On Generalized Connection Caching

Susanne Albefs

Abstract

Cohenet al. [5] recently initiated the theoretical study of connentaching in the world-wide
web. They extensively studied uniform connection cachimigere the establishment cost is uni-
form for all connections [5, 6]. They showed that ordinargipg algorithms can be used to derive
algorithms for uniform connection caching and analyzedower algorithms such as Belady’s rule,
LRU andMarking strategies. In particular, in [5] Cohatal. showed that LRU yields &k — 1)-
competitive algorithm, wherkis the size of the largest cache in the network. In [6], theggtigated
Marking algorithms with different types of communication among @®dnd presented deterministic
k-competitive algorithms.

In this paper we studgeneralized connection caching, also introduced in [5], where connections
can incur varying establishment costs. This model is regserbecause the cost of establishing a
connection depends, for instance, on the distance of thestode connected and on the congestion
in the network. Algorithms for ordinary weighted cachingndee used to derive algorithms for gener-
alized connection caching. We present tight or nearly tgiatlyses on the performance achieved by
the currently known weighted caching algorithms when aggpih generalized connection caching.
In particular we give online algorithms that achieve an mpdi competitive ratio ok. Our deter-
ministic algorithm uses extra communication while mainitag open connections. We develop a
generalized algorithm that trades communication for perémce and achieves a competitive ratio
of (1 + ¢)k, forany0 < e < 1, using at mosf1/¢] — 1 bits of communication on each open link.
Additionally we consider two extensions of generalizedretion caching where (1) connections
have time-out values, or (2) the establishment cost of cdiores is asymmetric. We show that the
performance ratio of our algorithms can be preserved ina@eifl). In the case of (2) we derive
nearly tight upper and lower bounds on the best possible etitiveness.

1 Introduction

Cohenet al. [5] recently initiated the theoretical study of connenticaching in the world-wide web.
Communication between clients and servers in the web i@padd using HTTP (Hyper Text Transfer
Protocol), which in turn uses TCP (Transmission Controt&raol) to transmit data. The older HTTP/1.0
opened and closed a separate TCP connection for each temi@miequest. This caused congestion on
the Internet because web pages typically contain inlineggeand other associated data which require
a client to make multiple transmission requests to the saneiswithin a short amount of time. The
study by Coheret al. is motivated by the fact that the new HTTP/1.1 works vgéhsistent connections,

i.e. connections are kept open so that they can be reused Reesistent connections have a number
of advantages. By opening and closing fewer TCP connectiGRY) time is saved. Secondly, HTTP

*Institut fur Informatik, Albert-Ludwigs-Universitat féiburg, Georges-Kodhler-Allee 79, 79110 Freiburg, Gerna
sal bers@nformati k. uni -freiburg. de



requests can be pipelined on a connection. Pipelining allawelient to make multiple transmission

requests to the same server without waiting for each regpomBus a connection can be used more
effectively. Finally, the network congestion is reducedrégiucing the total number of packets that are
used for TCP opens. Of course, each network node can mamtdira limited number of open TCP

connections. A server or client keeps persistent connectipen as long as its resources permit. If a
connection is closed, there is a mechanism by which a clresgrver can signal the close [7]. In practice,
servers often have a time-out value beyond which they wilbnger maintain an unused connection [7].

Cohenet al. [5] introduced a theoretical model for connection cachhmg we will also adopt in this
paper. The given network is modeled by an undirected gtapfihe nodes of the graph represent the
nodes in the network. The edges represent the possible cdtomse Each node has a cache in which it
can maintain information oopen connections. A connection = (u, v) is open if information orv is
stored in the caches of bothandwv. Otherwise the connection ebosed. If a connection is open, we also
say that it iscached. For a node, let k(v) denote the number of open connections thaan maintain
simultaneously. The valuk(v) is also called theache size of v. Let k be the size of the largest cache
in the network. Ifv holds less thark(v) open connections, then we say that it has an empty slot. For
a connectiore = (u,v), let cost(c) be theestablishment cost of ¢ that is incurred wher is opened.
We assume that initially all connections are closed. Anudtlgm for connection caching is presented
with a request sequenee= o1, 09, ..., 07, Where each request specifies a connectioy = (u¢, v¢),

1 <t < 1. Arequests; can be served with cost 0df is cached. Otherwise, i is not cached, there is
amiss andc; has to be opened at a costwkt(c;). If there is no empty slot at node; € {u;, v:}, then
the algorithm has to close an open connectiomdh order to make room fot;. The goal is to serve the
request sequeneeso that the total cost is as small as possible. We assumet thatend ofo, when all
the requests are served, all open connections are closed &géhe model described here we assume
that connections arelly persistent, i.e. they have no time-out values.

We are particularly interested in the developmenbidine algorithms for the connection caching
problem. An online algorithm has to serve each request witkwowledge of any future requests. Given
a request sequeneg let C4 (o) denote the cost incurred by an online algoritiénin servingo and let
Copr(o) denote the cost paid by an optimal offline algorithm OPT.dwaihg Sleator and Tarjan [12]
is calledc-competitive if, for all request sequences C4(o) < ¢- Copr(o) + a, wherea is a constant
that must be independent of the request sequence.

