily be shown by
induction on the number of requests processed so far.

Lemma 13. At any time during the processing of o, x precedes y in Time-
stamp(0)’s list if and only if one of the following statements holds: (a) the last
requests made to x and y are of the form xwx, xyxr or xxy; (b) v preceded y
initially and y was requested at most once so far.

Thus, for algorithm A € {Bit, Timestamp(0)} we have

CA(O-xy): Z CA(tay)‘i‘ Z CA(t,l‘)

te[1,m] te[1,m]
o(t)=z a(t)=y
Cal0) = Y Calowy). (2)
{=,y}
TEY

Note that Bit and Timestamp(0) do not incur paid exchanges. For the optimal
off-line cost we have

Copr(osy) < >, Copr(t,y)+ Y, Copr(t,z) + p(z,y)

t€[1,m] te[1,m]
o(t)=z o(t)=y
and
Copr(a) > Y Copr(omy), (3)
{z,y}
TEY

where p(x,y) denotes the number of paid exchanges incurred by OPT in moving
z in front of y or y in front of . Here, only inequality signs hold because if OPT
serves 0gy on the two item list, then it can always arrange z and y optimally
in the list, which might not be possible if OPT serves ¢ on the entire list. Note
that the expected cost E[Ccp(0sy)] incurred by Combination on oy, is

BCon(o)] = 5 FIChrr(72,)] + £ PICrs(ow)] )
In the following we will show that for any pair {z,y} of items E[Ccpr(04y)] <
1.6Copr(0sy). Summing this inequality for all pairs {z, y}, we obtain, by equa-
tions (2),(3) and (4), that Combination is 1.6-competitive.

Consider a fixed pair {z, y} with # # y. We partition the request sequence o,
into phases. The first phase starts with the first request in o, and ends when,
for the first time, there are two requests to the same item and the next request is
different. The second phase starts with that next request and ends in the same
way as the first phase. The third and all remaining phases are constructed in the
same way as the second phase. The phases we obtain are of the following types:

12



z* for some k > 2; (zy)* 2! for some k > 1,1 > 2; (zy)*y' for some k > 1,1 > 1.
Symmetrically, we have y*, (yz)*y and (yz)*z'.

Since a phase ends with (at least) two requests to the same item, the item
requested last in the phase precedes the other item in the two item list maintained
by Bit and Timestamp(0). Thus the item requested first in a phase is always
second in the list. Without loss of generality we can assume the same holds for
OPT, because when OPT serves two consecutive requests to the same item, it
cannot cost more to move that item to the front of the two item list after the first
request. The expected cost incurred by Bit, Timestamp(0) (denoted by TS(0))
and OPT are given in the table below. The symmetric phases with z and y
interchanged are omitted. We assume without generality that at the beginning
of 04y, y precedes z in the list.

Phase Bit T5(0) OPT
" s 2 1
(zy)*a! %k—l— 1 2k k+1
(zy)Fy %k + i 2k —1 k

The entries for OPT are obvious. When Timestamp(0) serves a phase (zy)*z!,
then the first two request zy incur a cost of 1 and 0, respectively, because z is
left behind y on the first request to . On all subsequent requests in the phase,
the requested item is always moved to the front of the list. Therefore, the total
cost on the phase is 1 + 0+ 2(k — 1) + 1 = 2k. Similarly, Timestamp(0) serves
(zy)*y’ with cost 2k — 1.

For the analysis of Bit’s cost we need two lemmata.

Lemma 14. For any item x and any t € [1,m], after the t-th request in o, the
value of x’s bit is equally likely to be 0 or 1, and the value is independent of the
bits of the other items.

Lemma 15. Suppose that Bit has served three consecutive requests yzy in gy,
or two consecutive requests xy where initially y preceded x. Then y is in front
of © with probability %. The analogous statement holds when the roles of x and
y are interchanged.

Clearly, the expected cost spent by Bit on a phase z* is 1+ % +0(k-2) = %
Consider a phase (zy)*z'. The first two requests zy incur a expected cost of 1
and %, respectively. By Lemma 15, each remaining request in the string (J:y)k
and the first request in z' have an expected cost of %. Also by Lemma 15, the
second request in z' costs 1 — % = %. All other requests in z! are free. Therefore,
Bit pays an expected cost of 1+ % + %(k’ -1+ % + i = %k + 1 on the phase.
Similarly, we can evaluate a phase (zy)*y'.

The Combination algorithm serves a request sequence with probability %
using Bit and with probability % using Timestamp(0). Thus, by the above table,
Combination has an expected cost of 1.6 on a phase z*, a cost of 1.6k + 0.8 on
a phase (zy)*z!, and a cost 1.6k on a phase (zy)*y'. In each case this is at most
1.6 times the cost of OPT.
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In the proof above we assume that a request sequence consists of accesses
only. However, the analysis is easily extended to the case that insertions and
deletions occur, too. For any item z, consider the time intervals during which =
is contained in the list. For each of these intervals, we analyze the cost caused
by any pair {#,y}, where y is an item that is (temporarily) present during the
interval. O

Teia [72] presented a lower bound for randomized list update algorithms.

Theorem 16. Let A be a randomized on-line algorithm for the list update prob-
lem. If A is c-competitive against any oblivious adversary, then ¢ > 1.5.

An interesting open problem is to give tight bounds on the competitive ratio that
can be achieved by randomized on-line algorithms against oblivious adversaries.

Results in the P? cost model As mentioned in Theorem 6, no deterministic
on-line algorithm for the list update problem in the P¢ model can be better
than 3-competitive. By a result of Ben-David et al. [13], this implies that no
randomized on-line algorithm for the list update problem in the P¢ model can
be better than 3-competitive against any adaptive off-line adversary. Reingold et
al. [61] showed that the same bound holds against adaptive on-line adversaries.

Theorem 17. Let A be a randomized on-line algorithm for the list update prob-
lem in the P% model. If A is c-competitive against any adaptive on-line adversary,
then ¢ > 3.

Reingold et al. [61] analyzed the Counter(l, {{ — 1}) algorithms, [ being a
positive integer, for list update in the P? model. As described before, these
algorithms work as follows. Each item maintains a mod [/ counter that is decre-
mented whenever the item is requested. When the value of the counter changes
to [ — 1, then the accessed item is moved to the front of the list. In the P? cost
model, this movement is done using paid exchanges. The counters are initialized
independently and uniformly at random to some value in {0,1,...,1 — 1}.

Theorem 18. In the P* model, the algorithm Counter(l, {I—1}) is c-competitive

against any oblivious adversary, where ¢ = max{1 + l;%‘ll, 1+ %(Qd + H'Tl)}

The best value for [ depends on d. As d goes to infinity, the best competitive ratio
achieved by a Counter(l, {{ — 1}) algorithm decreases and goes to (5 ++/17)/4 ~
2.28.

We now present an analysis of the deterministic version of the Counter({, {{—
1}) algorithm. The deterministic version is the same as the randomized version,
except that all counters are initialized to zero, rather than being randomly ini-
tialized.

