
On Generalized Connection Caching

Susanne Albers�
Abstract

Cohenet al. [5] recently initiated the theoretical study of connection caching in the world-wide
web. They extensively studied uniform connection caching,where the establishment cost is uni-
form for all connections [5, 6]. They showed that ordinary paging algorithms can be used to derive
algorithms for uniform connection caching and analyzed various algorithms such as Belady’s rule,
LRU andMarking strategies. In particular, in [5] Cohenet al. showed that LRU yields a(2k � 1)-
competitive algorithm, wherek is the size of the largest cache in the network. In [6], they investigated
Marking algorithms with different types of communication among nodes and presented deterministick-competitive algorithms.

In this paper we studygeneralized connection caching, also introduced in [5], where connections
can incur varying establishment costs. This model is reasonable because the cost of establishing a
connection depends, for instance, on the distance of the nodes to be connected and on the congestion
in the network. Algorithms for ordinary weighted caching can be used to derive algorithms for gener-
alized connection caching. We present tight or nearly tightanalyses on the performance achieved by
the currently known weighted caching algorithms when applied in generalized connection caching.
In particular we give online algorithms that achieve an optimal competitive ratio ofk. Our deter-
ministic algorithm uses extra communication while maintaining open connections. We develop a
generalized algorithm that trades communication for performance and achieves a competitive ratio
of (1 + �)k, for any0 < � � 1, using at mostd1=�e � 1 bits of communication on each open link.
Additionally we consider two extensions of generalized connection caching where (1) connections
have time-out values, or (2) the establishment cost of connections is asymmetric. We show that the
performance ratio of our algorithms can be preserved in scenario (1). In the case of (2) we derive
nearly tight upper and lower bounds on the best possible competitiveness.

1 Introduction

Cohenet al. [5] recently initiated the theoretical study of connection caching in the world-wide web.
Communication between clients and servers in the web is performed using HTTP (Hyper Text Transfer
Protocol), which in turn uses TCP (Transmission Control Protocol) to transmit data. The older HTTP/1.0
opened and closed a separate TCP connection for each transmission request. This caused congestion on
the Internet because web pages typically contain inline images and other associated data which require
a client to make multiple transmission requests to the same server within a short amount of time. The
study by Cohenet al. is motivated by the fact that the new HTTP/1.1 works withpersistent connections,
i.e. connections are kept open so that they can be reused later. Persistent connections have a number
of advantages. By opening and closing fewer TCP connections, CPU time is saved. Secondly, HTTP�Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 79, 79110 Freiburg, Germany.
salbers@informatik.uni-freiburg.de

1



requests can be pipelined on a connection. Pipelining allows a client to make multiple transmission
requests to the same server without waiting for each response. Thus a connection can be used more
effectively. Finally, the network congestion is reduced byreducing the total number of packets that are
used for TCP opens. Of course, each network node can maintainonly a limited number of open TCP
connections. A server or client keeps persistent connections open as long as its resources permit. If a
connection is closed, there is a mechanism by which a client or server can signal the close [7]. In practice,
servers often have a time-out value beyond which they will nolonger maintain an unused connection [7].

Cohenet al. [5] introduced a theoretical model for connection cachingthat we will also adopt in this
paper. The given network is modeled by an undirected graphG. The nodes of the graph represent the
nodes in the network. The edges represent the possible connections. Each node has a cache in which it
can maintain information onopen connections. A connection
 = (u; v) is open if information on
 is
stored in the caches of bothu andv. Otherwise the connection isclosed. If a connection is open, we also
say that it iscached. For a nodev, let k(v) denote the number of open connections thatv can maintain
simultaneously. The valuek(v) is also called thecache size of v. Let k be the size of the largest cache
in the network. Ifv holds less thank(v) open connections, then we say that it has an empty slot. For
a connection
 = (u; v), let 
ost(
) be theestablishment cost of 
 that is incurred when
 is opened.
We assume that initially all connections are closed. An algorithm for connection caching is presented
with a request sequence� = �1; �2; : : : ; �l, where each request�t specifies a connection
t = (ut; vt),1 � t � l. A request�t can be served with cost 0 if
t is cached. Otherwise, if
t is not cached, there is
a miss and
t has to be opened at a cost of
ost(
t). If there is no empty slot at nodewt 2 fut; vtg, then
the algorithm has to close an open connection atwt in order to make room for
t. The goal is to serve the
request sequence� so that the total cost is as small as possible. We assume that at the end of�, when all
the requests are served, all open connections are closed again. In the model described here we assume
that connections arefully persistent, i.e. they have no time-out values.

We are particularly interested in the development ofonline algorithms for the connection caching
problem. An online algorithm has to serve each request without knowledge of any future requests. Given
a request sequence�, letCA(�) denote the cost incurred by an online algorithmA in serving� and letCOPT (�) denote the cost paid by an optimal offline algorithm OPT. Following Sleator and Tarjan [12]A
is called
-competitive if, for all request sequences�, CA(�) � 
 � COPT (�) + a, wherea is a constant
that must be independent of the request sequence.

