
On the Performance of Greedy Algorithms in
Packet Buffering�

Susanne Albersy Markus Schmidtz
Abstract

We study a basic buffer management problem that arises in network switches. Considerm input
ports, each of which is equipped with a buffer (queue) of limited capacity. Data packets arrive online
and can be stored in the buffers if space permits; otherwise packet loss occurs. In each time step the
switch can transmit one packet from one of the buffers to the output port. The goal is to maximize the
number of transmitted packets. Simple arguments show that any reasonable algorithm, which serves any
non-empty buffer, is 2-competitive. Azar and Richter recently presented a randomized online algorithm
and gave lower bounds for deterministic and randomized strategies.

In practice greedy algorithms are very important because they are fast, use little extra memory and
reduce packet loss by always serving a longest queue. In thispaper we first settle the competitive
performance of the entire family of greedy strategies. We prove that greedy algorithms are not better than
2-competitive no matter how ties are broken. Our lower boundproof uses a new recursive construction
for building adversarial buffer configurations that may be of independent interest. We also give improved
lower bounds for deterministic and randomized online algorithms.

In the second part of the paper we present the first deterministic online algorithm that is better than
2-competitive. We develop a modified greedy algorithm, calledSemi-Greedy, and prove that it achieves
a competitive ratio of17=9 � 1:89. The new algorithm is simple, fast and uses little extra memory. Only
when the risk of packet loss is low, it does not serve the longest queue. Additionally we study scenarios
when an online algorithm is granted additional resources. We consider resource augmentation with
respect to memory and speed, i.e. an online algorithm may be given larger buffers or higher transmission
rates. We analyze greedy and other online strategies.

1 Introduction

The performance of high-speed networks critically dependson switches that route data packets arriving
at the input ports to the appropriate output ports so that thepackets can reach their correct destinations
in the network. To reduce packet loss when the traffic is bursty, ports are equipped with buffers where
packets can be stored temporarily. However the buffers are of limited capacity so that effective buffer
management strategies are important to maximize the throughput at a switch. As a result there has recently
been considerable research interest in the design and analysis of various buffer management policies [1–11].

We study a very basic problem in this context. Considerm input ports which serve a given output port.
Each input port has a buffer that can simultaneously store upto B packets and is organized as a queue. In
any time step new packets may arrive at the input ports and canbe appended to the corresponding buffers if�A preliminary version of this paper appeared at the36th Annual ACM Symposium on Theory of Computing (STOC’04).yInstitut für Informatik, Albert-Ludwigs-Universiẗat Freiburg, Georges-K̈ohler-Allee 79, 79110 Freiburg, Germany.
salbers@informatik.uni-freiburg.deWork supported by the Deutsche Forschungsgemeinschaft, project AL 464/4-1,
and by the EU, projects APPOL and APPOL II.zInstitut für Informatik, Albert-Ludwigs-Universiẗat Freiburg, Georges-K̈ohler-Allee 79, 79110 Freiburg, Germany.
markus.schmidt@informatik.uni-freiburg.de

1

space permits. More specifically, suppose that the buffer atport i currently storesbi packets and thatai new
packets arrive there. Ifbi + ai � B, then all new packets can be accepted; otherwiseai + bi � B packets
must be dropped. In any time step the switch can select one non-empty buffer and transmit the packet at the
head through the output port. We assume w.l.o.g. that the packet arrival step precedes the transmission step.
The goal is to maximize thethroughput, i.e. the total number of transmitted packets. The scenariowe study
here arises, for instance, in input-queued (IQ) switches which represent the dominant switch architecture
today. In an IQ switch withm input andm output ports packets that arrive at inputi and have to be routed to
outputj are buffered in a virtual output queueQij . In each time step, for any outputj, one data packet from
queuesQij , 1 � i � m, can be sent to that output. The buffer sizeB is large, typically several hundreds or
thousands. We emphasize that we consider all packets to be equally important, i.e. they all have the same
value. Most current networks, in particular IP networks, treat packets from different data streams equally in
intermediate switches.

Information on future packet arrivals usually is very limited or not available at all. We make no proba-
bilistic assumptions about the input and investigate an online setting where at any time future packet arrivals
are unknown. We are interested in online buffer management strategies that have a provably good per-
formance. Following [12] we call a deterministic online algorithm ALG -competitive if � TALG(�) �TOPT (�), for all packet arrival sequences�. HereTALG(�) andTOPT (�) denote the throughputs achieved
by ALG and by an optimal offline algorithmOPT that knows the entire input� in advance. IfALG is a
randomized algorithm, thenTALG(�) has to be replaced by the expected throughputE[TALG(�)℄.

In practice greedy algorithms are most important. At any time a greedy algorithm serves a queue that
currently buffers the largest number of packets. Serving the longest queue is a very reasonable strategy
to avoid packet loss if future arrival patterns are unknown.Moreover, greedy strategies are interesting
because they are fast and use little extra memory. A switch cannot afford complex computations to decide
which queue to serve, nor has it sufficient memory to maintaindetailed information on past or current
configurations. In this paper we present a thorough study of greedy algorithms and their variants.

Previous work: A simple observation shows that any reasonable algorithmALG, which serves any non-
empty queue, is 2-competitive: Partition� into subsequences�l such thatALG’s buffers are empty at the
end of each�l. W.l.o.g. we postpone the beginning of�l+1 until OPT has emptied its buffers, too. IfOPT
buffersbi packets in queuei at the end of subsequence�l, then at leastbi packets must have arrived there
in �l. ALG has transmitted at least

Pmi=1 bi packets whileOPT delivers
Pmi=1 bi more thanALG does.

Up to now no deterministic online algorithm with a competitive ratio smaller than2 has been known.
Azar and Richter [3] showed that ifB = 1, no deterministic strategy can be better than(2� 1m)-competitive.
For arbitraryB, they gave a lower bound of 1.366. Azar and Richter also considered randomized algorithms
and presented a strategy that achieves a competitiveness ofe=(e � 1) � 1:58. ForB = 1, they showed a
lower bound of 1.46 on the performance of any randomized online algorithm.