Theorem 19. In the P4 model, the deterministic algorithm Counter(l,{l—1})
is c-competitive, where ¢ = max{3 + %l, 2+ Zl—d}
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Proof. The analysis is similar in form to that of Combination. Consider a pair of
items {z, y}. Let ¢(z) and ¢(y) denote the values of the counters at items x and
y, respectively. We define a potential function ¢. Assume w.l.o.g. that OPT’s
list is ordered (z,y). Then

& — (14 2d/l)e(y) if Counter’s list is ordered (z,y)
Tl k+d—c(x)+ (14 2d/l)c(y) if Counter’s list is ordered (y, z)

The remainder of the proof follows by case analysis. For each event in each
configuration, we compare the amortized cost incurred by Counter to the actual
cost incurred by OPT. (See the proof of competitiveness of MTF.) O

As in the randomized case, the optimum value of { for the deterministic Counter
algorithm depends on d. As d goes to infinity, the best competitive ratio decreases
and goes to (5++/17)/2 = 4.56, exactly twice the best randomized value.

2.3 Average case analyses of list update algorithms

In this section we study a restricted class of request sequences: request se-
quences that are generated by a probability distribution. Consider a list of n
items #1, #3,...,%,, and let p = (p1, P2, ..., Pn) be a vector of positive proba-
bilities p; with 37| pi = 1. We study request sequences that consist of accesses
only, where each request it made to item x; with probability p;, 1 < i < n. It is
convenient to assume that py > ps > --- > p,.

There are many results known on the performance of list update algorithms
when a request sequence is generated by a probability distribution, i.e. by a
discrete memoryless source. In fact, the algorithms Move-To-Front, Transpose
and Frequency-Count given in Section 2.1 as well as their variants were proposed
as heuristics for these particular request sequences.

We are now interested in the asymptotic expected cost incurred by a list up-
date algorithm. For any algorithm A, let F4(p) denote the asymptotic expected
cost incurred by A in serving a single request in a request sequence generated by
the distribution p = (p1, ..., pn). In this situation, the performance of an on-line
algorithm has generally been compared to that of the optimal static ordering,
which we call STAT. The optimal static ordering first arranges the items ; in
nonincreasing order by probabilities and then serves a request sequence without
changing the relative position of items. Clearly, Esrar(p) = > ., ip; for any
distribution p = (p1,...,pn).

As in Section 2.1, we first study the algorithms Move-To-Front(MTF), Trans-
pose(T) and Frequency-Count(FC). By the strong law of large numbers we
have Frc(p) = Esrar(p) for any probability distribution p [62]. However,
as mentioned in Section 2.1, Frequency-Count may need a large amount of
extra memory to serve a request sequence. It was shown by several authors

[17,19,35,45,55,62] that

pip;
Eyrr(p) =142 Z —
1<iy<n P P1)
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for any p = (p1,...,Pn)- A simple, closed-form expression for the asymptotic
expected cost of the Transpose rule has not been found. The expression for
Enrr(p) was used to show that Epyrr(p) < 2Esrar(p) for any distribution
p- However, Chung et al. [22] showed that Move-To-Front performs better.

Theorem 20. For any probability distribution p, Exrr(p) < 5Esrar(p).
This bound is tight as was shown by Gonnet et al. [32].

Theorem 21. For any € > 0, there exists a probability distribution p. with
Eyxrr(pe) > (5 — ) Esrar(pe).

The distributions used in the proof of Theorem 21 are of the form
pi=1/(*H2)  i=1,...n

where H? = Y7 | 1/i%. These distributions are called Lotka’s Law. There are
probability distributions po for which the ratio of Eyrrr(po)/Esrar(Po) can be
smaller than 7/2 &~ 1.58. Let p; = 1/(iH,), 1 <i <n, with H, = >, 1/i. This
distribution is called Zipf’s Law. Knuth [45] showed that for this distribution
Po, Exrrr(pPo) < (2In2)Esrar(po). We note that 2In2 ~ 1.386.

Rivest [62] proved that Transpose performs better than Move-To-Front on
distributions.

Theorem 22. For any distribution p = (p1,...,pn), Fr(p) < Epyrr(p). The
inequality is strict unlessn =2 orp;, = 1/n fori=1,...,n.

Rivest conjectured that Transpose is optimal among all permutation rules. A
permutation rule, when accessing an item at position j, applies a permutation
m; to the first j positions in the list. However, Anderson et al. [8] found a coun-
terexample to this conjecture. Bitner [17] showed that while Er(p) < Eyrr(p),
the Move-To-Front rule converges faster to its asymptotic expected cost than
Transpose.

The algorithms Move-To-Front, Transpose and Frequency-Count were also
analyzed experimentally [10,15,62,73]. Rivest [62] generated request sequences
that obeyed Zipf’s law. On these sequences, Transpose indeed performed better
than Move-To-Front. In contrast, Bentley and McGeoch [15] considered request
sequences that came from word counting problems in text and Pascal files. In
their tests, Transpose always performed worse than Move-To-Front and Fre-
quency Count, with Move-To-Front usually being better then Frequency-Count.
In general, STAT achieved a smaller average search time than the three on-line
algorithms.

Finally, we consider the Timestamp(0) algorithm that was also presented in
Section 2.1. Tt was shown in [5] that Timestamp(0) has a better performance than
Move-To-Front if request sequences are generated by probability distributions.
Let Ers(p) denote the asymptotic expected cost incurred by Timestamp(0).

Theorem 23. For any probability distribution p, Ers(p) < 1.34FEsra7(P).
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Theorem 24. For any probability distribution p, Ers(p) < 1.5Fopr(p).

Note that Eopr(p) is the asymptotic expected cost incurred by the optimal off-
line algorithm OPT, which may dynamically rearrange the list while serving
a request sequence. Thus, this algorithm is much stronger than STAT. The
algorithm Timestamp(0) is the only algorithm whose asymptotic expected cost
has been compared to Eopr(p).

The bound given in Theorem 24 holds with high probability. More precisely,
for every distribution p = (p1,...,pn), and € > 0, there exist constants ¢y, ¢z
and mg dependent on p,n and € such that for any request sequence o of length
m > mg generated by p,

Prob{Crs(o) > (1.54 €)Copr(o)} < cre” ™,

2.4 Remarks

List update techniques were first studied in 1965 by McCabe [55] who consid-
ered the problem of maintaining a sequential file. McCabe also formulated the
algorithms Move-To-Front and Transpose. From 1965 to 1985 the list update
problem was studied under the assumption that a request sequence is generated
by a probability distribution. Thus, most of the results presented is Section 2.3
were developed earlier than the results in Sections 2.1 and 2.2. A first survey on
list update algorithms when request sequences are generated by a distribution
was written by Hester and Hirschberg [36]. The paper [64] by Sleator and Tar-
jan is a fundamental paper in the entire on-line algorithms literature. It made
the competitive analysis of on-line algorithms very popular. Randomized on-
line algorithms for the list update problem have been studied since the early
nineties. The list update problem is a classical on-line problem that continues to
be interesting both from a theoretical and practical point of view.

3 Binary search trees

Binary search trees are used to maintain a set .S of elements where each element
has an associated key drawn from a totally ordered universe. For convenience we
assume each element is given a unique key, and that the n elements have keys
1,...,n. We will generally not distinguish between elements and their keys.