Related work: Cohenet al. [5, 6] studied the connection caching problem assuming thatthe estab-
lishment cost is uniform for all connections. We refer to this problem asuniform connection caching.
In [5] Cohenet al. first showed that the offline problem is APX-complete. They then observed that there
is a close relationship between connection caching andordinary caching, where one has to maintain a
set of memory pages in a single cache so as to minimize the total access cost incurred on a sequence of
requests to pages. In connection caching each node in the network can simply execute an algorithm for
ordinary caching. Cohenet al. showed that any
-competitive algorithm for ordinary uniform caching,
also known as paging, can be converted into a2
-competitive algorithm for uniform connection caching.
Using Belady’s optimal offline algorithm for paging [1], they obtained a 2-approximation for offline con-
nection caching. Using thek-competitive online algorithm LRU (Least Recently Used), they obtained a2k-competitive online algorithm. Here it is assumed that if a nodeu closes a connection
 = (u; v), thenv is not notified and only learns about the closing at the next request to
. Cohenet al. [5] also considered
a stronger model where nodev is notified and showed that LRU is(2k� 1)-competitive. Obviously, any

2



lower bound on the performance of ordinary caching algorithms also holds for connection caching algo-
rithms. Thus no deterministic online algorithm for connection caching can be better thank-competitive
and LRU was potentially a factor of 2 away from the optimum. In[6], Cohenet al. improved the upper
bounds. More specifically, they consideredMarking algorithms for connection caching and investigated
different types of communication among nodes. They showed that any deterministicMarking algorithm
is k-competitive and hence optimal if 1 extra bit is communicated per request. If no extra communication
is allowed, then the algorithms achieve an upper bound of2k � 1.

Our contribution: In this paper we investigategeneralized connection caching, where the estab-
lishment cost of connections can vary. For any connection
, 
ost(
) can be an arbitrary positive value.
Varying establishment costs occur in practice because the cost of establishing a connection depends for
instance on the distance of the nodes to be connected and, more importantly, an the congestion in the
network. Following [5] it is reasonable to assume that all TCP connections require the same socket
buffer size in a network node. Thus we assume that all connections use the same space in cache and
again denote byk(v) the number of connections that nodev can keep open simultaneously. Hence we
work with connections of uniform size but varying costs. Thecorresponding ordinary caching problem is
known asweighted caching and has been studied extensively, see e.g. [4, 10, 11, 13]. The offline variant
of weighted caching can be solved in polynomial time [4]. Thedeterministic online algorithmsBalance
andLandlord arek-competitive [3, 4, 14]. The randomized algorithmHarmonic is k-competitive against
any adaptive online adversary [11]. These competitive ratios are optimal. At this point, no randomizedo(k)-competitive algorithm against any oblivious adversary isknown for weighted caching.

In this paper we present a comprehensive study of generalized connection caching and, in partic-
ular, give optimal online algorithms. Clearly, a generalized connection caching algorithm can execute
a weighted caching algorithm at each node. Extending the technique by Cohenet al. [5] in a straight-
forward way, one can convert any
-competitive algorithm for weighted caching into a2
-competitive
algorithm for generalized connection caching. This immediately gives an upper bound of2k on the
best possible competitive ratio. In this paper we give tightor nearly tight analyses on the performance
achieved by the currently known weighted caching algorithms when applied in generalized connection
caching. We generally assume that if a nodeu closes a connection
 = (u; v), then v is notified,
see [7]. We prove that theBalance algorithm, a popular algorithm for weighted caching, is notbetter
than (2k � 1)-competitive. We then give an implementation of theLandlord algorithm, proposed for
document caching in the web, and prove that it isk-competitive, and hence optimal, for generalized
connection caching. (This result would also hold if connections had varying sizes.)Landlord usesextra
communication when serving requests. Byextra communication we refer to communication exchanged
on an open connection in addition to that necessary for establishing and closing connections. We are
able to reduce the amount of communication at the expense of increasing slightly the competitive ratio
and formulate a trade-off. We develop a generalized algorithm Landlord(�), for any0 < � � 1, that is(1 + �)k-competitive and uses at mostd1=�e � 1 bits of extra communication for each open connection.
We also analyze the randomized algorithmHarmonic and prove that it isk-competitive for generalized
connection caching against any adaptive online adversary.Again, this competitive ratio optimal. Our
implementation ofHarmonic does not use extra communication; an additional feature ofHarmonic is
that it is memoryless. Hence we can achieve a competitiveness of k with either communication or ran-
domization.

Additionally we consider two extensions of the connection caching model defined above. So far we

3



have assumed that connections are fully persistent and onlyhave to be closed in order to make room
for new connections. First, we address the extension that open connections have time-out values beyond
which they will not be kept open. A time-out value of an open connection may be reset whenever the
connection is requested again. We show thatLandlord, Landlord(�) andHarmonic can be modified so
that their competitiveness is preserved. In the second extension we considerasymmetric costs [5], where
the cost of establishing a connection
 = (u; v) can be different foru andv. We give nearly tight upper
and lower bounds on the competitiveness that can be achievedin this scenario.

2 Lower bounds

Balance [4, 10, 14] is a very populark-competitive online algorithm for ordinary weighted caching.
Intuitively, Balance tries to distribute the loading cost of pages evenly among thek memory slots. When
adapted to connection caching, the algorithm works as follows.

Algorithm Balance: For each nodeu in the network and for each of thek(u) cache locations, the
algorithm maintains a count which is initially 0. If there isa miss at a request to a connection
 = (u; v),
then for each nodew 2 fu; vg that does not have an empty slot, the algorithm evicts a connection that
has the smallest count among thek(w) slots. Ties may be broken arbitrarily. Connection
 is opened and
the count of each of the two cache slots holding
 is increased by
ost(
).

We show thatBalance is not better than(2k � 1)-competitive. This lower bound also holds if the
establishment cost of a missing connection
 is split among the two cache slots that will hold
, i.e. each
count is increased by
ost(
)=2.

Theorem 1 Balance does not achieve a competitive ratio smaller than 2k � 1.

Proof: We construct a request sequence for whichBalance does not perform well relative to an optimal
offline algorithm OPT. The connections the request sequenceis composed of are depicted in Figure 1.