Related work: Cohenet al. [5, 6] studied the connection caching problem assumingttieéstab-
lishment cost is uniform for all connections. We refer tasthroblem asuniform connection caching.
In [5] Cohenet al. first showed that the offline problem is APX-complete. THegntobserved that there
is a close relationship between connection cachingardihary caching, where one has to maintain a
set of memory pages in a single cache so as to minimize thieatmtass cost incurred on a sequence of
requests to pages. In connection caching each node in twenketan simply execute an algorithm for
ordinary caching. Cohed al. showed that any-competitive algorithm for ordinary uniform caching,
also known as paging, can be converted infe-gompetitive algorithm for uniform connection caching.
Using Belady’s optimal offline algorithm for paging [1], thebtained a 2-approximation for offline con-
nection caching. Using thie-competitive online algorithm LRULast Recently Used), they obtained a
2k-competitive online algorithm. Here it is assumed that ibdew closes a connection= (u, v), then
v is not notified and only learns about the closing at the nejiest tac. Cohenet al. [5] also considered
a stronger model where nodes notified and showed that LRU {8k — 1)-competitive. Obviously, any



lower bound on the performance of ordinary caching algorgtalso holds for connection caching algo-
rithms. Thus no deterministic online algorithm for conm@etcaching can be better thancompetitive
and LRU was potentially a factor of 2 away from the optimum[@] Cohenet al. improved the upper
bounds. More specifically, they considedarking algorithms for connection caching and investigated
different types of communication among nodes. They showatany deterministiélarking algorithm

is k-competitive and hence optimal if 1 extra bit is communidaier request. If no extra communication
is allowed, then the algorithms achieve an upper bourzkof 1.

Our contribution: In this paper we investigatgeneralized connection caching, where the estab-
lishment cost of connections can vary. For any connectjaist(c) can be an arbitrary positive value.
Varying establishment costs occur in practice becaused$ieof establishing a connection depends for
instance on the distance of the nodes to be connected and,importantly, an the congestion in the
network. Following [5] it is reasonable to assume that allPTénnections require the same socket
buffer size in a network node. Thus we assume that all cormmsctise the same space in cache and
again denote by (v) the number of connections that nodean keep open simultaneously. Hence we
work with connections of uniform size but varying costs. Theresponding ordinary caching problem is
known asweighted caching and has been studied extensively, see e.g. [4, 10, 11, 18]offlme variant
of weighted caching can be solved in polynomial time [4]. Te¢erministic online algorithmBalance
andLandlord arek-competitive [3, 4, 14]. The randomized algorittiiarmonic is k-competitive against
any adaptive online adversary [11]. These competitivesadire optimal. At this point, no randomized
o(k)-competitive algorithm against any oblivious adversargriswn for weighted caching.

In this paper we present a comprehensive study of genadatiaenection caching and, in partic-
ular, give optimal online algorithms. Clearly, a genemdizzonnection caching algorithm can execute
a weighted caching algorithm at each node. Extending tHenigae by Coheret al. [5] in a straight-
forward way, one can convert amycompetitive algorithm for weighted caching int@acompetitive
algorithm for generalized connection caching. This imratly gives an upper bound @k on the
best possible competitive ratio. In this paper we give tghbearly tight analyses on the performance
achieved by the currently known weighted caching algorithminen applied in generalized connection
caching. We generally assume that if a nadeloses a connection = (u,v), thenv is notified,
see [7]. We prove that thBalance algorithm, a popular algorithm for weighted caching, is better
than (2k — 1)-competitive. We then give an implementation of ttendlord algorithm, proposed for
document caching in the web, and prove that ikisompetitive, and hence optimal, for generalized
connection caching. (This result would also hold if coniwers had varying sizesl)andlord usesexira
communication when serving requests. Baxtra communication we refer to communication exchanged
on an open connection in addition to that necessary for ksttialy and closing connections. We are
able to reduce the amount of communication at the expenseidasing slightly the competitive ratio
and formulate a trade-off. We develop a generalized algorltandiord(e), for any0 < € < 1, that is
(1 + €)k-competitive and uses at mdsdt/e] — 1 bits of extra communication for each open connection.
We also analyze the randomized algorithtfarmonic and prove that it ig-competitive for generalized
connection caching against any adaptive online adverssggin, this competitive ratio optimal. Our
implementation oHarmonic does not use extra communication; an additional featutdanfmonic is
that it is memoryless. Hence we can achieve a competitigeoids with either communication or ran-
domization.

Additionally we consider two extensions of the connectiasting model defined above. So far we



have assumed that connections are fully persistent andhavg to be closed in order to make room
for new connections. First, we address the extension ttei opnnections have time-out values beyond
which they will not be kept open. A time-out value of an openrgection may be reset whenever the
connection is requested again. We show ttaidiord, Landlord(e) andHarmonic can be modified so
that their competitiveness is preserved. In the seconahsixte we consideasymmetric costs [5], where
the cost of establishing a connectier- (u, v) can be different fow andv. We give nearly tight upper
and lower bounds on the competitiveness that can be achievtled scenario.

2 Lower bounds

Balance [4, 10, 14] is a very populak-competitive online algorithm for ordinary weighted caui
Intuitively, Balance tries to distribute the loading cost of pages evenly amoag timemory slots. When
adapted to connection caching, the algorithm works asvisllo

Algorithm Balance: For each node: in the network and for each of thig(u) cache locations, the
algorithm maintains a count which is initially O. If thereasniss at a request to a connectios: (u, v),
then for each node < {u,v} that does not have an empty slot, the algorithm evicts a atiomethat
has the smallest count among #ev) slots. Ties may be broken arbitrarily. Connectias opened and
the count of each of the two cache slots holdirig increased byost(c).

We show thaBalance is not better thar{2k — 1)-competitive. This lower bound also holds if the
establishment cost of a missing connectida split among the two cache slots that will held.e. each
count is increased bypst(c)/2.

Theorem 1 Balance does not achieve a competitive ratio smaller than 2k — 1.