A binary search tree is a rooted tree in which each node has zero, one, or
two children. If a node has no left or right child, we say it has a null left or right
child, respectively. Each node stores an element, and the elements are assigned
to the nodes in symmetric order: the element stored in a node is greater than all
elements in descendents of its left child, and less than all elements in descendents
of its right child. An inorder traversal of the tree yields the elements in sorted
order. Besides the elements, the nodes may contain additional information used
to maintain states, such as a color bit or a counter.

The following operations are commonly performed on binary search trees.
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Successful-Access(z). Locate an element = € S.

Unsuccessful-Access(z). Determine that an element # is not in S.

Insert(z). Add a new element z to S. The tree is modified by adding a new
node containing the element as a leaf, so that symmetric order is maintained.

Delete(x). Remove element x from S. The resultant tree has one fewer nodes.
There are several different deletion algorithms for binary search trees.

Split(xz). Split S into two sets: S1 ={y | ye€ S,y <z}and S ={y | v €
S,y > «}. 51 and Sz must be contained in two search trees.

Meld(51, S3). The inverse of a split (for all x € S1,y € S2, © < y).

Adel’son-Vel’skii and Landis [2] introduced a primitive operation for restruc-
turing a binary search tree, the edge rotation. Figure 1 shows examples of left
and right rotation of edge {z, y). Rotation preserves symmetric order.

@ o
ORWAN JANRO
JAWA £\ [\

Fig. 1. Right and left rotations of {z, y}.

In the standard search tree model [65,76] a search tree algorithm has the
following behavior:

The algorithm carries out each (successful) access by traversing the
path from the root to the node containing the accessed item, at a cost
of one plus the depth of the node containing the item. Between accesses
the algorithm performs an arbitrary number of rotations anywhere in
the tree, at a cost of one per rotation.!

The path from the root to a node is called the access path. If the path consists
of only left edges, it is called a left path. A right path is defined analogously.

We expand the model to include unsuccessful searches, insertions and dele-
tions as follows. Let Tg be a search tree on n elements. Ty is extended to search
tree T' by replacing any null child in the original tree by a leaf. Each leaf has
an assoclated key range. If leaf [ replaces the null left child of node z, then the
range of [ is the set of key values that are less than x but greater than the pre-
decessor of z in the tree. If z is the least key in the original tree, then the range

! This definition is a slightly modified form of the one given in [65].
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of [ is all keys less than x. Similarly, if [ replaces a null right child of z, then its
range is all keys greater than = but less than the successor of z, if one exists.
This is a well-known extension, and it is easy to see that the leaf ranges are
disjoint. Successful searches are carried out as before. Between any operation,
any number of rotations can be performed at cost 1 per rotation.

The algorithm carries out an unsuccessful access to key ¢ by traversing
the path from the root to the leaf whose range contains i. The cost is 1
plus the length of the path.

The algorithm carries out an insertion of a new element  (not already
in the tree by assumption) by performing an unsuccessful search for x.
Let [ be the leaf reached by the search. Leaf [ is replaced by a new node
containing . The new node has two new leaves containing the two halves
of the range originally in [. The cost is 1 plus the length of the path.

The model for deletion is rather more complicated, as deletion is itself a more
complicated operation and can be done in a number of ways.

The algorithm deletes an element x (already in the tree by assump-
tion) in several phases. In the first phase, a successful search for z is
performed, at the usual cost. In the second phase, any number of rota-
tions are performed at cost 1 per rotation. In the third phase, let S, be
the subtree rooted at = after phase two. Let p be the predecessor of x in
Sz, or x itself if x is the least element in S,. Similarly, let s the successor
of  in S, or z itself if x has no successor. The algorithm chooses one
of p or s, say p w.l.o.g., and traverses the path from z to p, at cost 1
plus the path length. In phase four, the algorithm changes pointers in z,
p, and their parents, to construct two search trees, one consisting only
of z, and the other containing all the remaining elements. The singleton
tree is discarded. The cost of phase four is 1.

The successful and unsuccessful access can be implemented in a comparison
model with a well-known recursive procedure (see [27, Chapter 13]): the search
key is compared to the element in the root of the tree. If they are equal, the
root element is returned. Otherwise the left subtree or right subtree of the root is
recursively searched, according to whether the key is less than or greater than the
root element, respectively. If the desired subtree is null, the procedure returns an
unsuccessful search indicator. Examples of various deletion routines algorithms
can be found in [27] or [65].

For what follows, we will restrict our attention to request sequences that
consist only of successful accesses, unless otherwise stated. For an algorithm,
A, in the standard search model, let A(c, Ty) denote the sum of the costs of
accesses and rotations performed by A in response to access sequence o starting
from tree Ty, where T is a search tree on n elements and o accesses only the
elements in Tp. Let OPT (o, Tp) denote the minimum cost of servicing o, starting
from search tree Ty containing elements 1,. .., n, including both access costs and
rotation costs.
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Definition 25. An algorithm A is f(n)-competitive if for all o, Ty
A(o,Tp) < f(n) - OPT (o, To) + O(n). (5)

Let S denote the static search algorithm, i.e., the algorithm which performs
no rotations on the initial tree Tp.

Definition 26. An algorithm A is f(n)-static-competitive if for all o, Ty
A(o, To) < f(n) -mTin S(e,T)+ O(n) (6)
where T is a search tree on the same elements as Tg.

Note that S(o, T) is given by
> fo@)dr(i)
i=1

where f, (%) is the number of times element i is accessed in o, and dp (i) denotes
the depth of element ¢ in search tree T'.

A final definition deals with probabilistic request sequences, in which each
request is chosen at random from among the possible requests according to some
distribution D. That is, on each request element ¢ is requested with probability
pi, i = 1,...,n. For a fixed tree T', the expected cost of a request is

1+ szdT(l)
i=1

We denote this S(D,T), indicating the cost of distribution D on static tree T.
Finally, let S(D) = ming S(D,T) denote the expected cost per request of the
optimal search tree for distribution D. For a search tree algorithm A, let A(D, Tp)
denote the asymptotic expected cost of servicing a request, given that the request
is generated by D and the algorithm starts with 7.

Definition 27. An algorithm A is called f(n)-distribution-competitive if for all
n, all distributions D on n elements and all initial trees Ty on n elements,

A(D, To) < f(n) - S(D). (7)

Definitions 26 and 27 are closely related, since both compare the cost of an
algorithm on sequence o to the cost of a fixed search tree T on o. The fixed
tree T' that achieves the minimum cost is the tree that minimizes the weighted
path length 37, w(i)dy (i), where the weight of node i is the total number of
accesses to i, in the case of static competitiveness, or the probability of an access
to 7, in the case of distribution optimality. Knuth [44] gives an O(n?) algorithm
for computing a tree that minimizes the weighted path length. By information
theory [1], for a request sequence o, m = |7|,

S(o,T) = 2(m + Z fo(i)log(m/ f4 (i)))-
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In the remainder of this section, we will first discuss the off-line problem, in
which the input is the entire request sequence ¢ and the output is a sequence of
rotations to be performed after each request so that the the total cost of servicing
o is minimized. Little is known about this problem, but several characterizations
of optimal sequences are known and these suggest some good properties for on-
line algorithms.