11

1

1

11
1 + �
1 + �

w11

w13v3 v2
v1 wk�111 + � w12

1

1wk�13 1 + �w14 v4
wk�12

wk�14 
4 
1
3 
2
Figure 1: The requested connections

There are fourmain nodes vi, 1 � i � 4, for which there are fourmain connections 
i = (vi; vi+1),1 � i � 3, and
4 = (v4; v1). Each main nodevi hask � 1 neighborswji and associated connections

4



dji = (vi; wji ), 1 � j � k � 1. Establishing a connectiondji incurs a cost of 1 while establishing a main
connection incurs a cost of1 + �, where� > 0 is an arbitrarily small value. Each main node has a cache
of sizek and each neighbor has a cache size of 1.

1 l l + 1 kl+ (l + 1)Æ l + kÆl + �+ lÆl + �+ Æ � � � � � �
Figure 2: The configuration after phasel

When constructing the request sequence, we simultaneouslykeep track of the four caches at the main
nodes. We assume that we start with the following cache configurations.

(1) Eachvi, 1 � i � 4, holds the neighbor connectionsd1i ; : : : ; dk�1i in its firstk � 1 cache slots.

(2) Thek-th cache slot atv1 andv2 holds
1 while thek-th cache slot atv3 andv4 holds
3.
(3) The count of thej-th cache slot at each main node is equal tojÆ with Æ = �=k.

Such a configuration can easily be obtained as follows. At each vi we first requestk � 1 dummy
connections, where thej-th dummy connection has a cost ofjÆ. We can assume without loss of generality
that thej-th dummy connection is loaded into thej-th cache slot. We then present requests for
1 and
3,
which are loaded into thek-th cache slot at each main node, and requests for all neighbor connectionsdji , 1 � i � 4 and1 � j � k�1. Neighbor connectionsd1i ; : : : dk�1i are loaded into the firstk�1 cache
slots atvi, 1 � i � 4. At each main node, thej-th cache slot now has a count of1 + Æj. Reducing all
counts by 1 does not affect the further execution of the algorithm.

Given a cache configuration with (1–3), we can construct a request sequence consisting ofk phases
such that the following holds.

(a) Balance’s cost in each phase is4(k � 1) + 2(1 + �) = 4k � 2 + 2�.
(b) The optimum offline cost in each phase is2 + 2�.
(c) After thek phases the cache configuration is identical to that described in (1–3).

Repeating the process infinitely many times, we obtain a lower bound on the competitive ratio
achieved byBalance of (2k � 1 + �)=(1 + �), which can be arbitrarily close to2k � 1.

We describe the construction of thek phases. Suppose that afterl phases,0 � l � k, the following
invariants hold.

(I1) Either
1 and
3 or 
2 and
4 are cached in thel-th slot of the main nodes. Here slot0 corresponds
to slotk. Each main node hask � 1 neighbor connections cached.

(I2) At each main node, thej-th cache slot has a count ofl + � + jÆ for j = 1; : : : ; l and a count ofl + jÆ for j = l + 1; : : : ; k.

The configuration of a main node’s cache is shown in Figure 2. The bullet corresponds to a main
connection. The(l + 1)-st phase is as follows. If
1 and
3 are cached, then we issue requests to
2 and
4. Otherwise ,if
2 and
4 are cached, then we issue requests for
1 and
3. The connections are stored
in the(l+1)st cache slot of each main node. After the two requests, at each vi we presentk� 1 requests
to neighbor connections. We always request the connectiond�i 2 Di = fd1i ; : : : ; dk�1i g that is currently

5



not cached atvi. The connections are first loaded into slotsl + 2; : : : ; k and then into slots1; : : : ; l
provided that there is never an empty slot before the(k � 1)-st request to a neighbor connection. This
can be ensured by requesting the neighbor connections at thefour main nodes almost simultaneously. If
1 and
3 were cached after phasel, then phasel + 1 is 
2
4(d�1d�2d�3d�4)k�1. Otherwise phasel + 1 is
1
3(d�1d�2d�3d�4)k�1. Here(S)k�1 denotesk � 1 repetitions of request stringS. In thej-th repetition,d�i
is the neighbor connection currently not cached atvi.

Note that afterk�1 requests to neighbor connections at each main node, the mainconnection in slotl is evicted. This shows that (I1) holds after the phase. During the phase, at each main node the count of
the (l + 1)-st cache slot increases by1 + � while for the other cache slot it increases by 1. This proves
(I2). Invariants (I1) and (I2) forl = k and the fact a reduction of all counts byk + � does not affect the
further execution of the algorithm give a cache configuration identical to that described in (1–3).2
3 An optimal deterministic algorithm

A result by Manasse, McGeoch and Sleator [10] implies that nodeterministic online algorithm for or-
dinary weighted caching can be better thank-competitive, wherek is the number of pages that can be
stored in cache. The same lower bound holds for generalized connection caching whenk = maxu k(u).

We present an optimal deterministick-competitive algorithm for generalized connection caching.
The algorithm can be viewed as an implementation of a simplifiedLandlord algorithm [3, 14].

Algorithm Landlord (LL): For each cached connection
, the algorithm maintains a credit value
redit(
)
that takes values between 0 and
ost(
). Whenever a connection is opened,
redit(
) is set to
ost(
).
If there is a miss at a request to a connection(u; v), then for each nodew 2 fu; vg that does not have
an empty slot, execute the following steps. LetÆ = min
 cached atw 
redit(
). Delete a connection
w
from w’s cache with
redit(
w) = Æ and decrease the credit of all the other connections cached at w byÆ. Then open(u; v).

Note that for each cached connection
redit(
) � 0 because if
redit(
) is decreased byÆ, then
redit(
) � Æ.
Landlord, as described above, is a centralized algorithm because thecredit values of open connec-

tions are global shared variables.Landlord can also be formulated as a distributed algorithm. In a
distributed implementation, for each open connection
 = (u; v), both endpointsu and v keep their
own copies of
redit(
). If one endpoint, sayu, reduced the credit byÆ, then this change has to be
communicated tov so thatv can update its
redit(
) value accordingly.