Bar-Noy et al. [5] and Koga [11] studied buffer management policies when buffers have unlimited capac-
ity and one wishes to minimize the maximum queue length. Theypresented�(logm)-competitive online
algorithms. Additional results are known when packets havevalues and the goal is to maximize the total
value of the transmitted packets. Almost all of the previouswork has focused on the single queue problem,
i.e. we have to maintain only one buffer. Kesselman et al. [7]gave 2-competitive algorithms for various
models where preemption is allowed i.e. packets admitted tothe queue may be discarded in the event of
buffer overflow. Recently, Kesselman et al. [9] developed a 1.983-competitive algorithm when packets must
be transmitted in the order they arrive. Aiello et al. [1] investigated single queue problems assuming that
preemption is not allowed. For this scenario Andelman et al.[2] showed tight bounds of�(log�), where� is the ratio of the maximum to the minimum packet value.

Recently Azar and Richter [3] presented a technique that transforms any-competitive algorithm for
a single queue into a2-competitive algorithm form queues. Using results from [2, 7] they derived
4-competitive preemptive and2edln�e- competitive non-preemptive algorithms.

2

Our contribution: In the first part of the paper we settle the competitive performance of the entire
family of greedy algorithms. We prove that a greedy algorithm cannot be better than 2-competitive, no matter
how ties are broken. Since any reasonable algorithm is 2-competitive, the competitiveness of any greedy
policy is indeed 2. Our lower bound construction is involvedand relies on a new recursive construction for
building dynamic adversarial buffer configurations. We believe that our technique may be useful for proving
lower bounds in other multi-queue buffering problems. In fact, we use a variant of our technique to develop
a lower bound for any deterministic online algorithm. We show that, for any buffer sizeB, no deterministic
online strategyALGcan achieve a competitiveness smaller thane=(e�1) � 1:58. Interestingly, we establish
this bound by comparing the throughput ofALG to that of any greedy algorithm. Using an approach different
from [3] we show that for anyB, a randomized online algorithm cannot be better than 1.46-competitive.

Although in terms of competitiveness greedy algorithms arenot better than arbitrary reasonable algo-
rithms, greedy strategies are important from a practical point of view. Therefore it is interesting to consider
variants of greedy policies and to analyze greedy approaches in extended problem settings. In the second
part of the paper we develop a slightly modified deterministic greedy stategy, calledSemi-Greedy (SGR),
and prove that it achieves a competitive ratio of17=9 � 1:89. We conjecture thatSGRis actually an optimal
deterministic algorithm because forB = 2, it achieves an optimal competitiveness of13=7 � 1:86. These
results show, in particular, that deterministic algorithms can beat the factor of2 and perform better than
arbitrary reasonable strategies.

The newSGRalgorithm is simple. If there is a queue buffering more thanbB=2 packets,SGRserves a
longest queue. If all queues store at mostbB=2 packets,SGRserves a longest queue that has never bufferedB packets provided there is one; otherwiseSGRserves a longest queue. The idea of this rule is to establish
some fairness among the queues.SGRis essentially as fast as greedy. It can be implemented such that at
most one extra comparison is needed in each time step. The extra memory requirements are also low. For
each queue, we just have to maintain one bit indicating whether or not the queue has ever bufferedB packets.
SGRdoes not follow the standard greedy strategy only if each queue buffers at mostbB=2 packets and,
hence, the risk of packet loss is low. Thus we considerSGRto be a very practical algorithm. We analyzeSGR
by defining a new potential function that measures the numberof packets thatSGRhas already lost or could
lose if an adversary replenishes corresponding queues. In contrast to standard amortized analysis we do not
bound the potential change in each time step. We rather show that if the potential increased atT1 time steps
andT1 > C1 for some constantC1, then the potential must have decreased atT2 steps withT2 > C2.

In the second part of the paper we also study the case that an online algorithm is granted more resources
than an optimal offline algorithm and show that we can beat thecompetitiveness of 2. We consider resource
augmentation with respect tomemoryandspeed, i.e. we study settings in which an online algorithm has
(a) larger buffers in each queue or (b) a higher transmissionrate. For scenario (a) we prove that any reason-
able algorithm, and in particular any greedy algorithm, achieves a competitive ratio of(+ 2)=(+ 1) if it
has an additional buffer ofA = B in each queue. We show that this bound is tight for greedy strategies.
Hence doubling the buffer capacities we obtain a performance ratio of 1.5. For scenario (b) we show an
upper bound of1 + 1=k if in each time step an online algorithm can transmitk times as many packets as
an adversary. Again, doubling the transmission rate we obtain a competitiveness of 1.5. Finally, we give a
linear time offline algorithm for computing an optimal service schedule maximizing the throughput.

This paper is organized as follows. In Section 2 we develop our lower bounds. In Section 3 we present
the newSGRalgorithm and investigate scenarios with resource augmentation. The optimal offline algorithm
is given in Section 4.

3

2 Lower bounds

We first analyze greedy algorithms and then develop lower bounds for arbitrary deterministic and random-
ized online strategies.

2.1 Greedy Algorithms

Formally, we call an online algorithmGR greedyif GR always serves a longest queue.

Theorem 1 For any B, the competitive ratio of any randomized greedy algorithmGR is not smaller than2� 1=B.

Proof. Fix a buffer sizeB > 0. We show that there exist infinitely manym and associated packet arrival se-
quences form queues such that the throughput achieved by an adversaryADV is at least2� 1=B ��(m�1=2B�2) times that achieved byGR. This proves the theorem. We use arrival sequences
where whenever there are several queues of maximum lengths,all these queues are served once before the
next packets arrive. Thus, the tie-breaking criteria need not be considered.