Next we turn to on-line algorithms. An O(logn) competitive ratio can be
achieved by any one of several balanced tree schemes. So far, no on-line algo-
rithm is known that is o(log n)-competitive. Various adaptive and self-organizing
rules have been suggested over the past twenty years. Some of them have good
properties against probability distributions, but most perform poorly against
arbitrary sequences. Only one, the splay algorithm, has any chance of being
O(1)-competitive. We review the known properties of splay trees, the various
conjectures made about their performance, and progress on resolving those con-
jectures.

3.1 The off-line problem and properties of optimal algorithms

An off-line search tree algorithm takes as input a request sequence o and an ini-
tial tree T and outputs a sequence of rotations, to be intermingled with servicing
successive requests in o, that achieves the minimum total cost OPT (e, Tp).

It is open whether OPT(o, Tp) can be computed in polynomial time. There

2 . . .
are —— <nn> binary search trees on n nodes, so the dynamic programming

algorithm for solving metrical service systems or metrical task systems requires
exponential space just to represent all possible states.

A basic subproblem in the dynamic programming solution is to compute the
rotation distance, d(T1,T3), between two binary search trees Ty and Tz on n
nodes. The rotation distance is the minimum number of rotations needed to
transform 77 into T5. It is also open whether the rotation distance can be com-
puted in polynomial time. Upper and lower bounds on the worst-case rotation
distance are known, however.

Theorem 28. The rotation distance between any two binary trees is at most
2n-6, and there is an infinite family of trees for which this bound is tight.

An upper bound of 2n — 2 was shown by Crane [28] and Culik and Wood
[46]. This bound is easily seen: a tree T can be converted into a right path
by repeatedly rotating an edge hanging off the right spine onto the right spine
with a right rotation. This process must eventually terminate with all edges
on the right spine. Since there are n — 1 edges, the total number of rotations
is n — 1. To convert T} to T3, convert 77 to a right path then compute the
rotations needed to convert 7% to a right path, and apply them in reverse to
the right spine into which 77 has been converted. At most 2n — 2 rotations are
necessary. Sleator, Tarjan and Thurston [66] improved the upper bound to 2n—6
using a relation between binary trees and triangulations of polyhedra. They also
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demonstrated the existence of an infinite family in which 2n — 6 rotations were
required. Makinen [52] subsequently showed that a weaker upper bound of 2n—5
can be simply proved with elementary tree concepts. His proof is based on using
either the left path or right path as an intermediate tree, depending on which
is closer. Luccio and Pagli [51] showed that the tight bound 2n — 6 could be
achieved by adding one more possible intermediate tree form, a root whose left
subtree is a right path and whose right subtree is a left path.

Wilber [76] studied the problem of placing a lower bound on the cost of
the optimal solution to specific families of request sequences. He described two
techniques for calculating lower bounds, and used them to show the existence
of request sequences on which the optimal cost is £2(nlogn). We give one of
his examples below. Let i and k be non-negative integers, i € [0,2* — 1]. The
k-bit reversal of i, denoted bry (i), is the integer j given by writing the binary
representation of i backwards. Thus br;(6) = 3 (110 = 011). The bit reversal
permutation on n = 2* elements is the sequence B* = bry(0), bry(1),. .., brg(n—

1).
Theorem 29. [76] Let k be a nonnegative integer and let n = 2%. Let Ty be any
search tree with nodes 0,1,...,n — 1. Then OPT(B*,Ty) > nlogn + 1.

Lower bounds for various on-line algorithms can be found using two much
simpler access sequences: the sequential access sequence o° =1,2,...,n, and the
reverse order sequence off = n,n—1,..., 1.1t is easy to see that OPT(c°, Tp) =
O(n). For example, Ty can be rotated to a right spine in n — 1 time, after which
each successive accessed element can be rotated to the root with one rotation.
This gives an amortized cost of 2 — 1/n per access. The optimal static tree is
the completely balanced tree, which achieves a cost of @(logn) per access. The
sequential access sequence can be repeated k times, for some integer k, with the
same amortized costs per access.

Although no polynomial time algorithm is known for computing OPT(o, Tp),
there are several characterizations of the properties of optimal and near-optimal
solutions. Wilber [76] and Lucas [50] note that there is a solution within a factor
of two of optimum in which each element is at the root when it is accessed. The
near-optimal algorithm imitates the optimal algorithm except that it rotates
the accessed item to the root just prior to the access, and then undoes all the
rotations in reverse to restore the tree to the old state. Hence one may assume
that the accessed item is always at the root, and all the cost incurred by the
optimum strategy is due to rotations.

Lucas [50] proves that there is an optimum algorithm in which rotations occur
prior to the access and the rotated edges form a connected subtree containing
the access path. In addition, Lucas shows that if in the initial tree Ty there is a
node x none of whose descendents (including x) are ever accessed, then = need
never be involved in a rotation. She also studies the “rotation graph” of a binary
tree and proves several properties about the graph [48]. The rotation graph can
be used to enumerate all binary search trees on n nodes in O(1) time per tree.

Lucas makes several conjectures about the off-line and on-line search tree
algorithms.
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Conjecture 1. (Greedy Rotations) There is a c-competitive off-line algo-
rithm (and possibly on-line) such that each search is to the element at the root
and all rotations decrease the depth of the next element to be searched for.

Observe that the equivalent conjecture for the list update problem (that all
exchanges decrease the depth of the next accessed item) is true for list update,
since an off-line algorithm can be 2-competitive by moving the next accessed
item to the front of the list just prior to the access. The cost is the same as
is incurred by the move-to-front heuristic, since the exchanges save one unit of
access cost. But for list update, there is no condition on relative position of
elements ( i.e. no requirement to maintain symmetric order), so the truth of the
conjecture for search trees is non-obvious.

Lucas proposes a candidate polynomial-time off-line algorithm, and conjec-
tures that it provides a solution that is within a constant factor of optimal, but
does not prove the conjecture. The proposed “greedy” algorithm modifies the
tree prior to each access. The accessed element is rotated to the root. The edges
that are rotated off the path during this process form a collection of connected
subtrees, each of which is a left path or a right path. These paths are then con-
verted into connected subtrees that satisfy the heap property where the heap
key of a node is the time it or a descendent off the path will be next accessed.
This tends to move the element that will be accessed soonest up the tree.

3.2 On-line algorithms

An O(logn)-competitive solution is achievable with a balanced tree; many bal-
anced binary tree algorithms are known that handle unsuccessful searches, in-
sertions, deletions, melds, and splits in O(logn) time per operation, either amor-
tized or worst-case. Examples include AVL-trees, red/black trees, and weight-
balanced trees; see the text [27] for more information. These data structures
make no attempt to self-organize, however, and are concerned solely with keep-
ing the maximum depth of any item at O(logn). Any heuristic is, of course,
O(n)-competitive.