In the following we will show thatLandlord is k-competitive. In this paper, when proving upper
bounds, we always use a slightly modified charging scheme forestablishment costs: We charge the
algorithms for connections that theyevict rather than for connections that theyopen. A similar approach
was taken in [11]. This charging scheme does not affect the performance of the algorithms because the
initial and final caches are empty, i.e. all connections are closed. Hence the cost incurred for establishing
connections equals the cost for closing connections. We will generally analyze online algorithms using
a potential function�. The following lemma will be useful.

Lemma 1 Let ON be a deterministic online algorithm that is analyzed using a non-negative potential
function � which is initially 0. Suppose that, for all request sequences �, the following statements hold.

6



(1) For any request in �, (a) when OPT serves the request, the increase in potential is bounded by
 times the actual cost incurred by OPT and (b) when ON serves the request, the decrease in
potential is at least as large as the actual cost incurred by ON.

(2) At the end of the request sequence, (a) when OPT closes a connection, the increase in potential
is bounded by 
 times the actual cost incurred by OPT and (b) when ON closes a connection, the
decrease in potential is at least as large as the actual cost incurred by ON.

Then ON is 
-competitive.

Proof: The proof is standard in the study of amortized analysis. Wesimply sum up online and offline
costs as well as potential changes over the whole request sequence and over the final operations when
connections are closed.2

Lemma 1 is formulated for deterministic online algorithms.An analogous statement holds for ran-
domized online algorithms against oblivious or adaptive adversaries. See [2] for a definition of the var-
ious types of adversaries. In this paper we will consider randomized online algorithms against adaptive
online adversaries. In this case, when the adversary servesa request or finally closes a connection, the
expected increase in potential must be bounded by
 times the expected actual cost paid by the adversary.
When the online algorithm serves the request, the expected decrease in potential must be at least as large
as the expected actual cost incurred by the algorithm.

Theorem 2 Landlord is k-competitive for generalized connection caching.

Proof of Theorem 2: Let � be an arbitrary request sequence. As mentioned above, we chargeLandlord
and an optimal offline algorithm OPT for connections that they evict and use a potential function� for
the analysis of the algorithms. Define� = k X
2SLLnSOPT 
redit(
) + X
2SLL(
ost(
) � 
redit(
)):
Obviously,� is non-negative. The initial potential is 0 because initially all connections are closed, i.e.SLL andSOPT are empty. We first show statement (1) of Lemma 1.

We consider an arbitrary request in�. Let 
 = (u; v) be the connection requested. If OPT does
not evict a connection to serve the request, then the potential does not increase. If OPT does evict
connections, then for every connection
0 it evicts, the potential can increase byk�
redit(
0) � k�
ost(
0)
because
0 might be inSLL. However, OPT also pays a cost of
ost(
0). Thus the increase in potential is
bounded byk times the actual cost.

We next studyLandlord’s service of the request. If
 is cached byLandlord, then the actual cost
is 0 and the potential does not change. So suppose that
 is not cached. Opening the connection does
not incur any cost and does not change the potential because
 2 SOPT and
redit(
) = 
ost(
). We
have to analyze the change in potential caused by evictions.Suppose thatLandlord evicts connection
w = (w; x) at nodew 2 fu; vg. Connection
 is cached by OPT but not byLandlord beforeLandlord
serves the request. SinceLandlord does not have an empty slot atw, there must exist a connection
�w 2 SLL n SOPT cached byLandlord atw.

We first argue that the eviction of
w causes a decrease of at leastk �Æ in the first term of the potential
function. If 
w = 
�w, then the first term decreases byk � 
redit(
w), which isk � Æ by the definition ofÆ.

7



If 
w 6= 
�w, then
redit(
�w) decreases byÆ causing a decrease of the first term ofk � Æ. For all the other
connections cached atw that are not equal to
w or 
�w, a decrease of the
redit-value can only result in
a decrease of the first term.

In the second term of the potential function, the eviction of
w causes a decrease of
ost(
w) �
redit(
w) = 
ost(
w) � Æ and an increase of(k(w) � 1)Æ � (k � 1)Æ when the
redit-values of the
otherk(w)�1 connections atw are decreased byÆ. In summary, the total decrease in potential is at leastk � Æ + 
ost(
w)� Æ � (k � 1)Æ = 
ost(
w), which is the actual cost paid byLandlord on the request.

We still have to prove statement (2) of Lemma 1 and assume thatfirst OPT and thenLandlord
closes all of its connections. For each connection
 that OPT closes,� can increase byk � 
redit(
) �k � 
ost(
), which isk times the actual cost paid by OPT. WheneverLandlord closes a connection
, the
connection was already closed by OPT and hence
 2 SLL n SOPT . Thus the potential decreases byk � 
redit(
) + 
ost(
)� 
redit(
) � 
ost(
) and this is the actual cost paid byLandlord. 2
4 Reducing the amount of extra communication

In the last section we presented theLandlord algorithm and also described a distributed implementation.
The distributed implementation needs extra communicationfor maintaining open connections. If one
endpoint of an open connection
 reduces
redit(
) by Æ using theLandlord strategy, then this update
has to be communicated to the other endpoint. The amount of extra communication for an open con-
nection can be large if the repeatedÆ reductions are small. We are able to reduce the amount of extra
communication at the expense of increasing slightly the competitiveness of the algorithm. The main idea
is that endpoints of an open connection
 communicate updates in their credit values only when the total
change since the last communication accumulates to� � 
ost(
), for some fixed0 < � � 1. We describe
a fully distributed implementation of the algorithm.