Proof: We construct a request sequence for whehance does not perform well relative to an optimal
offline algorithm OPT. The connections the request sequisnmamposed of are depicted in Figure 1.

1

wy
O
1 1f E—1
+ € o wi”
Cy V1 1
14+€| ¢3 c1ll+e
wkfl 1 U3 Co V2 1 wl
2O 1+e o
k—1

Figure 1: The requested connections

There are foumain nodes v;, 1 < i < 4, for which there are foumain connections ¢; = (v;, vi11),
1 <4 < 3, andes = (v4,v1). Each main node; hask — 1 neighborsw! and associated connections

4



&} = (v;,w]),1 < j < k — 1. Establishing a connectiaff incurs a cost of 1 while establishing a main
connection incurs a cost @f+ ¢, wheree > 0 is an arbitrarily small value. Each main node has a cache
of sizek and each neighbor has a cache size of 1.

[+e+46 I+e+l6 I+(1+1) I+ ko
[
1 l [+1 k

Figure 2: The configuration after phalse

When constructing the request sequence, we simultanekersfytrack of the four caches at the main
nodes. We assume that we start with the following cache aafiigpns.

(1) Eachy;, 1 < i < 4, holds the neighbor connectiods, . . . ,df*I in its firstk — 1 cache slots.
(2) Thek-th cache slot at; andwv, holdsc;, while thek-th cache slot at; andv, holdscs.
(3) The count of thg-th cache slot at each main node is equgldavith § = €/k.

Such a configuration can easily be obtained as follows. Al eaeve first requesk — 1 dummy
connections, where the-th dummy connection has a costjof We can assume without loss of generality
that thej-th dummy connection is loaded into tlieh cache slot. We then present requestgf@ndcs,
which are loaded into thi-th cache slot at each main node, and requests for all neigldmmections
d{ 1 <i<4andl <j <k-—1. Neighbor connection&}, . df‘l are loaded into the firgt — 1 cache
slots atv;, 1 < ¢ < 4. At each main node, thgth cache slot now has a count bft+ §5. Reducing all
counts by 1 does not affect the further execution of the @lyor

Given a cache configuration with (1-3), we can construct agsigsequence consisting /ophases
such that the following holds.

(a) Balance's cost in each phase 4§k — 1) + 2(1 +€) = 4k — 2 + 2e.
(b) The optimum offline cost in each phaseis 2e.
(c) After thek phases the cache configuration is identical to that destmbgl—3).

Repeating the process infinitely many times, we obtain a ddveeind on the competitive ratio
achieved byBalance of (2k — 1 + €)/(1 + ¢€), which can be arbitrarily close @k — 1.

We describe the construction of tkephases. Suppose that aftgghases) < [ < k, the following
invariants hold.

(I11) Eitherc; andes or ¢ andey are cached in théth slot of the main nodes. Here slotorresponds
to slotk. Each main node hds— 1 neighbor connections cached.

(I12) At each main node, thgth cache slot has a count bf+ € + jé for j = 1,...,l and a count of
l+j6forj=101+1,... k.

The configuration of a main node’s cache is shown in Figure f2e Bullet corresponds to a main
connection. Thél + 1)-st phase is as follows. t; andcs are cached, then we issue requests;tand
c4. Otherwise ,ife; andey are cached, then we issue requestscfaandcs. The connections are stored
in the (I + 1)st cache slot of each main node. After the two requests, atigaee presenk — 1 requests
to neighbor connections. We always request the connedfian D; = {d}, . .. ,df‘l} that is currently



not cached av;. The connections are first loaded into sléts 2, ...,k and then into slotg, ... !
provided that there is never an empty slot before(the- 1)-st request to a neighbor connection. This
can be ensured by requesting the neighbor connections fittheain nodes almost simultaneously. If
c1 andcz were cached after phagethen phaseé + 1 is cacq(did3did;)* 1. Otherwise phase+ 1 is
cres(didsdidy)F . Here(S)*~! denotesk — 1 repetitions of request string. In thej-th repetition,d;
is the neighbor connection currently not cached;at

Note that afte — 1 requests to neighbor connections at each main node, theamairection in slot
l is evicted. This shows that (11) holds after the phase. [Dutie phase, at each main node the count of
the (I + 1)-st cache slot increases byt e while for the other cache slot it increases by 1. This proves
(12). Invariants (I11) and (12) fot = k and the fact a reduction of all counts by e does not affect the
further execution of the algorithm give a cache configuraittentical to that described in (1-3J.

3 An optimal deter ministic algorithm

A result by Manasse, McGeoch and Sleator [10] implies thatleterministic online algorithm for or-
dinary weighted caching can be better thanompetitive, where: is the number of pages that can be
stored in cache. The same lower bound holds for generaliedection caching whel = max,, k(u).

We present an optimal deterministiccompetitive algorithm for generalized connection caghin
The algorithm can be viewed as an implementation of a siredlifandlord algorithm [3, 14].

Algorithm Landlord (LL): For each cached connectiorthe algorithm maintains a credit valueedit(c)
that takes values between 0 aagt(c). Whenever a connection is openededit(c) is set tocost(c).

If there is a miss at a request to a conneciiornw), then for each node < {u,v} that does not have
an empty slot, execute the following steps. Bet min, cached at, credit(c). Delete a connectioa,
from w’s cache witheredit(c,,) = § and decrease the credit of all the other connections cadhedya
d. Then oper(u, v).

Note that for each cached connectiaredit(c) > 0 because itredit(c) is decreased by, then
credit(c) > 9.