A number of candidate self-organizing algorithms have been proposed in
the literature. These can generally be divided into memoryless and state-based
algorithms. A memoryless algorithm maintains no state information besides the
current tree. The proposed memoryless heuristics are:

1. Move to root by rotation [7].
2. Single-rotation [7].
3. Splaying [65].

The state-based algorithms are

1. Dynamic monotone trees [17].
2. WPL trees [21].
3. D-trees [57,58].
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3.3 State-based algorithms

Bitner [17] proposed and analyzed dynamic monotone trees. Dynamic monotone
trees are a dynamic version of a data structure suggested by Knuth [45] for
approximating optimal binary search trees given a distribution D. The element
with maximum probability of access is placed at the root of the tree. The left and
right subtrees of the root are then constructed recursively. In dynamic monotone
trees, each node contains an element and a counter. The counters are initialized
to zero. When an element is accessed, its counter is incremented by one, and
the element is rotated upwards while its counter is greater than the counter in
its parent. Thus the tree stores the elements in symmetric order by key, and in
max-heap order by counter. A similar idea is used in the “treap,” a randomized
search tree developed by Aragon and Seidel [9].

Unfortunately, monotone and dynamic monotone trees do poorly in the worst
case. Mehlhorn [56] showed that the distribution-competitive ratio is £2(n/ logn).
This is easily seen by assigning probabilities to the elements 1,...,n so that
p1 > ps > ... > p, but so that all are very close to 1/n. The monotone tree
corresponding to these probabilities is a right path, and by the law of large
numbers a dynamic monotone tree will asymptotically tend to this form. The
monotone tree is also no better than £2(n)-competitive; repetitions of sequential
access sequence give this lower bound. Bitner showed, however, that monotone
trees do perform better on probability distributions with low entropy (the bad
sequence above has nearly maximum entropy). Thus as the distributions become
more skewed, monotone trees do better.

Bitner also suggested several conditional modification rules. When an edge is
rotated, one subtree decreases in depth while another increases in depth. With
conditional rotation, an accessed node is rotated upwards if the total number
of accesses to nodes in the subtree that moves up is greater than the total
number of accesses to the subtree that moves down. No analysis of the conditional
rotation rules is given, but experimental evidence is presented which suggests
they perform reasonably well. No such rule is better than £2(n)-competitive,
however, for the same reason single exchange is not competitive.

Oommen et al. [21] generalized the idea of conditional rotations by adding
two additional counters. One stores the number of accesses to descendents of
a node, and one stores the total weighted path length (defined above) of the
subtree rooted at the node. After an access, the access path is processed bottom-
up and successive edges are rotated as long as the weighted path length (WPL)
of the whole tree diminishes. The weight of a node at time ¢ for this purpose
is taken to be the number of accesses to that node up to time . Qommen et
al. claim that their WPL algorithm asymptotically approaches the tree with
minimum weighted path length, and hence is O(1)-distribution-competitive. By
the law of large numbers, the tree that minimizes the weighted path length will
asymptotically approach the optimal search tree for the distribution. The main
contribution of Oommen et al. is to show that changes in the weighted path
length of the tree can be computed efficiently. The WPL tree can be no better
than £2(logn)-competitive (once again using repeated sequential access) but it
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is unknown if this bound is achieved. It is also unknown whether WPL-trees are
O(1)-static-competitive.

Mehlhorn [57,58] introduced the D-tree. The basic idea behind a D-tree is
that each time an element is accessed the binary search tree is extended by adding
a dummy node as a leaf in the subtree rooted at accessed element. The extended
tree is then maintained using a weight-balanced or height-balanced binary tree
(see [58] for more information on such trees). Since nodes that are frequently
accessed will have more dummy descendents, they will tend to be higher in the
weight-balanced tree. Various technical details are required to implement D-trees
in a space-efficient fashion. Mehlhorn shows that the D-tree is O(1)-distribution-
competitive.

At the end of an access sequence the D-tree is near the optimal static binary
tree for that sequence, but it is not known if it is O(1)-static-competitive, since
a high cost may be incurred in getting the tree into the right shape.

3.4 Simple memoryless heuristics

The two memoryless heuristics move-to-root (MTR) and simple exchange (SE)
were proposed by Allen and Munro as the logical counterparts in search trees of
the move-to-front and transpose rules of sequential search.

In simple exchange, each time an element is accessed, the edge from the
node to its parent is rotated, so the element moves up. With the MTR, rule, the
element is rotated to the root by repeatedly applying simple exchanges. Allen
and Munro show that MTR fares well when the requests are generated by a
probability distribution, but does poorly against an adversary.

Theorem 30. [7] The move-to-root heuristic is O(1)-distribution-competitive.
Remark: the constant inside the O(1) is 2In2 + o(1).

Theorem 31. [7] On the sequential access sequence o = (1,2,...,n)* the MTR
heuristic incurs £2(n) cost per request when k > 2.

Remark: Starting from any initial tree Tg, the sequence 1,2,...,n will cause
MTR to generate the tree consisting of a single left path. Thereafter the cost of
a request to ¢ will have cost n — ¢ + 1.

Corollary 32. The competitive ratio of the MTR heuristic is ©(n), and the
static competitive ratio of MTR is 2(n/logn).

The corollary follows from the observation of Section 3.1 that the sequential
access sequence can be satisfied with O(1) amortized cost per request, and with
O(logn) cost per request if a fixed tree is used.

Although MTR, is not competitive, it does well against a probability dis-
tribution. The simple exchange heuristic, however, is not even good against a
probability distribution.
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Theorem 33. [7] If p; = 1/n, 1 <i < n, then the asymptotic expected time per
request of the simple exchange algorithm is \/7n + o(y/n).

For this distribution the asymptotic expected cost of a perfectly balanced tree
is O(logn). This implies:

Corollary 34. The distribution competitive ratio of SE is 2(v/n/logn).

Corollary 35. The competitive ratio of SE is ©(n), and the static competitive
ratio of SE is 2(n/logn).

Corollary 35 can be proved with a sequential access sequence, except that each
single request to ¢ is replaced by enough consecutive requests to force i to the
root. After each block of consecutive requests to a given element ¢, the resulting
tree has the same form as the tree generated by MTR does after a single request
to .

3.5 Splay trees

To date, the only plausible candidate for a search tree algorithm that might be
O(1)-competitive is the splay tree, invented by Sleator and Tarjan [65]. A splay
tree is a binary search tree in which all operations are performed by means of a
primitive called splaying. A splay at node z is a sequence of rotations on the path
that moves x the root of the tree. The crucial difference between splaying and
simple move-to-root is that while move-to-root rotates each edge on the path
from x to the root in order from top to bottom, splaying rotates some higher
edges before some lower edges. The order is chosen so that the nodes on the path
decrease in depth by about one half. This halving of the depth does not happen
with the move-to-root heuristic.

The splaying of node z to the root proceeds by repeatedly determining which
of the three cases given in Fig. 2 applies, and performing the diagramed rotations.
Sleator and Tarjan call these cases respectively the zig, zig-zig, and zig-zag cases.
Note that in the zig and zig-zag cases, the rotations that occur are precisely those
that would occur with the move-to-root heuristic. But the zig-zig is different.
Simple move-to-root applied to a long left or right path leads to another long
left or right path, while repeatedly executing zig-zig makes a much more balanced
tree.

The fundamental lemma regarding splay trees is the splay access lemma. Let
wy, Wa, ..., W, be a set of arbitrary real weights assigned to elements 1 through
n respectively, and let W = 3>"" | w;.

Lemma 36. [65] The cost of splaying item i to the root is O(log(W/w;)).