Algorithm Landlord(�): Let � be a fixed constant with0 < � � 1. Each nodeu in the network executes
the following protocol. For each open connection
 = (u; v), nodeu maintains its own credit value
redit(
; u) as well as an approximation of the corresponding credit
redit(
; v) maintained byv for
that connection; this approximation is denoted byg
redit(
; v). Whenever a connection
 = (u; v) is
opened,
redit(
; u) and g
redit(
; v) are set to
ost(
). Suppose that there is a miss at a request to a
connection
0 = (u;w) andu does not have an empty slot. LetÆ = min
=(u;v) cached atu(
redit(
; u) + g
redit(
; v) � 
ost(
)):
Close a connection
u = (u; x) with 
redit(
u; u) + g
redit(
u; x) � 
ost(
u) = Æ and, for any other
connection
 cached atu, reduce
redit(
; u) by Æ. For each such connection
 = (u; v), nodeu also
executes the following steps: If after the reduction byÆ the credits satisfy
redit(
; u) + g
redit(
; v) �
ost(
), then
 is closed. Otherwiseu determines the smallest integersi andj such that
redit(
; u) >
ost(
)(1� i�) before the reduction and
redit(
; u) > 
ost(
)(1� j�) after the reduction. It then sendsj � i update bits tov. Finally the requested connection
0 is opened. At any time during the execution of
the protocol, for each update bit thatu receives fromv on an open connection
 = (u; v), nodeu reducesg
redit(
; v) by � � 
ost(
) and closes
 if 
redit(
; u) + g
redit(
; v) � 
ost(
) afterwards.

The next theorem expresses a trade-off between competitiveness and the amount of extra communi-
cation for each open connection.

8



Theorem 3 For any 0 < � � 1, Landlord(�) is (1 + �)k-competitive and uses at most d1� e � 1 bits of
extra communication for each open connection.

Before we prove the theorem we mention some interesting points on the trade-off curve. Setting� = 1, we obtain a2k-competitive algorithm that does not use any extra communication. For� = 1=2,
the resulting algorithm is32k-competitive and uses only one bit of extra communication. For � ! 0, the
competitive ratio tends tok but the amount of communication can be arbitrarily large, asin the original
Landlord strategy.

Proof of Theorem 3: We first show some properties of the credit values and their approximations.

Lemma 2 Let 
 = (u; v) be an open connection.

a) The credits 
redit(
; u) and 
redit(
; v) as well as the approximations g
redit(
; u) and g
redit(
; v)
take values between 0 and 
ost(
).

b) For node u, 0 � g
redit(
; u)� 
redit(
; u) < � � 
ost(
) and a corresponding statement holds for
node v.

Part b) of the above lemma implies that the approximations are always upper bounds on the true credits
but at most an additive of� � 
ost(
) away from the true value.

Proof of Lemma 2: Part a): The credits of
 satisfy
redit(
; u) + g
redit(
; v) > 
ost(
) because the
connection would be closed otherwise. This implies that theÆ values inLandlord(�) are always positive
and hence
redit(
; u) is upper bounded by
ost(
). The same is true for
redit(
; v). Obviouslyg
redit(
; u) and g
redit(
; v) are upper bounded by
ost(
). If 
redit(
; u) is reduced byÆ, thenÆ �
redit(
; u) + g
redit(
; v) � 
ost(
) and hence
redit(
; u) � Æ � 
ost(
) � g
redit(
; v) � 0. Thus
the credit values are lower bounded by 0. By part b), which we will show below, the approximations are
always upper bounds on the true credits. Thus the approximations are also lower bounded by 0.

Part b): Consider one of the endnodes, sayu, of the connection
 = (u; v). The proof is by induc-
tion. The inequality holds initially when the connection isopened because at that timeg
redit(
; u) and
redit(
; u) are both set to
ost(
). Suppose thatu reduces
redit(
; u) by Æ. Let i andj be the smallest
integers such that
redit(
; u) > 
ost(
)(1�i�) before the reduction and
redit(
; u) > 
ost(
)(1�j�)
after the reduction. Before the reduction we have by induction hypothesisg
redit(
; u) � 
redit(
; u),
which implies g
redit(
; u) � 
ost(
)(1� (i� 1)�) because the approximations take values
ost(
)(1�k � �) for some integerk. Nodev receivesj� i update bits and reducesg
redit(
; u) by (j� i)� � 
ost(
).
Hence after the reductiong
redit(
; u) � 
ost(
)(1 � (j � 1)�), which is at least
redit(
; u) by the
choice ofj. This establishes the first inequality of part b). To prove the second inequality, we observe
that before the reduction
redit(
; u) � 
ost(
)(1� (i�1)�) by the choice ofi. The induction hypothe-
sis implies g
redit(
; u) < 
ost(
)(1� (i� 2)�) and henceg
redit(
; u) � 
ost(
)(1� (i� 1)�) because
the approximations only take values of the form
ost(
)(1�k�) for some integerk. After u sent outj�i
update bits, g
redit(
; u) � 
ost(
)(1 � (j � 1)�) and the second inequality of part b) follows because
redit(
; u) > 
ost(
)(1� j�) after the reduction.2

The bound on the extra communication follows from the next lemma.

Lemma 3 Let 
 = (u; v) be an open connection and assume that d1� e � 1 update bits were exchanged
so far. Then no endpoint of the connection will send out another update bit for 
.