Landlord, as described above, is a centralized algorithm becauserahé values of open connec-
tions are global shared variablet.andlord can also be formulated as a distributed algorithm. In a
distributed implementation, for each open connectios (u,v), both endpoints, andv keep their
own copies ofcredit(c). If one endpoint, say:, reduced the credit by, then this change has to be
communicated te so thatv can update itsredit(c) value accordingly.

In the following we will show that_andlord is k-competitive. In this paper, when proving upper
bounds, we always use a slightly modified charging schemedtablishment costs: We charge the
algorithms for connections that theyict rather than for connections that thagen. A similar approach
was taken in [11]. This charging scheme does not affect tHenmeance of the algorithms because the
initial and final caches are empty, i.e. all connections brged. Hence the cost incurred for establishing
connections equals the cost for closing connections. Wegesierally analyze online algorithms using
a potential functionp. The following lemma will be useful.

Lemmal Let ON be a deterministic online algorithm that is analyzed using a non-negative potential
function ® which isinitially 0. Suppose that, for all request sequences o, the following statements hold.



(1) For any request in o, (a) when OPT serves the request, the increase in potential is bounded by
¢ times the actual cost incurred by OPT and (b) when ON serves the request, the decrease in
potential is at least as large as the actual cost incurred by ON.

(2) At the end of the request sequence, (a) when OPT closes a connection, the increase in potential
is bounded by ¢ times the actual cost incurred by OPT and (b) when ON closes a connection, the
decrease in potential is at least aslarge as the actual cost incurred by ON.

Then ON is c-competitive.

Proof: The proof is standard in the study of amortized analysis. siv@ly sum up online and offline
costs as well as potential changes over the whole requeseéseg and over the final operations when
connections are closedl

Lemma 1 is formulated for deterministic online algorithrds1 analogous statement holds for ran-
domized online algorithms against oblivious or adaptiveeashries. See [2] for a definition of the var-
ious types of adversaries. In this paper we will considedoanized online algorithms against adaptive
online adversaries. In this case, when the adversary sarsexguest or finally closes a connection, the
expected increase in potential must be boundedtbyes the expected actual cost paid by the adversary.
When the online algorithm serves the request, the expeete@alse in potential must be at least as large
as the expected actual cost incurred by the algorithm.

Theorem 2 Landlord is k-competitive for generalized connection caching.

Proof of Theorem 2: Let o be an arbitrary request sequence. As mentioned above, wgedtandlord
and an optimal offline algorithm OPT for connections thaytaeict and use a potential functiah for
the analysis of the algorithms. Define

=k Z credit(c) + Z (cost(c) — credit(c)).
ceSrr\SoprT ceSLr
Obviously, @ is non-negative. The initial potential is 0 because iditiall connections are closed, i.e.
St andSppr are empty. We first show statement (1) of Lemma 1.

We consider an arbitrary requestdn Letc = (u,v) be the connection requested. If OPT does
not evict a connection to serve the request, then the patesies not increase. If OPT does evict
connections, then for every connectidiit evicts, the potential can increasebyredit(c') < k-cost(c')
because’ might be inSy ;. However, OPT also pays a costwist(c’). Thus the increase in potential is
bounded by times the actual cost.

We next studyLandlord’s service of the request. i is cached byLandlord, then the actual cost
is 0 and the potential does not change. So suppose: tBatot cached. Opening the connection does
not incur any cost and does not change the potential beeaas8opr andcredit(c) = cost(c). We
have to analyze the change in potential caused by evictiSnppose thatandlord evicts connection
cw = (w,z) at nodew € {u,v}. Connectiore is cached by OPT but not Hyandlord beforeLandlord
serves the request. Sint@ndlord does not have an empty slot @t there must exist a connection
¢y, € Sir \ Sopr cached byLandlord atw.

We first argue that the eviction of, causes a decrease of at lefasg in the first term of the potential
function. Ife,, = ¢}, then the first term decreases bycredit(c,, ), which isk - é by the definition o.

7



If ¢y # ¢, thencredit(c},) decreases by causing a decrease of the first termkofs. For all the other
connections cached atthat are not equal te, or c;,, a decrease of the-edit-value can only result in
a decrease of the first term.

In the second term of the potential function, the evictioncgfcauses a decrease @fst(c,) —
credit(cy,) = cost(cy,) — 6 and an increase d@k(w) — 1)d < (k — 1) when thecredit-values of the
otherk(w) — 1 connections at are decreased hy In summary, the total decrease in potential is at least
k-9 + cost(cy) — 9 — (k — 1)§ = cost(cy), Which is the actual cost paid lhandlord on the request.

We still have to prove statement (2) of Lemma 1 and assumefitisatOPT and therLandlord
closes all of its connections. For each connectidthat OPT closesp can increase b¥ - credit(c) <
k - cost(c), which isk times the actual cost paid by OPT. Whenelvandlord closes a connectiof) the
connection was already closed by OPT and henee Sy;, \ Sopr. Thus the potential decreases by
k - credit(c) + cost(c) — credit(c) > cost(c) and this is the actual cost paid bgndlord. O

4 Reducing the amount of extra communication

In the last section we presented ttendlord algorithm and also described a distributed implementation
The distributed implementation needs extra communicdtomaintaining open connections. If one
endpoint of an open connectierreducescredit(c) by ¢ using theLandlord strategy, then this update
has to be communicated to the other endpoint. The amountt eemmunication for an open con-
nection can be large if the repeatédeductions are small. We are able to reduce the amount & extr
communication at the expense of increasing slightly thepmtitiveness of the algorithm. The main idea
is that endpoints of an open connectiocommunicate updates in their credit values only when tha tot
change since the last communication accumulates tost(c), for some fixed) < ¢ < 1. We describe

a fully distributed implementation of the algorithm.