Let � � 2 be an integer andb = 2B�2. Setm = �b. We construct a recursive partitioning of them queues. For anyi with 1 � i � B�2, letmi = m1=2i. Them queues are divided intom1 blocks, each of
them consisting ofm1 subsequent queues. These blocks are labeled1; : : : ;m1 in ascending order. Blockn1
with 1 � n1 � m1 is subdivided intom2 blocks, each of them consisting ofm2 subsequent queues labeled(n1; 1); : : : ; (n1;m2). This partitioning is repeated up to levelB � 2. In general, any block(n1; : : : ; ni)
at level i consisting ofmi queues is subdivided intomi+1 blocks each containingmi+1 queues. These
blocks are labeled(n1; : : : ; ni; 1); : : : ; (n1; : : : ; ni;mi+1). Note that a block(n1; : : : ; nB�2) at levelB � 2
consists of exactly� queues. We define a lexicographic ordering on the(B � 2)-tuples(n1; : : : ; nB�2) in
the standard way. Given(n1; : : : ; nB�2) and(n01; : : : ; n0B�2) we have(n1; : : : ; nB�2) < (n01; : : : ; n0B�2)
if ni < n0i, for somei andnj = n0j for all 1 � j < i. Furthermore,(n1; : : : ; nB�2) � (n01; : : : ; n0B�2) if(n1; : : : ; nB�2) < (n01; : : : ; n0B�2) or ni = n0i for all 1 � i � B � 2.

The basic idea of the lower bound construction is to maintainastaircase of packetsin GR’s queues that
is centered at some block(n1; : : : ; nB�2). GR’s queues in any block(n01; : : : ; n0B�2) buffer i packets ifnj = n0j , for 1 � j � i, but ni+1 6= n0i+1. The staircase center moves through the blocks in increasing
lexicographic order. When the center is located at(n1; : : : ; nB�2) we force a packet loss ofB at each
of GR’s queues in that block.ADV will be able to accept all packets and essentially has full queues in
all blocks(n01; : : : ; n0B�2) that are lexicographically smaller than(n1; : : : ; nB�2). When the construction
ends, almost all ofADV’s queues are fully populated whileGR’s queues are empty. Since a total of nearlymB packets are transmitted byADV andGR during the construction, this gives the desired lower bound.

Formally, we process blocks(n1; : : : ; nB�2) with ni � 2 for all i in increasing lexicographic order.
Blocks (n1; : : : ; nB�2) with ni = 1 for somei are special in that less thanB packets will arrive there.
When we start processing a block(n1; : : : ; nB�2) with ni � 2 for all i, certain invariants given below hold.
We show how to process it such that the invariants are also when we start processing the next block.

(G1) Let(n01; : : : ; n0B�2) be a block with(n01; : : : ; n0B�2) < n1; : : : ; nB�2) andn0i � 2 for all i. GR buffers
exactlyj + 1 packets ifj is the largest index withn01 = n1; : : : ; n0j = nj .

(G2) Let(n01; : : : ; n0B�2) be a block with(n01; : : : ; n0B�2) < (n1; : : : ; nB�2) such thatn0i = 1 andn0j � 2
for all 1 � j � i� 1. GR hasj + 1 packets in each of the queues ifn0j = nj for all 1 � j � i� 1.

(G3) Let(n01; : : : ; n0B�2) be a block with(n01; : : : ; n0B�2) � (n1; : : : ; nB�2). GR buffers exactlyj packets
if j is the largest index withn01 = n1; : : : ; n0j = nj .

4

B
(1)

(2) (2; 1)
(2; 3)

(2; 2; 1)(2; 2; 2)(2; 2; 3)
: : :GR

B
(1)

(2; 1) (2; 2; 1)
: : :

ADV

Figure 1: Queue configurations when
we start processing block(2; 2; 2).

: : :

: : :

(n1 � 1)

(n1) (n1; 1)
(n1; n2 + 1)
(n1; n2; 1)(n1; n2; n3)(n1; n2; n3 + 1)

GR

: : :

: : :

(n1 � 1)
(n1; 1)(n1; n2; 1)

(n1 � 1; 1)(n1 � 1; n2; 1)(n1 � 1; n2; n3)(n1 � 1; n2; n3 + 1)

ADV

Figure 2: Queue configurations when we start processing
block (n1; n2; n3):

(A1) Let (n01; : : : ; n0B�2) be a block with(n01; : : : ; n0B�2) < (n1; : : : ; nB�2) andn0i � 2 for all i. ADV hasB packets in each of the firstmB�2 � 1 = � � 1 queues andB � 1 packets in the last queue of this
block.

(A2) Let (n01; : : : ; n0B�2) be a block with(n01; : : : ; n0B�2) < (n1; : : : ; nB�2) such thatn0i = 1 andn0j � 2
for all 1 � j � i � 1. ADV has two packets in each of the queues ifn0j = nj for all 1 � j � i � 1
and one packet in those queues otherwise.

(A3) Let (n01; : : : ; n0B�2) be a block with(n01; : : : ; n0B�2) � (n1; : : : ; nB�2). ADV has 0 packets in each
of those queues.

Initialization: We show how to establish the six invariants for the block(2; : : : ; 2). At the beginning
there arrive2m1 packets in the queues of block(1) at level 1, two packets in each queue, andm1 packets
in the queues of block(2) at level 1, one packet in each queue.GR starts transmission from block 1 while
ADV does so from block 2. After bothGR andADV have transmittedm1 packets, we jump to level 2 where
the arrival pattern is adopted in gauge: there arrive2m2 packets in block(2; 1), two in each queue, andm2 packets in block(2; 2), one in each queue. We continue to copy and scale down this pattern until blocks(2; : : : ; 2; 1) and(2; : : : ; 2; 2) at levelB � 2 are reached. At leveli, GR always clearsmi packets in block(2; : : : ; 2; 1) while ADV does so in(2; : : : ; 2; 2). Figure 1 shows these initial configurations.

Invariants (A1) and (G1) trivially hold because there is no block N 0 < (2; : : : ; 2) with n0i � 2, for all1 � i � B � 1. If N 0 < (2; : : : ; 2) andj is the smallest index withn0j = 1, thenn01 = : : : = n0j�1 = 2.
Queues inN 0 receivedj+1 packets,j� 1 of which have been transmitted byADV, while only one of them
has been transmitted byGR. Hence, invariants (A2) and (G2) hold. IfN 0 � (2; : : : ; 2) andj is the largest
index withn01 = n1; : : : ; n0j = nj , then queues inN 0 receivedj packets, all of which have been transmitted
by ADV, while none of them have been transmitted byGR, giving that invariants (A3) and (G3) hold.