9



Proof: Consider nodeu and suppose that it sent outi � 0 and receivedd1� e � 1 � i update bits. Then
redit(
; u) � 
ost(
)(1� i�) and g
redit(
; v) � 
ost(
)(1�(d1� e�1� i)�). Nodeu can only send out
another update bit if
redit(
; u) reaches or drops below the next threshold
ost(
)(1 � j�) with j > i.
Then 
ost(
; u) + g
redit(
; v) � 
ost(
)(1 � j�) + 
ost(
)(1 � (d1=�e � 1� i)�)� 
ost(
)(2 � ((i + 1) + d1=�e � 1� i)�)� 
ost(
)
andu closes the connection instead.2

To evaluate the competitiveness ofLandlord(�), we use the potential function� = k X
=(u;v)2SLLnSOPT (
redit(
; u) + 
redit(
; v) + (�� 1)
ost(
))+ X
=(u;v)2SLL(2
ost(
) � 
redit(
; u) � 
redit(
; v)):
HereSLL denotes the set of open connections maintained byLandlord(�). The initial potential is 0
because all connections are closed in the beginning. Duringthe execution ofLandlord(�), for any open
connection
 = (u; v), 
redit(
; u) + g
redit(
; v) > 
ost(
) and Lemma 2 part b) givesg
redit(
; v) �
redit(
; v) < � � 
ost(
). Adding these two inequalities we obtain
redit(
; u) + 
redit(
; v) + (�� 1)
ost(
) > 0 (1)

and thus the first sum of� is non-negative. The second sum is non-negative because thecredit values of
a connection are bounded by the cost, see Lemma 2 part a). In summary� is non-negative.

Consider an arbitrary request sequence. We prove statement(1) of Lemma 1. Let
 = (u; v) be the
connection requested. For each connection
0 = (x; y) that OPT closes, the potential can increase byk(
redit(
0; x) + 
redit(
0; y) + (�� 1)
ost(
0)) � k(2
ost(
0) + (�� 1)
ost(
0) � (1+ �)k � 
ost(
0),
which is (1 + �)k times the actual cost paid by OPT. If OPT opens a connection, this cannot increase
the potential because as shown in (1) the expression in the first sum of� is positive for each connection
maintained byLandlord(�).

Suppose thatLandlord(�) evicts connection
w at nodew 2 fu; vg to serve the request. Since
Landlord(�) does not have an empty slot atw, there must exist a connection
�w cached atw with 
�w 2SLL nSOPT . We show that the eviction of
w = (w; z) and the subsequent reduction of credit values for
connections atw cause a decrease ofkÆ in the first sum of� and an increase of at mostkÆ � 
ost(
w)
in the second sum of�. Thus the potential drops by at least
ost(
w), which is the actual cost paid by
Landlord(�). HereÆ = 
redit(
w; w)+ g
redit(
w; z)� 
ost(
w) is the value that determined the choice
of 
w in Landlord(�). We first investigate the change in the first sum of�. If 
w 6= 
�w, then the decrease
of 
redit(
�w; w) by Æ results in a decrease ofkÆ. If 
w 6= 
�w, then the change in the first sum is�k(
redit(
w; w) + 
redit(
w; z) + (�� 1)
ost(
w))� �k(
redit(
w; w) + g
redit(
w; z) � 
ost(
w))= �kÆ:

10



The first inequality follows because, by Lemma 2 part b),
redit(
w; z) � g
redit(
w; z) � � � 
ost(
w).
In the second sum of�, the reduction of
redit(
; w) values for connections
 6= 
w cached atw, causes
an increase of(ku � 1)Æ � (k � 1)Æ. The eviction of
w results in a change of�2
ost(
w) + 
redit(
w; w) + 
redit(
w; z)� �2
ost(
) + 
redit(
w; w) + g
redit(
w; z)= Æ � 
ost(
w):
Thus the total increase is at mostkÆ � 
ost(
w).

We analyze the other actions ofLandlord(�). Sending update bits and changing approximations of
credit values does not change the potential. IfLandlord(�) closes a connection
 = (u; v) because
redit(
; u) + g
redit(
; v) � 
ost(
), then the second sum of� decreases by at least
ost(
) since
redit(
; v) � g
redit(
; v). The first sum of� can only contribute another potential drop. Thus the total
potential drop is at least as large as the actual cost incurred by Landlord(�).

It remains to prove statement (2) in Lemma 1. When OPT closes aconnection, the potential can
increase by at mostk(1 + �) times the cost of the connection, which isk(1 + �) times the cost paid by
OPT. WhenLandlord(�) closes a connection
 = (u; v), the first sum of� drops by at least
redit(
; u)+
redit(
; v) � 
ost(
) because the expression in the first sum is positive,k � 1 and� > 0. The second
sum of� drops by2
ost(
) � 
redit(
; u) � 
redit(
; v). The total decrease in potential is at least
ost(
), which is the cost incurred byLandlord(�). 2

So far we have reduced the amount of extra communiation at theexpense of (slightly) increasing the
competitive ratio. We can reduce the extra communication while preserving a competitiveness ofk if
we are willing to use randomization. We next give a randomized online algorithm that isk-competitive
against any adaptive online adversary and does not use any extra communication bits. The competi-
tiveness is optimal. No randomized online algorithm for generalized connection caching can be better
thank-competitive against any adaptive online adversary. Our algorithm is an implementation of the
Harmonic algorithm developed by Raghavan and Snir [11] for weighted caching. When applied in con-
nection caching,Harmonic works as follows.

Algorithm Harmonic: If there is a miss at a request to a connection
 = (u; v), then for each nodew 2 fu; vg that does not have an empty slot, the algorithm executes the following step. LetD =Pk(w)i=1 1=
ost(
i), where
1; : : : ; 
k(w) are the connections cached atw. Evict 
i with probability pi =1=(D � 
ost(
i)). Then open(u; v).
The algorithm has the additional interesting feature that it is memoryless.