Algorithm Landlord(e): Lete be a fixed constant with < ¢ < 1. Each node: in the network executes
the following protocol. For each open connection= (u,v), nodeu maintains its own credit value
credit(c,u) as well as an approximation of the corresponding creitl/it(c, v) maintained byv for
that connection; this approximation is denoteddoydit(c,v). Whenever a connection = (u, v) is
opened credit(c, u) andcredit(c, v) are set tacost(c). Suppose that there is a miss at a request to a
connection’ = (u, w) andu does not have an empty slot. Let

§= min (credit(c, u) + credit(c,v) — cost(c)).

c=(u,v) cached at

Close a connection, = (u,z) With credit(cy, u) + credit(cy, z) — cost(c,) = & and, for any other
connectionc cached at, reducecredit(c,u) by §. For each such connectian= (u,v), nodeu also
executes the following steps: If after the reductionstie credits satisfyredit(c, u) + cv:_c;(iit(c, v) <
cost(c), thenc is closed. Otherwise determines the smallest integérandj such thatredit(c,u) >
cost(c)(1 — ie) before the reduction angredit(c,u) > cost(c)(1 — je) after the reduction. It then sends
j — 1 update bits t@. Finally the requested connectiehis opened. At any time during the execution of
the protocol, for each update bit thateceives fromv on an open connectian= (u, v), nodeu reduces
credit(c,v) by e - cost(c) and closes if credit(c, u) + credit(c, v) < cost(c) afterwards.

The next theorem expresses a trade-off between compettgeand the amount of extra communi-
cation for each open connection.



Theorem 3 For any 0 < e < 1, Landlord(e) is (1 + €)k-competitive and uses at most [1] — 1 bits of
extra communication for each open connection.

Before we prove the theorem we mention some interestingtgpoin the trade-off curve. Setting
e = 1, we obtain &k-competitive algorithm that does not use any extra comnatiois. Fore = 1/2,
the resulting algorithm i%kz-competitive and uses only one bit of extra communicaticr.eF 0, the
competitive ratio tends té but the amount of communication can be arbitrarily largenake original
Landlord strategy.

Proof of Theorem 3: We first show some properties of the credit values and theircegimations.

Lemma2 Letc = (u,v) bean open connection.
a) Thecreditscredit(c,u) and credit(c, v) aswell asthe approximations credit (c, v) and credit(c, v)
take values between 0 and cost(c).

b) For nodew, 0 < credit(c, u) — credit(c,u) < e- cost(c) and a corresponding statement holds for
node v.

Part b) of the above lemma implies that the approximatioasalways upper bounds on the true credits
but at most an additive ef- cost(c) away from the true value.

Proof of Lemma 2: Part a): The credits of satisfycredit(c, u) + credit(c,v) > cost(c) because the
connection would be closed otherwise. This implies thabtiialues inLandlord(e) are always positive
and hencecredit(c,u) is upper bounded byost(c). The same is true foeredit(c,v). Obviously
credit(c,u) andcredit(c,v) are upper bounded byst(c). If credit(c,u) is reduced by, thens <
credit(c,u) + credit(c,v) — cost(c) and henceredit(c,u) — § > cost(c) — credit(c,v) > 0. Thus
the credit values are lower bounded by 0. By part b), which wesiwow below, the approximations are
always upper bounds on the true credits. Thus the approxinsaare also lower bounded by 0.

Part b): Consider one of the endnodes, gagf the connectiorr = (u,v). The proof is by induc-
tion. The inequality holds initially when the connectioroigened because at that tim@gz‘t(c, u) and
credit(c,u) are both set taost(c). Suppose that reduces:redit(c,u) by d. Leti andj be the smallest
integers such thairedit(c,u) > cost(c)(1 —ie) before the reduction angtedit(c, u) > cost(c)(1— je)
after the reduction. Before the reduction we have by indmtiypothesi&?ggz't(c, u) > credit(c,u),
which impliescredit(c, u) > cost(c)(1 — (i — 1)) because the approximations take valuest(c)(1 —

k - €) for some integek. Nodev receivesj — i update bits and reducesedit(c, u) by (j — i)e - cost(c).
Hence after the reductioeredit(c,u) > cost(c)(1 — (j — 1)e), which is at leastredit(c, ) by the
choice ofj. This establishes the first inequality of part b). To prove skecond inequality, we observe
that before the reductiosredit(c, u) < cost(c)(1 — (i — 1)e) by the choice of. The induction hypothe-
sis impliescredit(c, u) < cost(c)(1— (i —2)e) and henceredit(c,u) < cost(c)(1— (i — 1)e) because
the approximations only take values of the fatoat(c)(1 — ke) for some integek. After u sent outj —i
update bitseredit(c,u) < cost(c)(1 — (j — 1)e) and the second inequality of part b) follows because
credit(c,u) > cost(c)(1 — je) after the reductionO

The bound on the extra communication follows from the nextrie.

Lemma3 Let ¢ = (u,v) be an open connection and assume that [1] — 1 update bits were exchanged
so far. Then no endpoint of the connection will send out another update bit for c.



Proof: Consider node, and suppose that it sent aut> 0 and receiveo[%} — 1 — 4 update bits. Then
credit(c,u) < cost(c)(1—ie) anderedit(c,v) < cost(c)(1—([1]—1—i)e). Nodeu can only send out
another update bit iéredit(c, u) reaches or drops below the next threshelst(c)(1 — je) with j > 3.
Then

cost(c,u) + credit(c,v) < cost(c)(1 — je) + cost(c)(1 — ([1/e] — 1 — i)e)
< cost(e)(2 = ((14+ 1)+ [1/e] — 1 —i)e)
<

cost(c)

andw closes the connection instedd.