Processing of a block:We next describe how to process blockN = (n1; : : : ; nB�2). Figure 2 shows
the buffer configurations when the processing starts. Letq1; : : : ; qmB�2 be themB�2 queues in that block.
By (G3), GR hasB � 2 packets in each of these queues. By (A3),ADV stores no packets there. We
subsequently apply the following arrival pattern to each but the last of theqj ’s: There arriveB packets at

5

queueqj and one packet at queueqj+1. First,GR accepts two packets inq1 and one packet inq2. Thenq1 is
completely populated whileq2 still has one free buffer left. AfterwardsGR transmits a packet fromq1. At
the arrival ofB packets atq2,GR must reject all but one of them and can accept the additional packet atq3
as well. This behavior is repeated until the last queue inN is reached. In contrast,ADV always processes
the single packet inqj+1 in order to be able to acceptB packets in the next step. WhenB packets arrive
at qmB�2 , we leave the additional packet out because we would cross the boundary to the next block of
levelB � 2. We assume that bothADV andGR then transmit one packet fromqmB�2 . HenceGR storesB�1 packets in each queue ofN , whereasADV buffersB packets in all but the last queue andB�1 packets
in the last one. We next show how to establish the six invariants for the next blockN = (n1; : : : ; nB�2)
in the lexicographic order satisfyingni � 2, for all i. We distinguish cases depending on whether or notnB�2 = nB�2 + 1.

Case 1: If nB�2 = nB�2 + 1, thenN andN belong to the same block of levelB � 3. By (G3),GR buffersB � 3 packets in each queue ofN . Now there arrivemB�2 packets atN , one at each of the
queues. Thus, each queue inN buffersB � 1 packets, and each queue inN buffersB � 2 ones. In the
following mB�2 time stepsGR transmits one packet from each queue inN while ADV serves the queues
in N , which are then empty again inADV’s configuration. Since onlyN andN have been affected, the
invariants (G1), (G2) and (G3) hold forN as well. The same is true for (A1) because the statement holds
for blockN , as argued at the end of the last paragraph. (A2) was not affected during the processing ofN
becauseni � 2, for all 1 � i � B � 1. Since no new packets arrived at blocks that are lexicographically
larger thanN , (A3) is also satisfied.

Case 2: If nB�2 6= nB�2 + 1, thenN andN do not belong to the same block at levelB � 3. Let i be
the largest index such thatni < mi, i.e. there is another block at leveli. HenceN = (n1; : : : ; ni�1; ni + 1;2; : : : ; 2). In the following time steps, no new packets arrive, and since (G1) and (G2) hold,GR transmitsmj packets from the queues of block(n1; : : : ; ni;mi+1; : : : ;mj), for j = B � 2; : : : ; i + 1. During each
iteration, one packet is transmitted from each of these queues. In these time steps, forj = B� 2; : : : ; i+1,
ADV transmits one packet from each of the queues in(n1; : : : ; ni;mi+1; : : : ;mj�1; 1). By invariant (A2),
these queues hold exactly two packets inADV’s configuration and store precisely one packet after the trans-
mission. In the next time stepmi packets arrive at the queues of(n1; : : : ; ni + 1), one packet at each of
these queues. At that time inGR’s configuration, the queues in(n1; : : : ; ni) buffer exactlyi + 1 packets
while all other queues buffer less.GR then transmits one packet from each of the queues in(n1; : : : ; ni)
while ADV serves the queues in(n1; : : : ; ni + 1) so that they are empty again. In the following steps we
restore inGR’s configuration the full staircase on top of thei packets in the queues of(n1; : : : ; ni + 1).
More precisely, there arrive2mi+1 packets at the queues of(n1; : : : ; ni+1; 1), two at each of these queues,
andmi+1 packets at the queues of(n1; : : : ; ni + 1; 2), one packet at each of these queues.GR transmits
one packet from each queue in(n1; : : : ; ni + 1; 1) while ADV clears block(n1; : : : ; ni + 1; 2). Then there
arrive2mi+2 packets in(n1; : : : ; ni + 1; 2; 1) andmi+2 packets in(n1; : : : ; ni + 1; 2; 2). AgainGR serves
the queues in the first of these blocks whileADV clears the second. This process continues up to blocks(n1; : : : ; ni + 1; 2; : : : ; 2; 1) and(n1; : : : ; ni + 1; 2; : : : ; 2) at levelB � 2.

Lemma 1 Invariants (G1–3) and (A1–3) hold when we start processingN = (n1; : : : ; ni + 1; 2; : : : ; 2).
Proof. Consider blockN = (n1; : : : ; ni + 1; 2; : : : ; 2) =: (n1; : : : ; nB�2). LetN 0 = (n01; : : : ; n0B�2) be
an arbitrary block. We first study (G1). LetN 0 < N , n0j � 2 for all j, and letk be the largest index such
thatn01 = n1; : : : ; n0k = nk. If k < i, then there is nothing to show because the queues inN 0 have not
been touched byGR since the processing ofN started. Ifk � i, we haveN 0 = (n1; : : : ; ni;mi+1; : : : ;mk;n0k+1; : : : ; n0B�2). SoN 0 is affected at the iteration steps forj = k; : : : ; i, hencek � i + 1 times, where
iterationi corresponds to the subsequent transmission of one packet from each queue in(n1; : : : ; ni). SinceN 0 bufferedk + 1 packets before the processing ofN started, there arek + 1 � (k � i + 1) = i packets
after the iteration steps. On the other hand,i � 1 = maxfj : n01 = n1; : : : ; n0j = njg. ForN 0 = N the

6

statement of (G1) also holds because exactlyi packets are buffered at these queues. IfN 0 < N , statement
(G2) holds because of the same arguments, starting withk packets before the processing and eventually
gettingi packets.

If N < N 0 < N , then letj be the largest index withn01 = n1; : : : ; n0j = nj . We havei � j < B � 2
andn0j+1 = 1. Sincen0i+1 = : : : = n0j = 2, GR buffers exactlyj + 1 packets in the queues ofN 0. Hence
(G2) holds here as well. Moreover, sinceGR hasB�2 packets in the queues ofN , (G3) holds forN 0 = N .
If N 0 > N , then we distinguish two cases. Ifn0l > nl for some1 � l � i, there is nothing to show becauseGR’s configuration in these queues has not changed and the largest indexj with n1 = n01; : : : ; nj = n0j is
equal to the largest indexj with n1 = n01; : : : ; nj = n0j . If n01 = n1; : : : ; n0i = ni = ni +1, then letj be the
largest index withn01 = n1; : : : ; n0j = nj . We haven0i+1 = 2; : : : ; n0j = 2 andn0j+1 > 2. Hence the queues
in N 0 store exactlyj packets and (G3) holds.