Theorem 4 Harmonic is k-competitive for connection caching against any adaptive online adversary.

Proof: Let � be an arbitrary request sequence. Again we chargeHarmonic and the adaptive online
adversary for the connections that they evict. Let� = k X
2SHnSADV 
ost(
);
whereSH andSADV are the sets of connections cached byHarmonic and the adaptive online adversary
ADV.

11



Consider an arbitrary request to a connection(u; v) in the request sequence. Again we assume that
ADV serves the request first andHarmonic serves the request second. When ADV serves the request,
the potential can only increase if connections are evicted.For each connection
 that ADV evicts, the
potential can increase by at mostk � 
ost(
), which isk times the actual cost incurred by the adversary.

WhenHarmonic serves the request, the potential can only change if connections are evicted because
a connection opened byHarmonic must be inSADV . If Harmonic evicts a connection at nodew 2fu; vg, then the expected cost incurred atw is

Pk(w)i=1 
ost(
i)=(D � 
ost(
i)) = k(w)=D � k=D. Since
Harmonic does not have an empty slot atw there must exist a connection
�w 2 SH n SADV cached
at w. With probability 1=(D � 
ost(
�w)) this connection is evicted, causing a decrease in potentialofk � 
ost(
�w). Thus the expected decrease in potential is at leastk=D. This proves statement (1) of
Lemma 1. Statement (2) is obvious.2
5 Extensions

5.1 Time-out of connections

In practice, servers usually have some time-out value beyond which they will not maintain an open
unused connection [7]. Motivated by this fact, we study generalized connection caching in the setting
that connections may expire. Kimbrel [9] studied ordinary paging and file caching when pages or files
can expire.

We investigate the general setting where each cached connection has a time-out value. Whenever a
connection
 is opened at some timet, it is assigned a timetout, tout > t, at which the connection will
expire. If the same connection is opened at timest1 andt2, wheret2 > t1, thentout2 > tout1 . We assume
that the time-out value of an open connection may be reset to alarger value whenever the connection is
requested again. We show that the algorithms presented in this paper can be adapted easily to handle this
situation.

Algorithm Time-Out: UseA 2 fLandlord;Landlord(�);Harmonicg as a basic caching strategy. If
there is a miss at a request to a connection
 = (u; v), the algorithmTime-Out first evicts the expired
connections atu andv. Then it executes strategyA.

Theorem 5 The competitive ratio of Time-Out is equal to that of the basic strategy A.

Proof: We present the analysis for strategyA = Landlord and then sketch how to modify the analysis
for Landlord(�) andHarmonic.

In our analysis we may assume without loss of generality thatOPT evicts connections immediately
when they expire. An optimum offline strategy OPT that does not satisfy this property can be transformed
into a strategy OPT’ that follows this rule and does not incura higher cost: Any expired connection

closed by OPT some time after expiration is closed by OPT’ immediately when it expires; OPT’ uses the
empty cache slot only when OPT uses it. Clearly the incurred cost remains the same.

We generalize the analysis given in the proof of Theorem 2 andextend the potential function. LetSLL
andSOPT denote the sets of connections cached byLandlord and OPT, respectively. This also includes
connections that expired but have not been evicted from the caches. LetS> be the set of connections
cached byboth Landlord and OPT and for which OPT has a larger time-out value thanLandlord. We

12



extend the potential function used in the proof of Theorem 2 by
P
2S> 
redit(
), i.e.� = k X
2SLLnSOPT 
redit(
) + X
2SLL(
ost(
) � 
redit(
)) + X
2S> 
redit(
):

First note that a resetting of time-out values of open connections can only decrease the potential because
the setS> can only become smaller.

We consider an arbitrary request in a request sequence and first analyze OPT’s moves. The increase
in potential that arises when OPT evicts a connection (be it expired or not expired) can be bounded in
the same way as in the proof of Theorem 2 because the third termin � can only cause a decrease in
potential. When OPT opens a connection
, two main cases have to be considered. (1) If
 =2 SLL, then
the potential does not change. (2) If
 2 SLL, then the potential cannot increase: The first term of the
potential function decreases byk � 
redit(
) and the third term may increase by
redit(
) if 
 2 S>
afterwards.

We next analyze the influence ofLandlord’s moves. Suppose thatLandlord first evicts an expired
connection
. If 
 2 SOPT , then
 2 S> since otherwise OPT would have evicted
 when serving the
request. Thus, the second and third terms of the potential function decrease by
ost(
) � 
redit(
) +
redit(
) = 
ost(
), which is the actual cost incurred byLandlord. If 
 =2 SOPT , then the potential
decreases byk � 
redit(
) + 
ost(
)� 
redit(
) � 
ost(
). The eviction cost of a connection that is not
expired can be bounded in the same way as in proof of Theorem 2 because the third sum in� can only
cause a decrease in potential. WhenLandlord opens a connection
, then
 2 SOPT and
 =2 S> because
OPT cannot have a larger time-out value thanLandlord. Thus the potential cannot increase.

In the analysis ofLandlord(�) we extend the potential function by
P
=(u;v)2S>(
redit(
; u) +
redit(
; v) + (�� 1)
ost(
)). In the analysis ofHarmonic, we extend the function by

P
2S> 
ost(
).2
5.2 Asymmetric costs

So far we assumed that the establishment cost of a connection(u; v) is independent of whetheru orv has to establish the connection. In this section the study the case that the establishment cost does
depend on the endnode. For any possible connection
 = (u; v), we have two consider two types of
requests. By
u we denote a request for connection
 issued atu, i.e.u has to establish the connection
if it not already open. Similarly, by
v we denote a request for connection
 issued atv, i.e. v has
to establish the connection. Let
ost(
u) and 
ost(
v) denote the establishment costs whenu andv,
respectively, have to open the connection. For any
, let 
ost(
)min = minf
ost(
u); 
ost(
v)g and let
ost(
)max = maxf
ost(
u); 
ost(
v)g. LetC be the set of all possible connections in the graph. Define� = max
2C 
ost(
)max
ost(
)min :
Theorem 6 No deterministic online algorithm for connection caching with asymmetric establishment
cost can achieve a competitive ratio smaller then (k � 1)� + 1.