This result is based on the following potential function (called a centroid poten-
tial function by Cole [24,25]). Let s; be the sum of the weights of the elements
that are descendents of ¢ in the search tree, including ¢ itself. Let »; = log s;. Then
@ = >"" | ri. The amortized cost of a zig-zig or zig-zag operation is 3(r, — ry)
while the cost of a zig operation is 3r, (with reference to Fig. 2).
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(a) Zig case.

(b) Zig-zig case.

(c) Zig-zag case.

Fig. 2. Three cases of splaying. Case (a) applies only when y is the root. Symmetric
cases are omitted.

Theorem 37. [65] The splay tree algorithm is O(logn)-competitive.

This follows from Lemma 36 with w; = 1 for all ¢, in which case the amortized
cost of an access is O(logn). Therefore splay trees are as good in an asymptotic
sense as any balanced search tree. They also have other nice properties. Opera-
tions such as delete, meld, and split can be implemented with a splay operation
plus a small number of each pointer changes at the root. Splay trees also adapt
well to unknown distributions, as the following theorem shows.

Theorem 38. [65] The splay tree is O(1)-static-competitive.

This theorem follows by letting w; = f,(7), the frequency with which i is accessed
in o, and comparing with the information theoretic lower bound given at the
beginning of this section.

Sleator and Tarjan also made several conjectures about the competitiveness
of splay trees. The most general is the “dynamic optimality” conjecture.

Conjecture 2. (Dynamic optimality) The splay tree is O(1)-competitive.

Sleator and Tarjan made two other conjectures, both of which are true if
the dynamic optimality conjecture is true. (The proofs of these implications are
non-trivial, but have not been published. They have been reported by Sleator
and Tarjan [65], Cole et al. [26] and Cole [24,25].)
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Conjecture 3. (Dynamic finger) The total time to perform m successful ac-
cesses on an n-node splay tree is O(m + n + Z;n:_ll log(|i;41 — 4] + 1), where
for 1 <i <m the jth access is to item i; (we denote items by their symmetric
order position).

Conjecture 4. (Traversal) Let Ty and Tz be any two n-node binary search
trees containing exactly the same items. Suppose we access the items in Ty one
after another using splaying, accessing them in order according to their preorder
number in Ty. Then the total access time is O(n).

There are a number of variations of basic splaying, most of which attempt
to reduce the number of rotations per operation. Sleator and Tarjan suggested
semisplaying, in which only the topmost of the two zig-zig rotations is done, and
long splaying, in which a splay only occurs if the path is sufficiently long. Semi-
splaying still achieves an O(logn) competitive ratio, as does long splaying with
an appropriate definition of “long.” Semisplaying may still be O(1)-competitive,
but long splaying cannot be. Klostermeyer [43] also considered some variants of
splaying but provides no analytic results.

3.6 Progress on splay tree conjectures

In this section we describe subsequent progress in resolving the original splay
tree conjectures, and several related conjectures that have since appeared in the
literature.

Tarjan [71] studied the performance of splay trees on two restricted classes
of inputs. The first class consists of sequential access sequences, o = 1,2,...,n.
The dynamic optimality conjecture, if true, implies that the time for a splay tree
to perform a sequential access sequence must be O(n), since the optimal time
for such a sequence is at most 2n.

Theorem 39. [71] Given an arbitrary n-node splay tree, the total time to splay
once at each of the nodes, in symmetric order, is O(n).

Tarjan called this the scanning theorem. The proof of the theorem is based
on an inductive argument about properties of the tree produced by successive
accesses. Subsequently Sundar [67] gave a simplified proof based on a potential
function argument.

In [71] Tarjan also studied request sequences consisting of double-ended queue
operations: PUSH, POP, INJECT, EJECT. Regarding such sequences he made the
following conjecture.

Conjecture 5. (Deque) Consider the representation of a deque by a binary
tree in which the ith node of the binary tree in symmetric order corresponds
to the ith element of the deque. The splay algorithm is used to perform deque
operations on the binary tree as follows: POP splays at the smallest node of
the tree and removes it from the tree; PUSH makes the inserted item the new
root, with null left child and the old root as right child; EJECT and INJECT are
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symmetric. The cost of performing any sequence of m deque operations on an
arbitrary n-node binary tree using splaying is O(m + n).

Tarjan observed that the dynamic optimality conjecture, if true, implies the
deque conjecture. He proved that the deque conjecture is true when the request
sequence does not contain any EJECT operations. That is, new elements can be
inserted at both ends of the queue, but only removed from one end. Such a deque
is called output-restricted.

Theorem 40. [71] Consider a sequence of m PUSH, POP, and INJECT operations
performed as described in the deque conjecture on an arbitrary initial tree Ty
containing n nodes. The total time required is O(m + n).

The proof uses an inductive argument.
Lucas [49] showed the following with respect to Tarjan’s deque conjecture.

Theorem 41. [49] The total cost of a series of ejects and pops is O(na(n,n))
if the initial tree is a simple path of n nodes from minimum node to marimum
node.?

Sundar [67,68] came within a factor of a(n) of proving the deque conjecture.
He began by considering various classes of restructurings of paths by rotations.
A right 2-turn on a binary tree is a sequence of two right rotations performed
on the tree in which the bottom node of the first rotation is identical to the top
node of the second rotation. A 2-turn is equivalent to a zig-zig step in the splay
algorithm. (The number of single right rotations can be £2(n?). See, for example,
the remark above following Thm. 31.) As reported in [71], Sleator conjectured
that the total number of right 2-turns in any sequence of right 2-turns and right
rotations performed on an arbitrary n-node binary tree is O(n). Sundar observed
that this conjecture, if true, would imply that the deque conjecture was true.
Unfortunately, Sundar disproved the turn conjecture, showing examples in which
2(nlogn) right 2-turns occur.?

Sundar then considered the following generalizations of 2-turns.

1. Right twists. For k > 1, a right k-twist arbitrarily selects &k different edges
from a left subpath of the binary tree and rotates the edges one after another
in top-to-bottom order. From an arbitrary initial tree, O(nl‘l'l/k) right twists
can occur and .Q(nl‘l'l/k) — O(n) are possible.

2. Right turns: For any k > 1 a right k-turn is a right k-twist that converts a
left subpath of k& edges in the binary tree into a right subpath by rotating
the edges of the subpath in top-to-bottom order. O(na(k/2,n)) right twists
can occur if k # 3 and O(nloglogn) can occur if £ = 3. On the other hand,
there are trees in which 2(na(k/2,n)) — O(n) k-twists are possible if & # 3
and 2(nloglogn) are possible when & = 3.

2 a(t,j) is the functional inverse of the Ackermann function, and is a very slowly
growing function. See, for example, [69] for more details about the inverse Ackermann
function.

8 Sundar reports that S.R. Kosaraju independently disproved the turn conjecture, with
a different technique.
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3. Right cascade: For k > 1, a right k-cascade is a right k-twist that rotates
every other edge lying on a left subpath of 2k — 1 edges in the binary tree.
The same bounds hold for right k-cascades as for right turns.

(Symmetric definitions and results hold for left twists, turns, and cascades.)
Using these results, Sundar proved the following theorem.

Theorem 42. [67,68] The cost of performing an intermized sequence of m deque
operations on an arbitrary n-node binary tree using splaying is O((m+n)a(m+
n,m+n)).