Invariant (A1) obviously holds because it held when we started processingN and the desired property
was established for blockN . There exist no blocksN 0 with N < N 0 < N andn0i � 2 for all i. In-
variant (A2) is satisfied for blocksN 0 with N 0 � N because during the processing ofN , ADV served the
queues in(n1; : : : ; ni;mi+1; : : : ;mj�1; 1) for j = B � 1; : : : ; i+1 exactly once, thus reducing the number
of packets stored there from 2 to 1. IfN 0 > N , then the queues store exactly two packets, as desired.
Finally, (A3) holds becauseADV has transmitted all packets that have arrived at blocksN 0 � N . 2

After processing the last block(m1; : : : ;mB�2), no further packets arrive, but the iteration steps are
executed as if there were another block. Then, we have the following configurations: From invariants
(G1), (G2) and (G3), we derive thatGR buffers one packet in each queue. Due to (A1), (A2) and (A3),
ADV buffersB � 1 or B packets in the queues in blocks(n1; : : : ; nB�2) with ni � 2 for all i while the
others buffer exactly one packet likeGR does.

Let TG be the throughput achieved byGR andTA be the throughput achieved byADV. For any block(n1; : : : ; nB�2) with ni � 2 for all i,GR transmitsB packets from each of the associated queues. For any
block (n1; : : : ; ni�1; 1) with nj � 2, for j = 1; : : : ; i � 1, GR transmitsi + 1 packets from each queue.
There are

Qi�1j=1(mj � 1) such blocks, each containingmi queues. ThusTG = (m� �m)B + Æ1, where

�m = B�2Xi=1 i�1Yj=1(mj � 1)mi Æ1 = B�2Xi=1 i�1Yj=1(mj � 1)mi(i+ 1):
The throughput ofADV is equal to that ofGR plus the number of packets that are inADV’s final configu-
ration when the processing of blocks ends minus the number ofpackets that are inGR’s final configuration
when the processing of blocks ends. In this final configuration queues in blocks(n1; : : : ; nB�2) with ni � 2
for all i storeB packets, except for the last of these queues which buffers only B � 1 packets. All other
queues are empty. HenceTA = TG + (m � �m)B � Æ2 � (m � �m), whereÆ2 = (m � �m)=�: HenceTA � TG + (m� �m)(B � 1)�m��1. Moreover�m 2 �(QB�2j=1 mj) = �(QB�2j=1 m 12j) = �(m1� 12B�2),m��1 2 �(m1� 12B�2), andÆ1 2 �(BQB�2j=1 mj) = �(Bm1� 12B�2). This impliesTATG � (m� �m)B + Æ1 + (m� �m)(B � 1)�m��1(m� �m)B + Æ1 = 2� (m� �m) + Æ1 +m��1(m� �m)B + Æ1� 2� 1B � Æ1 +m��1(m� �m)B + Æ1 2 2� 1B ��0�Bm1� 12B�2mB 1A = 2� 1B ���m� 12B�2 � : 2
2.2 Arbitrary Algorithms

We first study deterministic online algorithms and then address randomized strategies.

7

Theorem 2 The competitive ratio of any deterministic online algorithm ALG is at leaste=(e� 1).
Proof. LetB be a positive integer representing the buffer size. For any positive integerN , letm = (B+1)N
be the number of queues. Let theB buffer columns be indexed1; : : : ; B where columnB is the one at the
head of the queues and column1 is the one at the tails. At the beginning there arriveB packets at each
of them queues such that all buffers are fully populated. We presenta schemeS for constructing request
sequences�. Our scheme has the property that the throughput achieved byan adversary is at leaste=(e� 1)
times the throughput obtained by any greedy algorithm and that the throughput of any greedy strategy is
at least as large as the throughput of any deterministic online algorithmALG. This establishes the theorem.
It will be sufficient to consider the standard greedy algorithm, denoted byGR, which serves the smallest
indexed queue in case there is more than one queue of maximum length.

A request sequence� consists of superphasesP1; : : : ; PB. SuperphasePi consists of phases(i;N); : : : ; (i; 1). In a phase(i; s) packets arrive at theqs = (B + 1)s�1 most populated queues in the
online configuration. We first present an informal description of the superphases and phases, explaining
howGR would serve them. Then we give a formal definition with respect to any online strategy. When
superphasePi is finished, the lasti columns inGR’s buffers are empty while the other columns are fully pop-
ulated. In particular, when� ends, all buffers are empty. SuperphasePi is meant to empty columni. After
phase(i; s) the firstm�qs queues containB�i packets while the remaining queues bufferB�i+1 packets.

We first describe superphaseP1 and start with phase(1; N). Initially, all qN+1 = m queues are fully
populated. During the firstqNB time steps no packets arrive andGR transmits a packet from each of
the firstqNB queues. ThenB packets arrive at each of the remainingqN queues, all of which must be
dropped byGR because the lastqN queues already bufferB packets each. An adversary, on the other hand,
could transmit all packets from the lastqN queues during the firstqNB time steps so that no packet loss
occurs. At the end of phase(1; N) the lastqN queues are fully populated inGR’s buffer configuration.
The arrival pattern now repeats for the other phases inP1. At the beginning of(1; s) the lastqs+1 queues inGR’s configuration storeB packets each. During the firstqsB time steps no packets arrive andGR transmits
one packet from each of the firstqsB of theseqs+1 queues. ThenB packets are sent to each of the lastqs queues, all of which are lost byGR. Again, an adversary can accept all packets by transmittingfrom the
lastqs queues in the previous time steps. At the end of(1; 1) the last queue inGR’s configuration containsB packets while all other queues bufferB � 1 packets. Now there is one time step without packet arrivals
such thatGR can transmit one packet from the last queue and has exactlyB � 1 packets in each of its
buffers.