Proof: We consider a very simple setting where we have a nodeu with cache capacityk andk+1 nodesv1; : : : wk+1, each having a cache capacity of 1. An adversary constructs arequest sequence consisting

13



of requests to connections(u; vi), 1 � i � k+1. The establishment cost of each of these connections is� � 1 if u has to open it and 1 ifvi has to open it.

LetA be a deterministic online algorithm. In the request sequence constructed by the adversary, each
request is made to the connection that is currently not cached byu. Thus,A has a miss on each request.
The majority of the requests are issued atu; we call these requestsheavy. However, a few requests
will be issued at the corresponding nodevi; we call these requestslight. Light and heavy requests are
determined as follows. We partition the request sequence into phases. A phase ends when there have
been requests tok distinct connections in the phase and a request to the(k + 1)-st distinct connection
occurs; the phase ends immediately before that request. In each phase, the first request is light. All the
other requests are heavy.

The online algorithm has a cost of(k � 1)� + 1 in each phase. An optimal offline algorithm can
serve the request sequence such that it has a miss only on the first request of the phase. Thus, its cost is
1 in each phase.2

The algorithms presented in Sections 3 and 4 can be applied togeneralized connection caching with
asymmetric establishment cost. In the description of the algorithms,
ost(
) refers to the cost that the
algorithm has actually incurred when opening
.
Theorem 7 The competitive ratios of Landlord, Landlord(�) and Harmonic increase by a factor of �
when used in generalized connection caching with asymmetric establishment cost.

Proof: The analyses are almost the same as the original analyses inthe proofs of Theorems 2, 3 and 4.
In the definition of the potential functions,
ost(
) also refers to the cost that the online algorithm has
actually incurred when opening
. The essential difference in the analyses is that if OPT or ADV evicts
a connection
 = (u; v) for which it had paid an establishment cost of, say,
ost(
u), then the potential
might increase by
ost(
v) because the online algorithm incurred another establishment cost. However,
since
ost(
u) � �
ost(
v), the potential can increase by at most�k times the actual cost incurred by
OPT.2
6 Conclusions and open problems

In this paper we studied generalized connection caching andsome extensions of the problem. We devel-
oped tight or nearly tight upper and lower bounds on the competitive ratio achieved by online algorithms.
In particular we presented algorithms that use different amounts of extra communication. An interest-
ing problem is to develop lower bounds in this context. What is the best possible competitiveness that
can be achieved given a certain number of communication bits? We showed that an implementation of
Harmonic is k-competitive against adaptive online adversaries. A challenging open problem is to de-
velop ramdomizedo(k)-competitive algorithms against oblivious adversaries. The problem is difficult
because it involves designingo(k)-competitive algorithms for ordinary weighted caching. Asfor the
offline variant of the problem, we can derive a polynomial time 2-approximation algorithm using the
polynomial time offline algorithm for ordinary weighted caching, but no better approximation guaran-
tees are known. Finally, an interesting topic is to investigate a combination of connection caching and
document caching [8, 14], where one has to maintain local network caches with web documents, because
the two problems arise together in practice.

14



Acknowledgment

We thank Edith Cohen, Haim Kaplan and Uri Zwick for interesting discussions and for sending us their
paper [6].

References

[1] L.A. Belady. A study of replacement algorithms for virtual storage computers.IBM Systems Jour-
nal, 5:78-101, 1966.

[2] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigderson. On the power of randomization
in on-line algorithms.Algorithmica, 11:2–14, 1994.

[3] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. InUSENIX Symposium on Inter-
national Technologies and Systems, December 1997.

[4] M. Chrobak, H. Karloff, T. Paye and S. Vishwanathan. New results on the server problem.SIAM
Journal on Discrete Mathematics, 4:172–181, 1991.

[5] E. Cohen, H. Kaplan and U. Zwick. Connection caching. InProc. of the 31st Annual ACM Sympo-
sium on Theory of Computing, pages 612-621, 1999.

[6] E. Cohen, H. Kaplan and U. Zwick. Connection caching under various models of communiation. In
Proc. 12th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 54–63, 2000.

[7] R. Fielding, J. Getty, J. Mogul, H. Frystyk and T. Berners-Lee. Hypertext transfer protocol –
HTTP/1.1. http://www.cis.ohio-state.edu/htbin/rfc/rfc2068.html

[8] S. Irani. Page replacement with multi-size pages and applications to Web caching. InProc. 29th
Annual ACM Symposium on Theory of Computing, pages 701–710, 1997.

[9] T. Kimbrel. Online paging and caching with expiration times. Manuscript, September 1998.
[10] M.S. Manasse, L.A. McGeoch and D.D. Sleator. Competitive algorithms for server problems.Jour-

nal of Algorithms, 11:208-230, 1990.
[11] P. Raghavan and M. Snir. Memory versus randomization inon-line algorithms. InProc. 16th In-

ternational Colloquium on Automata, Languages and Programming, Springer Lecture Notes in
Computer Science, Vol. 372, pages 687-703, 1989.

[12] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.Communications
of the ACM, 28:202–208, 1985.

[13] N. Young. On-line caching as cache size varies.Proc. 2nd Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 241–250, 1991.

[14] N.E. Young. Online file caching. InProc. 9th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 82–86, 1998.

15