Sundar added one new conjecture to the splay tree literature. A right ascent of
a node z is a maximal series of consecutive right rotations of the edge connecting
a node and its parent.

Conjecture 6. (Turn-ascent) The mazimum number of right 2-turns in any
intermized series of right 2-turns and r right ascents performed on an n-node
binary search tree is O(n+r).

Sundar observes that if this conjecture is true, it implies the truth of the deque
conjecture.

The greatest success in resolving the various splay conjectures is due to Cole
[24,25], who was able to prove the truth of the dynamic finger conjecture. His
paper is quite complex, and builds both on the work of Sundar and of Cole et
al. [26] on splay sorting.

Theorem 43. Dynamic finger theorem. [65] The total time to perform m
successful accesses on an n-node splay tree is 0(771—1—71—1—23;12_11 log(|7;41—1%;]4+1)),
where for 1 < 1 < m the jth access is to item i; (we denote items by their
symmetric order position).

The proof of this theorem is very intricate, and we will not attempt to summarize
it here.

In recent work, Chaudhuri and Hoft [20] prove if the nodes of an arbitrary
n-node binary search tree T are splayed in the preorder sequence of T' then the
total time spent is O(n). This is a special case of the traversal conjecture. Cohen
and Fredman [23] give some further evidence in favor of the truth of the splay
tree conjecture. They analyze several classes of request sequences generated from
a random distribution, and show the splay tree algorithm is O(1)-competitive
on these sequences.

3.7 Remarks

While exciting progress has been made in resolving special cases of the dynamic
optimality conjecture for splay trees, it is unclear how this work will impact the
full conjecture. In competitive analysis one usually compares the performance
of an on-line algorithm to the performance of an (unknown) optimal off-line
algorithm by means of some form of potential function. None of the results on
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the splay tree conjectures use such a potential function. Rather than comparing
the splay tree algorithms to an optimal off-line algorithm, the proofs directly
analyze properties of the splay tree on the special classes of requests. Finding
some potential function that compares on-line to off-line algorithms is perhaps
the greatest open problem in the analysis of the competitive binary search trees.

Splay trees have been generalized to multiway and k-ary search trees by
Martel [54] and Sherk [63]. Some empirical results on self-adjusting trees and
splay trees in particular have appeared. Moffat et al. [59] give evidence that
sorting using splay trees is quite efficient. On the other hand, Bell and Gupta
[11] give evidence that on random data that is not particularly skewed, self-
adjusting trees are generally slower than standard balanced binary trees. There
still remains a great deal of work to be done on empirical evaluation of self-
adjusting trees on data drawn from typical real-life applications.

4 Data compression: An application of self-organizing
data structures

Linear lists and splay trees, as presented in Section 3.5, can be used to build
locally adaptive data compression schemes. In the following we present both
theoretical and experimental results.

4.1 Compression based on linear lists

The use of linear lists in data compression recently became of considerable im-
portance. In [18], Burrows and Wheeler developed a data compression scheme
using unsorted lists that achieves a better compression than Ziv-Lempel based
algorithms. Before describing their algorithm, we first present a data compression
scheme given by Bentley et al. [16] that is very simple and easy to implement.

In data compression we are given a string S that shall be compressed, i.e.,
that shall be represented using fewer bits. The string S’ consists of symbols, where
each symbol is an element of the alphabet ¥ = {«1,...,2,}. The idea of data
compression schemes using linear lists it to convert the string S of symbols into
a string I of integers. An encoder maintains a linear list of symbols contained
in X and reads the symbols in the string 5. Whenever the symbol z; has to be
compressed, the encoder looks up the current position of #; in the linear list,
outputs this position and updates the list using a list update rule. If symbols to
be compressed are moved closer to the front of the list, then frequently occurring
symbols can be encoded with small integers.

A decoder that receives I and has to recover the original string S also main-
tains a linear list of symbols. For each integer j it reads from I, it looks up the
symbol that is currently stored at position j. Then the decoder updates the list
using the same list update rule as the encoder. Clearly, when the string I is
actually stored or transmitted, each integer in the string should be coded again
using a variable length prefix code.
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In order to analyze the above data compression scheme one has to specify how
an integer j in I shall be encoded. Elias [30] presented several coding schemes
that encode an integer j with essentially log j bits. The simplest version of his
schemes encodes j with 1+ 2|logj| bits. The code for j consists of a prefix of
[log 7] 0’s followed by the binary representation of j, which requires 1 + |log j|
bits. A second encoding scheme is obtained if the prefix of |[logj| 0’s followed
by the first 1 in the binary representation of j is coded again using this simple
scheme. Thus, the second code uses 1+ |logj| 4 2|log(1 + log j)| bits to encode
J.

Bentley et al. [16] analyzed the above data compression algorithm if encoder
and decoder use Move-To-Front as list update rule. They assume that an integer
J is encoded with f(j) = 1+ [logj| + 2[log(1l + logj)] bits. For a string S,
let Aprrr(S) denote the average number of bits needed by the compression
algorithm to encode one symbol in S. Let m denote the length of S and let m;,
1 <i < n, denote the number of occurrences of the symbol z; in S.

Theorem 44. For any input sequence S,

Apyrr(S) <14 H(S) + 2log(1 + H(S)),

where H(S) = Y0 | 24 log (7).

i=1 m

The expression H(S) = >° | o log(mﬂl) is the “empirical entropy” of S. The
empirical entropy is interesting because it corresponds to the average number
of bits per symbol used by the optimal static Huffman encoding for a sequence.
Thus, Theorem 44 implies that Move-To-Front based encoding is almost as good

as static Huffman encoding.

Proof of Theorem 44. We assume without loss of generality that the encoder
starts with an empty linear list and inserts new symbols as they occur in the
string S. Let f(j) = 1+ |logj| + 2|log(1 + logj)|. Consider a fixed symbol ;,
1 <¢<n,andlet g1,q2,...,qm, be the positions at which the symbol z; occurs
in the string S. The first occurrence of z; in S can the encoded with f(q1) bits
and the k-th occurrence of x; can be encoded with f(g; — gz—1) bits. The m;
occurrences of z; can be encoded with a total of

Fa) + S Far— )

k=1

bits. Note that f is a concave function. We now apply Jensen’s inequality, which
states that for any concave function f and any set {wq,...,w,} of positive reals
whose sum is 1, 37" wi f(y;) < f(X7_, wiyi) [34]. Thus, the m; occurrences of
x; can be encoded with at most

i+ 3k ae1)) = mif(22) < i ()

m;t T m;
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bits. Summing the last expression for all symbols z; and dividing by m, we

obtain
n

Amrr(S) = Z —f(ml)

The definition of f gives
Ayrr(S) < Z ant Z — log )+ Z —210g(1 +log(~— ))
i=1

gi -I-Z—log +210gz—+z
_ Z1_+ H(S) —|—210g(1—|—H(S)). -

The second inequality follows again from Jensen’s inequality. O

Bentley et al. [16] also considered strings that are generated by probability
distributions, i.e., by discrete memoryless sources p = (p1, ..., pn). The p;’s are
positive probabilities that sum to 1. In a string S generated by p = (p1,..-,Pn),
each symbol is equal to @; with probability p;, 1 < ¢ < n. Let Byrr(p) denote
the expected number of bits needed by Move-To-Front to encode one symbol in
a string generated by p = (p1....,pn).