SuperphaseP2 is similar. In(2; N) there are no packet arrivals during the firstqNB time units. Then
there arriveB packets at each of the lastqN queues. This timeGR losesB � 1 packets at each of the last
queues, which are then fully populated again. To these lastqN queues we recursively apply the packet arrival
pattern used to empty column1 in P1. In phase(2; s) there are no packet arrivals during the firstqsB time
units. ThenB packets are sent to the lastqs queues, causing a packet loss of(B�1) at each of these buffers.
To empty the last column of these queues, we recursively apply the pattern ofP1. In general, in any phase(i; s) of Pi there areqsB time units without packet arrivals, followed by the arrivalof B packets at each
of the lastqs queues.GR losesB � i + 1 packets at each of these buffers, which are then fully populated
again. To empty the lasti� 1 columns of these buffers we recursively apply the pattern used inPi�1.

Formally, for any deterministic online algorithmALG, � = P1; : : : ; PB, wherePi = (i;N); : : : ; (i; 1).
We call theBN phases inP1; : : : ; PB main phases. A main phase triggersauxiliary phases. Auxiliary
phases are identified by their complete triggering path. If'1 is a main phase and'i triggers'i+1, then the
auxiliary phase'n is denoted by['1'2 : : : 'n℄. Let � be the set of phases. To identify sets of queues on
which phases work, we define a predecessor mapping� : � ! �. For a main phase' = (i; s), let i be the
level of'. If ' is a main phase, then�(') is the immediately preceding phase in� of the same level if such
exists; otherwise we define�(') = (0; 0). If ' is an auxiliary phase, then�(') is the triggering phase.

8

� �((i;N)) = (0; 0) and�((i; s)) = (i; s+ 1) if s < N� �([(i1; s1) : : : (in; sn)℄) = [(i1; s1) : : : (in�1; sn�1)℄ if sn = sn�1 � 1� �([(i1; s1) : : : (in; sn)℄) = [(is; s1) : : : (in; sn + 1)℄ if sn < sn�1 � 1
Furthermore we need a recursive mappingQ : � ! P(f1; : : : ;mg) that associates phases with sets of
queues. LetQ(0; 0) be the set of allm queues.

Each phase' with suffix (i; s) consists of the following steps.

1. qsB time steps without packet arrival, i.e. only packet transmission.

2. Arrival of B packets at each of theqs most populated queues inQ(�(')); these queues formQ(').
3. If i > 1 and s > 1, triggering of the phases['; (1; s � 1)℄; : : : ; ['; (1; 1)℄; : : : ;['; (i� 1; s� 1)℄; : : : ['; (i� 1; 1)℄ onQ(').
4. If s = 1, theni time steps without packet arrival.

Lemma 2 If a sequence of phases(1; s); : : : ; (1; 1); : : : ; (i; s); : : : ; (i; 1) is served byGR on a setQG;s
consisting ofqs+1 = (B + 1)s consecutive queues, then after phase(j; r) the buffer configuration inQG;s
is as follows. Ifr > 1, then the lastqr queues bufferB � j + 1 packets while the other queues bufferB � j packets. Ifr = 1, then all queues bufferB � j packets.

Proof. We first prove the statement of the lemma under the condition that queues not contained inQG;s
buffer less thanB � i packets. Then we show that the condition is always satisfied.

The proof is by induction oni. First consideri = 1. At the beginning all buffers inQG;s are full
because the sequence is either a sequence of main phases started with fully populated buffers or a sequence
of triggered phases which are also initiated on full buffersonly. In (1; s) during the firstqsB time steps,GR transmits a packet from the firstqsB queues inQG;s because queues outsideQG;s contain less thanB packets. In the next time step the packets arriving at the last qs queues inQG;s are rejected because
the queues already bufferB packets. No further phases are triggered in(1; s). Thus the lastqs queues
bufferB packets while the other queues storeB � 1 packets. Ifs = 1, thenqs = 1 and in the last time
step in(1; 1) a packet is transmitted from the last queue so that all queuesbuffer exactlyB � 1 packets.
The desired statement on the buffer population holds after phase(1; s). Suppose inductively that it holds
after(1; r + 1). Then the lastqr+1 queues inQG;s storeB packets while the remaining queues each haveB � 1 packets. During the nextqrB time steps in(1; r) one packet is transmitted from the firstqrB queues
among the lastqr+1 buffers inQG;s. Thus the lastqr queues inQG;s still haveB packets while the remaining
queues bufferB � 1 packets. Again, ifr = 1, one packet is transmitted from the last queue in the final time
steps in(1; r) so that all queues have exactlyB� 1 packets. Thus the stated buffer population is maintained
after phase(1; r) and the desired statement holds fori = 1.

Suppose that the statement holds for integers smaller thani; we prove that it is also satisfied fori. As
above we can show that after phase(1; s) the buffer population is as desired. Assume that the statement on
the buffer population holds up to but excluding phase(j; r). At the beginning of(j; r) the lastqr+1 buffers
in QG;s storeB � j + 1 packets while the remaining queues containB � j packets. During the next time
steps,GR transmits one packet from each of the firstqrB buffers among theqr+1 last ones inQG;s because
buffers outsideQG;s store less thanB � i < B � j + 1 packets. Thus the lastqr queues inQG;s storeB� j+1 packets while the remaining queues each containB� j packets. ThenB packets arrive at the lastqr queues so that they are fully populated again. Ifr = 1, then no phases are triggered and sinceq1 = 1,
only the last queue is fully populated. During the nextj time stepsj packets are transmitted from this last
queue and all queues inQG;s then bufferB� j packets. The queues are populated as desired. Ifr > 1, then

9

phases(1; r � 1); : : : ; (1; 1); : : : ; (j � 1; r � 1); : : : ; (j � 1; 1) are triggered on the lastqr fully populated
queues. The other queues buffer less thanB � (j � 1) packets. By induction hypothesis when the triggered
phases end, the lastqr queues buffer againB� j+1 packets. Thus the buffers are populated as desired and
the desired statement holds for integersi.