To evaluate the competitivenesslaindlord(e), we use the potential function

® = &k Z (credit(c,u) + credit(c,v) + (e — 1)cost(c))
c=(uw)eSLL\SopT
+ Z (2cost(c) — credit(c,u) — credit(c,v)).
c=(u,v)eSLL

Here S;;, denotes the set of open connections maintained.dylord(e). The initial potential is O
because all connections are closed in the beginning. Dtiimgxecution of andlord(e), for any open
connectione = (u,v), credit(c,u) + credit(c,v) > cost(c) and Lemma 2 part b) gives-edit(c,v) —
credit(c,v) < € cost(c). Adding these two inequalities we obtain

credit(c,u) + credit(c,v) + (e — 1)cost(c) > 0 (1)

and thus the first sum d@# is non-negative. The second sum is hon-negative becausetthie values of
a connection are bounded by the cost, see Lemma 2 part aynimary ® is non-negative.

Consider an arbitrary request sequence. We prove statdfrjeritLemma 1. Let = (u, v) be the
connection requested. For each connectior- (z,y) that OPT closes, the potential can increase by
k(credit(d,x) + credit(c',y) + (e — 1)cost(c')) < k(2cost(c') + (e — 1)cost(c') < (1 + €)k - cost(c'),
which is (1 + €)k times the actual cost paid by OPT. If OPT opens a connectiog ,cannot increase
the potential because as shown in (1) the expression in #tesfim of® is positive for each connection
maintained byLandlord(e).

Suppose thatandlord(e) evicts connectiorr,, at nodew € {u,v} to serve the request. Since
Landlord(e) does not have an empty slot@t there must exist a connectief) cached atv with ¢}, €
Srr \ Sopr. We show that the eviction @f, = (w, z) and the subsequent reduction of credit values for
connections aty cause a decrease & in the first sum of® and an increase of at masi — cost(cy,)
in the second sum cb. Thus the potential drops by at leastst(c,,), which is the actual cost paid by
Landlord(e). Hered = credit(c,, w) + credit(c,, z) — cost(cy ) is the value that determined the choice
of ¢, in Landlord(e). We first investigate the change in the first sun@oflf ¢,, # ¢;,, then the decrease
of credit(c},, w) by d results in a decrease 8. If ¢, # ¢, then the change in the first sum is

—k(credit(cy,w) + credit(cy, z) + (e — 1)cost(cy))
< —k(credit(cy,w) + credit(cy, z) — cost(cw))
= —ké.

10



The first inequality follows because, by Lemma 2 partcbydit(cy, z) > credit(cy, z) — € - cost(cy).
In the second sum @b, the reduction otredit(c, w) values for connections # ¢,, cached atv, causes
an increase ofk, — 1)§ < (k — 1)d. The eviction ofe,, results in a change of

—2cost(cy) + credit(cy, w) + credit(cy, 2)
< —2cost(c) + credit(cy, w) + credit(cy, z)

= & — cost(cy)-

Thus the total increase is at mdst — cost(cy ).

We analyze the other actions béndlord(e). Sending update bits and changing approximations of
credit values does not change the potential.Ldhdlord(e) closes a connection = (u,v) because
credit(c,u) + credit(c,v) < cost(c), then the second sum @ decreases by at leasbst(c) since
credit(c,v) < cfe\cfz’t(c, v). The first sum off can only contribute another potential drop. Thus the total
potential drop is at least as large as the actual cost irgtlayéandlord(e).

It remains to prove statement (2) in Lemma 1. When OPT closgmaection, the potential can
increase by at mog(1 + ¢) times the cost of the connection, which4gl + €) times the cost paid by
OPT. WherLandlord(e) closes a connectioh= (u, v), the first sum of® drops by at leastredit(c, u)+
credit(c,v) — cost(c) because the expression in the first sum is posifive, 1 ande > 0. The second
sum of & drops by2cost(c) — credit(c,u) — credit(c,v). The total decrease in potential is at least
cost(c), which is the cost incurred byandlord(e). O

So far we have reduced the amount of extra communiation &xibense of (slightly) increasing the
competitive ratio. We can reduce the extra communicatiofewdreserving a competitiveness bfif
we are willing to use randomization. We next give a randonohiaeline algorithm that i&-competitive
against any adaptive online adversary and does not use &y @mmunication bits. The competi-
tiveness is optimal. No randomized online algorithm foreyatized connection caching can be better
than k-competitive against any adaptive online adversary. Ogworighm is an implementation of the
Harmonic algorithm developed by Raghavan and Snir [11] for weigh&zhing. When applied in con-
nection cachingiHarmonic works as follows.

Algorithm Harmonic: If there is a miss at a request to a connectios (u,v), then for each node
w € {u,v} that does not have an empty slot, the algorithm executesolteving step. LetD =
Zfi“l’) 1/cost(c;), wherecy, . . ., cy(,) @re the connections cachedwuat Evict c; with probability p; =
1/(D - cost(c;)). Then oper(u, v).

The algorithm has the additional interesting feature thigtmemoryless.

Theorem 4 Harmonic is k-competitive for connection caching against any adaptive online adversary.

Proof: Let o be an arbitrary request sequence. Again we chatgenonic and the adaptive online
adversary for the connections that they evict. Let

®=k Z cost(c),

CESH\SADV

whereSy andS py are the sets of connections cachedHaymonic and the adaptive online adversary
ADV.