Theorem 45. For any p = (p1,-.-,Pn);
Burr(p) < 1+ H(p) + 2log(1 + H(p)),

where H(p) = >+, pilog(1/p;) is the entropy of the source.

Shannon’s source coding theorem (see e.g. Gallager [31]) implies that the number
Buyrrr(p) of bits needed by Move-To-Front encoding is optimal, up to a constant
factor.

Albers and Mitzenmacher [5] analyzed the data compression algorithm if
encoder and decoder use Timestamp(0) as list update algorithm. They showed
that a statement analogous to Theorem 44 holds. More precisely, for any string
S, let Aprrr(S) denote the average number of bits needed by Timestamp(0) to
encode one symbol in S. Then, Arg(S) < 1+ H(S) + 2log(l + H(S)), where
H(S) is the empirical entropy of S. For strings generated by discrete memoryless
sources, Timestamp(0) achieves a better compression than Move-To-Front.

Theorem 46. For any p = (p1,P2,---+Pn);
Brs(p) < 1+ H(p) + 2log(1 + H(p)),
where H(p) = Y. i_, pi log(1/p;) + log(1 — i< Pipi(pi — i)/ (pi +pj)?).
Note that 0 < 3, pipj(pi — pj)?/(pi + pj)? < L.

The above data compression algorithm, based on Move-To-Front or Time-
stamp(0), was analyzed experimentally [5,16]. In general, the algorithm can be
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implemented in two ways. In a byte-level scheme, each ASCII character in the
input string is regarded as a symbol that is encoded individually. In contrast, in
a word-level scheme each word, i.e. each longest sequence of alphanumeric and
nonalphanumeric characters, represents a symbol. Albers and Mitzenmacher [5]
compared Move-To-Front and Timestamp(0) based encoding on the Calgary
Compression Corpus [77], which consists of files commonly used to evaluate
data compression algorithms. In the byte-level implementations, Timestamp(0)
achieves a better compression than Move-To-Front. The improvement is typi-
cally 6-8%. However, the byte-level schemes perform far worse than standard
UNIX utilities such as pack or compress. In the word-level implementations, the
compression achieved by Move-To-Front and Timestamp(0) is comparable to
that of the UNIX utilities. However, in this situation, the improvement achieved
by Timestamp(0) over Move-To-Front is only about 1%.

Bentley et al. [16] implemented a word-level scheme based on Move-To-Front
that uses a linear list of limited size. Whenever the encoder reads a word from
the input string that is not contained in the list, the word is written in non-
coded form onto the output string. The word is inserted as new item at the
front of the list and, if the current list length exceeds the allowed length, the last
item of the list is deleted. Such a list acts like a cache. Bentley et al. tested the
compression scheme with various list lengths on several text and Pascal files. If
the list may contain up to 256 items, the compression achieved is comparable to
that of word-based Huffman encoding and sometimes better.

Grinberg el al. [33] proposed a modification of Move-To-Front encoding,
which they call Move-To-Front encoding with secondary lists. They implemented
this new compression scheme but their simulations do not show an explicit com-
parison between Move-To-Front and Move-To-Front with secondary lists.

As mentioned in the beginning of this section, Burrows and Wheeler [18]
developed a very effective data compression algorithm using self-organizing lists
that achieves a better compression than Ziv-Lempel based schemes. The algo-
rithm by Burrows and Wheeler first applies a reversible transformation to the
string S. The purpose of this transformation is to group together instances of
a symbol #; occurring in S. The resulting string S’ is then encoded using the
Move-To-Front algorithm.

More precisely, the transformed string S’ is computed as follows. Let m be
the length of 5. The algorithm first computes the m rotations (cyclic shifts) of
S and sorts them lexicographically. Then it extracts the last character of these
rotations. The k-th symbol of S’ is the last symbol of the k-th sorted rotation.
The algorithm also computes the index J of the original string .S in the sorted
list of rotations. Burrows and Wheeler gave an efficient algorithm to compute
the original string S given only S’ and J.

In the sorting step, rotations that start with the same symbol are grouped
together. Note that in each rotation, the initial symbol is adjacent to the final
symbol in the original string S. If in the string S, a symbol z; is very often
followed by ;, then the occurrences of x; are grouped together in §’. For this
reason, S’ generally has a very high locality of reference and can be encoded very
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effectively with Move-To-Front. The paper by Burrows and Wheeler gives a very
detailed description of the algorithm and reports of experimental results. On
the Calgary Compression Corpus, the algorithm outperforms the UNIX utilities
compress and gzip and the improvement is 13% and 6%, respectively.

4.2 Compression based on splay trees

Splay trees have proven useful in the construction of dynamic Huffman codes,
arithmetic codes and alphabetic codes [33,39]. Furthermore they can be used
as auxiliary data structure to speed up Ziv-Lempel based compression schemes
[12].

Jones [39] studied dynamic Huffman codes based on splay trees. A Huffman
code implicitly maintains a code tree. Associated with each leaf in the tree is a
symbol of the given alphabet ¥ = {x1,...,2,}. The code for symbol z; can be
read by following the path from the root of the tree to the leaf containing ;. Each
left branch on the path corresponds to a 0, and each right branch corresponds
to a 1. A dynamic Huffman code is obtained by splaying the code tree at certain
nodes each time symbol z; had to be encoded. Note that a Huffman code stores
the information at the leaves of the tree, with the internal nodes being empty.
Therefore, we may not execute regular splaying in which an accessed leaf would
become an internal node, i.e. the root, of the tree. Jones presented a variant
of splaying in which the set of leaves remains the same during the operation.
He evaluated the algorithm experimentally and showed that the code achieves a
very good compression on image data. On text and object files, the codes were
not as good, in particular they performed worse than a dynamic Huffman code
developed by Vitter [75].

Grinberg et al. [33] studied alphabetic codes based on splay trees. Consider
an alphabet X' = {xq,...,2,} in which there is an alphabetic order among the
symbols 1, ..., 2,. In an alphabetic code, the code words for the symbols have
to preserve this alphabetic order. As before, a code tree is maintained. In the
algorithm proposed by Grinberg et al., whenever a symbol z; had to be coded,
the code tree is splayed at the parent of the leaf holding «;.

Grinberg et al. analyzed the compression achieved by this scheme. Let S be
an arbitrary string of length m and let m; be the number of occurrences of
symbol #; in 5. Furthermore, let my,;, = min{m;|1 < i < n}. We denote by
Agsp(S) the average number of bits to encode one symbol in S.

Theorem 47. For any input sequence S,

Asp(S) < 24 BH(S) + —log(———),

Mmin

where H(S) =Y " 24 log(-)-

i=1 m

Grinberg et al. also investigated alphabetic codes based on semisplaying, see
Section 3.5. Let Agsp(S) denote the average number of bits needed by semi-
splaying to encode one symbol in S.
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Theorem 48. For any input sequence S,

Assp(S) <2+ 2H(S) + — log(——),

Mmin

where H(S) =Y " 24 log (7).

i=1 m

Thus semisplaying achieves a slightly better performance than splaying.
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