It remains to show that the condition mentioned at the beginning of the proof holds, i.e. if a sequence
of phases(1; s); : : : ; (1; 1); : : : ; (i; s); : : : ; (i; 1) is served on a setQG;s of queues, then all queues not
contained inQG;s store less thanB � i packets. The condition holds when the initial sequence� of main
phases is started. Suppose that the condition holds for all sequences triggered after the beginning of� but
before the start of(1; s); : : : ; (1; 1); : : : ; (i; s); : : : ; (i; 1). Assume that the latter sequence is triggered by
phase['1 : : : 'n℄ such that'j = (ij ; sj) and phase'j is executed on queues inQ'j . We haveQ'j+1 � Q'j
for j = 1; : : : ; n�1, and queues outsideQ'j contain less thanB� ij packets. Thus all queues outsideQ'n
buffer less thanB � in packets. The sequence is triggered on the lastqsn buffers inQ'n . Since the firstqsnB buffers inQ'n storeB � in packets andi1 > i2 > : : : > in > i, the sequence is triggered on a set of
buffers storing less thanB � i packets. The proof is complete. 2
Lemma 3 The packet loss of any deterministic online algorithm ALG isnot smaller than the one ofGR.

Proof. To establish the claim, we use Lemma 2. We consider sequences�(i; s) = (1; s); : : : ; (1; 1); : : : ;(i; s); : : : ; (i; 1) processed byALGandGR on setsQA andQG of qs buffers each. For any given time since
the beginning of�(i; s) let NG be the total number of packets inGR’s queues ofQG and letLG be the
total packet loss ofGR accumulated since the start of�(i; s). For algorithmALG, NA andLA are defined
similarly. Furthermore letSA be the number of time steps in�(i; s), where neither packets arrive nor does
ALG transmit a packet from queues inQA. We are interested in the following invariants.(I1) NA � SA + LA = NG + LG (I2) NA � SA � NG

We prove the following statement. If a sequence�(i; s) is processed byALG andGR on setsQA
andQG, respectively, then after each phase invariants (I1) and (I2) hold. The lemma then follows by
considering sequence� = �(B;N). At the end of the sequence, by (I1),LA = NG + LG � (NA � SA).
By (I2) we concludeLA � LG.

We prove the desired statement by induction oni. First consideri = 1. At the beginning of�(1; s) all
queues inQA andQG are fully populated because sequence� as well as triggered phases are initiated on
full buffers only. ThereforeNA = NG. Since initiallyLA = LG = 0 andSA = 0, both invariants hold at
the beginning of�(1; s). While serving�(1; s), in each time stepGR transmits a packet from queues inQG.
Moreover,GR always serves a fully populated queue. Therefore, at any time,GR always has the smallest
number of fully populated queues. By Lemma 2, at the beginning of phase(1; r) the lastqr+1 queues inQG
bufferB packets while all other queues storeB�1 packets. After the nextqrB time steps the lastqr queues
still buffer B packets such that all packets arriving in step2 of �(1; r) are lost. SinceALG has at leastqr
fully populated queues,ALGalso loses all incoming packets. Therefore, at any time the packet loss ofALG
andGR is the same. SinceGR transmits a maximum number of packets and no incoming packets can be
accepted byALG andGR, NA � NG. If NA �NG = Æ > 0, then there must have beenÆ time units where
ALG did not transmit a packet. Therefore (I1) and (I2) hold throughout the execution of�(1; s).

Assume that the statement to be proven holds for integers smaller thani. We consider a sequence�(i; s).
Again (I1) and (I2) hold initially, when�(i; s) is started. We show that if the invariants (I1) and (I2)
hold before any phase(j; r), then they also hold after the phase. At the beginning of(j; r), GR buffersB� j+1 packets in the lastqr+1 queues ofQG andB� j packets in the remaining queues. During the firstqrB time steps,GR always transmits one packet. Consider any time step. IfALG also transmits a packet
from queues inQA, then bothNA andNG decrease by1. If ALG does not serve a queue inQA, then onlyNG decreases by1 but SA increases by1. The invariants are maintained. Immediately before step2 of

10

phase(j; r) let Q1A be the set of theqr most populated buffers inQA to which packets are sent in step2.
SetQ2A = QA n Q1A and letN iA be the number of packets inQiA; i = 1; 2. Similarly, letQ1G be the set of
theqr most populated queues inQG, Q2G = QG nQ1G andN iG be the packet number inQiG; i = 1; 2. Each
queue inQ2G has exactlyB� j packets while each queue inQ1G buffers exactlyB� j+1 packets. We haveN2A�SA � N2G. Otherwise, ifN2A�SA > N2G, then the most populated queues inQ2A would store at leastB � j + 1 packets. HenceN1A � N1G and (I1) would be violated.

Now consider the effect of step2 of phase(j; r) in which the queues ofQ1A andQ1G are refilled. IfLA � LG changes byÆ, thenNG �NA changes byÆ so that (I1) is maintained. SinceN1A = N1G after the
step andN2A � SA � N2G, invariant (I2) also holds. Ifr = 1, then no phases are triggered and there arej more time steps with packet transmission in which the invariants are maintained. Ifr > 1, then phases(1; r�1); : : : ; (1; 1); : : : ; (j�1; r�1); : : : ; (j�1; 1) are triggered in step3 of (j; r). The triggered phases
are executed onQ1A andQ1G. SinceN1A = N1G initially, the desired invariants hold at the beginning of the
triggered sequence. By induction hypothesis we haveN1A � S1A + L1A = N1G + L1G andN1A � S1A � N1G
when the sequence is finished. HereL1A andL1G denote the loss incurred during the sequence andS1A is the
number of time steps,ALG does not transmit packets fromQ1A. LetS1;1A be the number of time steps in the
triggered sequence whereALG works neither onQ1A nor onQ2A and letS1;2A be the number of time steps
whereALG does not work onQ1A but does transmit packets fromQ2A. ThenS1A = S1;1A + S1;2A . Before step3 of the phase (I1) held andN1A = N1G. ThereforeN2A � SA + LA = N2G + LG and, as argued above,N2A � SA � N2G. Using the invariants for the triggered sequence we obtain(N1A +N2A � S1;2A)� (SA + S1;1A) + (LA + L1A) = (N1G +N2G) + (LG + L1G)
and (N1A +N2A � S1;2A)� (SA + S1;1A) � (N1G +N2G):

The invariants thus hold at the end of phase(j; r) becauseN1A+N2A�S1;2A is the total number of packets
in queues fromQA; SA + S1;1A is the total number of time stepsALG does not transmit packets fromQA
andN1G +N2G is the number of packets inQG. Finally,LA + L1A is the total loss accumulated byALG andLG + L1G is the corresponding value ofGR. The inductive proof is complete. 2
Lemma 4 The throughput of the adversary ADV is at leaste=(e� 1) times that ofGR.