11



Consider an arbitrary request to a connecfiornw) in the request sequence. Again we assume that
ADV serves the request first amtbrmonic serves the request second. When ADV serves the request,
the potential can only increase if connections are evictemt. each connection that ADV evicts, the
potential can increase by at mdst cost(c), which isk times the actual cost incurred by the adversary.

WhenHarmonic serves the request, the potential can only change if coionecire evicted because
a connection opened byarmonic must be inS py. If Harmonic evicts a connection at node <
{u, v}, then the expected cost incurrecuats °*") cost(c;)/(D - cost(c;)) = k(w)/D < k/D. Since
Harmonic does not have an empty slot @atthere must exist a connectiafj, € Sy \ Sapy cached
atw. With probability 1/(D - cost(c},))) this connection is evicted, causing a decrease in poteuitial
k - cost(c;,). Thus the expected decrease in potential is at least. This proves statement (1) of
Lemma 1. Statement (2) is obvious.

5 Extensions

5.1 Time-out of connections

In practice, servers usually have some time-out value kyanich they will not maintain an open
unused connection [7]. Motivated by this fact, we study gelieed connection caching in the setting
that connections may expire. Kimbrel [9] studied ordinaaging and file caching when pages or files
can expire.

We investigate the general setting where each cached disméas a time-out value. Whenever a
connectionc is opened at some timg it is assigned a time?*t, t°“t > t, at which the connection will
expire. If the same connection is opened at timesndt,, wherety > t1, thentgt > t¢ut. We assume
that the time-out value of an open connection may be resetagar value whenever the connection is
requested again. We show that the algorithms presentedipaper can be adapted easily to handle this
situation.

Algorithm Time-Out: Use A € {Landlord, Landlord(e), Harmonic} as a basic caching strategy. |If
there is a miss at a request to a connectioa (u,v), the algorithmTime-Out first evicts the expired
connections at andv. Then it executes strategy.

Theorem 5 The competitive ratio of Time-Out is equal to that of the basic strategy A.

Proof: We present the analysis for strategy= Landlord and then sketch how to modify the analysis
for Landlord(e) andHarmonic.

In our analysis we may assume without loss of generality @ evicts connections immediately
when they expire. An optimum offline strategy OPT that dodsatsfy this property can be transformed
into a strategy OPT’ that follows this rule and does not ingdrigher cost: Any expired connectien
closed by OPT some time after expiration is closed by OPT’ @diately when it expires; OPT’ uses the
empty cache slot only when OPT uses it. Clearly the incurost iemains the same.

We generalize the analysis given in the proof of Theorem Zatehd the potential function. Lét,
and Sp pr denote the sets of connections cached &pdlord and OPT, respectively. This also includes
connections that expired but have not been evicted fromdbbes. LetS~ be the set of connections
cached byboth Landlord and OPT and for which OPT has a larger time-out value ttendlord. We

12



extend the potential function used in the proof of Theoreny 3h ¢ credit(c), i.e.

® = k Z credit(c) + Z (cost(c) — credit(c)) + Z credit(c).

ceSr\SoprT ceESLL ceS>

First note that a resetting of time-out values of open cotimes can only decrease the potential because
the setS~ can only become smaller.

We consider an arbitrary request in a request sequence andrfalyze OPT’s moves. The increase
in potential that arises when OPT evicts a connection (brpired or not expired) can be bounded in
the same way as in the proof of Theorem 2 because the thirdited@ncan only cause a decrease in
potential. When OPT opens a connectiQwo main cases have to be considered. (L)¢f Srr, then
the potential does not change. (2xlE Sy, then the potential cannot increase: The first term of the
potential function decreases By credit(c) and the third term may increase byedit(c) if ¢ € S~
afterwards.

We next analyze the influence bandlord’'s moves. Suppose thaandlord first evicts an expired
connectione. If ¢ € Sppr, thenc € S~ since otherwise OPT would have evicteevhen serving the
request. Thus, the second and third terms of the potentiakiin decrease byost(c) — credit(c) +
credit(c) = cost(c), which is the actual cost incurred tyandlord. If ¢ ¢ Sopr, then the potential
decreases b - credit(c) + cost(c) — credit(c) > cost(c). The eviction cost of a connection that is not
expired can be bounded in the same way as in proof of Theoress&uke the third sum @ can only
cause a decrease in potential. Wiandliord opens a connectiof) thenc € Sopr ande ¢ S~ because
OPT cannot have a larger time-out value thandlord. Thus the potential cannot increase.

In the analysis ofLandlord(e) we extend the potential function by ., . cs> (credit(c,u) +
credit(c,v) + (e — 1)cost(c)). In the analysis oHarmonic, we extend the function by’ .. 4> cost(c).
|

5.2 Asymmetric costs

So far we assumed that the establishment cost of a conn€detjef is independent of whether or

v has to establish the connection. In this section the studycéise that the establishment cost does
depend on the endnode. For any possible conneetien (u,v), we have two consider two types of
requests. By, we denote a request for connectiomssued atu, i.e. u has to establish the connection

if it not already open. Similarly, by, we denote a request for connectierissued atv, i.e. v has

to establish the connection. Lebst(c,) andcost(c,) denote the establishment costs wheand v,
respectively, have to open the connection. For@ngt cost(c)min = min{cost(c,), cost(c,)} and let
cost(c)max = max{cost(cy,), cost(c,)}. LetC be the set of all possible connections in the graph. Define

A = max ————.
ceC cost(¢)min

Theorem 6 No deterministic online algorithm for connection caching with asymmetric establishment
cost can achieve a competitive ratio smaller then (k — 1)A + 1.

Proof: We consider a very simple setting where we have a nogéh cache capacity andk + 1 nodes
v1,...wgy1, €ach having a cache capacity of 1. An adversary construeigleest sequence consisting

13



of requests to connectioris, v;), 1 < i < k + 1. The establishment cost of each of these connections is
A > 1if v has to open it and 1 if; has to open it.

Let A be a deterministic online algorithm. In the request seqaienastructed by the adversary, each
request is made to the connection that is currently not chbiie.. Thus,A has a miss on each request.
The majority of the requests are issueduatwe call these requestsavy. However, a few requests
will be issued at the corresponding noge we call these requestight. Light and heavy requests are
determined as follows. We partition the request sequertoephiases. A phase ends when there have
been requests th distinct connections in the phase and a request t¢&hge 1)-st distinct connection
occurs; the phase ends immediately before that requesacinghase, the first request is light. All the
other requests are heavy.

The online algorithm has a cost @8 — 1)A + 1 in each phase. An optimal offline algorithm can
serve the request sequence such that it has a miss only orstheduest of the phase. Thus, its cost is
1in each phased

The algorithms presented in Sections 3 and 4 can be appligehieralized connection caching with
asymmetric establishment cost. In the description of therdhms,cost(c) refers to the cost that the
algorithm has actually incurred when opening

Theorem 7 The competitive ratios of Landlord, Landlord(e) and Harmonic increase by a factor of A
when used in generalized connection caching with asymmetric establishment cost.

Proof: The analyses are almost the same as the original analysies jimoofs of Theorems 2, 3 and 4.
In the definition of the potential functionsest(c) also refers to the cost that the online algorithm has
actually incurred when opening The essential difference in the analyses is that if OPT o¥ ARicts

a connectiore = (u, v) for which it had paid an establishment cost of, sayt(c,), then the potential
might increase byost(c,) because the online algorithm incurred another establishoest. However,
sincecost(c,) < Acost(c, ), the potential can increase by at mast times the actual cost incurred by
OPT.O

6 Conclusions and open problems

In this paper we studied generalized connection cachingsami extensions of the problem. We devel-
oped tight or nearly tight upper and lower bounds on the caitngeratio achieved by online algorithms.
In particular we presented algorithms that use differenbwamts of extra communication. An interest-
ing problem is to develop lower bounds in this context. Whkahi best possible competitiveness that
can be achieved given a certain number of communicatio? e showed that an implementation of
Harmonic is k-competitive against adaptive online adversaries. A ehgihg open problem is to de-
velop ramdomized(k)-competitive algorithms against oblivious adversariebe Pproblem is difficult
because it involves designing k)-competitive algorithms for ordinary weighted caching. fas the
offline variant of the problem, we can derive a polynomialdi@approximation algorithm using the
polynomial time offline algorithm for ordinary weighted ¢eeg, but no better approximation guaran-
tees are known. Finally, an interesting topic is to invegiga combination of connection caching and
document caching [8, 14], where one has to maintain local network caches wih documents, because
the two problems arise together in practice.

14



Acknowledgment

We thank Edith Cohen, Haim Kaplan and Uri Zwick for interegtidiscussions and for sending us their
paper [6].

References

[1] L.A. Belady. A study of replacement algorithms for vialustorage computer$BM Systems Jour-
nal, 5:78-101, 1966.

[2] S.Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigdon. On the power of randomization
in on-line algorithmsAlgorithmica, 11:2-14, 1994.

[3] P. Cao and S. Irani. Cost-aware WWW proxy caching alpari. InUSENIX Symposium on Inter-
national Technologies and Systems, December 1997.

[4] M. Chrobak, H. Karloff, T. Paye and S. Vishwanathan. Ne@sults on the server probler8.AM
Journal on Discrete Mathematics, 4:172-181, 1991.

[5] E. Cohen, H. Kaplan and U. Zwick. Connection cachingPioc. of the 31st Annual ACM Sympo-
sium on Theory of Computing, pages 612-621, 1999.

[6] E. Cohen, H. Kaplan and U. Zwick. Connection caching ung@eious models of communiation. In
Proc. 12th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 54-63, 2000.

[7] R. Fielding, J. Getty, J. Mogul, H. Frystyk and T. Bern&ee. Hypertext transfer protocol —
HTTP/1.1. http://ww. ci s. ohio-state. edu/ htbin/rfc/rfc2068. ht m

[8] S. Irani. Page replacement with multi-size pages andicans to Web caching. [Proc. 29th
Annual ACM Symposium on Theory of Computing, pages 701-710, 1997.

[9] T. Kimbrel. Online paging and caching with expiratiomgs. Manuscript, September 1998.

[10] M.S. Manasse, L.A. McGeoch and D.D. Sleator. Competisilgorithms for server problemdour-
nal of Algorithms 11:208-230, 1990.

[11] P. Raghavan and M. Snir. Memory versus randomizatioonitine algorithms. InProc. 16th In-
ternational Colloguium on Automata, Languages and Prognaig) Springer Lecture Notes in
Computer Science, Vol. 372, pages 687-703, 1989.

[12] D.D. Sleator and R.E. Tarjan. Amortized efficiency ef lipdate and paging ruleéS8ommunications
of the ACM, 28:202—-208, 1985.

[13] N. Young. On-line caching as cache size varkar®c. 2nd Annual ACM-SAM Symposium on Dis-
crete Algorithms, 241-250, 1991.

[14] N.E. Young. Online file caching. IRroc. 9th Annual ACM-SAM Symposium on Discrete Algo-
rithms, pages 82—-86, 1998.

15