Proof. We analyze the competitive ratio of theGR algorithm. To this end we analyze the throughputTADV
achieved by an adversaryADV and the throughputTG of GR. At the beginning of�, all queues are fully
populated. When� ends, by Lemma 2, all ofGR’s buffers are empty. We describe howADV serves�. In
phase(i; s) during the firstqsB time stepsADV transmits all packets from theqs queues at which packets
arrive in step2 of the phase. Ifs = 1, then in step4 of the phaseADV is idle and does not transmit packets.
Thus in each phaseADV can always accept all incoming packets and at the end of the phase all buffers are
full. Let SADV the total number of time steps whereADV is idle in�. SinceGR transmits a packet in each
time step andADV’s queues containmB packets at the end of�, we haveTG = TADV �mB + SADV .

We estimateSADV . The adversary is idle in a phase' = ['1 : : : 'n℄ with 'j = (ij; sj) if sn = 1. Sincei1 > : : : > in andij > 1 for j < n, there are
PBn=1 �Bn�(N � 1)n�1 � NB such phases, in each of which

ADV is idle for at mostB time units. ThusSADV � BNB and the competitive ratio ofGR is at least

 � TADV =TG � 1= 1� mBTADV + NBBTADV ! � 1= 1� mBTADV + NBm !
becauseTADV � mB. To lower bound the last expression we have to upper boundTADV . The throughput
of ADV is equal to themB packets initially buffered in the queues plus the packets accepted byADV during
the service of�. As argued above,ADV can always accept all packets. Letai;s be the number of packets

11

accepted byADV in a phase(i; s). We show by induction oni thatai;s � (B+1)s(B+1B)i�2. The inequality
holds fori = 1 becausea1;s = qsB = (B + 1)s�1B. Suppose that the inequality holds fori. We haveai+1;s = qsB+Pij=1Ps�1r=1 aj;r = ai;s+ai;s�1+: : :+ai;1 � (B+1B)i�2Psr=1(B+1)r � (B+1B)i�1(B+1)s.
The total number of accepted packets in� is at mostBXi=1 NXs=1 ai;s � BXi=1(B + 1B)i�2 (B + 1)N+1 � 1B � (B + 1)N BXi=1(B + 1B)i�1= (B + 1)NB((1 + 1=B)B � 1) = mB((1 + 1=B)B � 1):

Since the initial buffer configuration storesmB packets, we haveTADV � mB(1 + 1B)B and we
conclude � 1=(1� (1+1=B)�B+NB=m) and for largeB andN this expression can be arbitrarily close
to e=(e� 1). 2

Lemmas 3 and 4 establish the theorem. 2
ForB = 2 we can show a stronger bound.

Theorem 3 ForB = 2, no deterministic online algorithm can achieve a competitiveness smaller than13=7.

Proof. We enhance the request sequence� presented in the proof of Theorem 2. Let there bem additional
queues for bothADV andALG. At the beginning, there arrives one packet in each of the2m queues. During
the firstm time steps,ADV serves those queues not served byALG during this period. Then,� is applied
to those queues already served byADV. Let TADV andTALG denote the throughputs ofADV andALG,
respectively, for�, again, and letT 0ADV andT 0ALG denote the respective throughputs for the composed
request sequence. SinceT 0ADV = TADV + 2m andT 0ALG = TALG + m, the throughput difference for
any online algorithm is the same as forGR. Hence, we can apply Lemma 3 again and adopt the proof of
Lemma 4. LetTG andT 0G denote the respective throughputs forGR. SinceT 0G = T 0ADV �(m+1)B+SADV
andmB � T 0ADV � m(B(1 + 1B)B + 2), we get for the competitive ratio that

 � T 0ADV =T 0G � 1= 1� m(B + 1)TADV + NBm ! � 1=(1� (B + 1)(B(1 + 1B)B + 2)�1 +NB=m);
taking values arbitrarily close to1=(1 � (B + 1)(B(1 + 1B)B + 2)�1) for largeN . PuttingB = 2 yields � 1=(1� 3(2(1 + 12)2 + 2)�1) = 1=(1� 3(132)�1) = 1=(1� 613) = 137 . 2

We next consider randomized algorithms. Azar and Richter [3] showed that ifB = 1, no randomized
online algorithm can achieve a competitive ratio smaller than 1.4659. We prove the same lower bound for
any buffer sizeB.

Theorem 4 If ALG is a randomized online algorithm, its competitive ratio cannot be smaller than 1.4659,
for any buffer sizeB.

Proof. Let each queue be populated byB packets at the beginning. We callB subsequent time steps a
round. At the end of each round,B packets arrive in the queue currently having the expected maximum
load. Since the adversaryADV knows where the next packets will arrive, it serves this queue during the
precedingB time steps. Hence,ADV can accept all packets whereasALGhas an expected loss ofli packets
in roundi. First, we show that nXi=1 li � nXi=1�m� 1m �iB: (1)

12

Then, we will derive three lemmas from which we eventually conclude our claim.
We show (1) by induction oni. Let i = 1. After B time steps,ALG has a population ofmB � B =(m� 1)B packets. Hence, the average queue length ism�1m B. So, the expected maximum queue length is

at leastm�1m B, yielding an expected lossl1 � m�1m B. Now assume
Pji=1 li � Pji=1(m�1m)iB. Until the

end of roundj+1, ALGhas transmitted(j+1)B packets while its expected number of accepted packets isjB �Pji=1 li. Hence, its expected buffer population is

mB � (j + 1)B + jB � jXi=1 li = (m� 1)B � jXi=1 li:
So, the expected average queue length is1m((m� 1)B � jXi=1 li) = m� 1m B � 1m jXi=1 li:
We derive that the expected maximum queue length after roundj+1 is at leastm�1m B� 1mPji=1 li, yielding

an expected losslj+1 � m�1m B � 1mPji=1 li. Hencej+1Xi=1 li � jXi=1 li + m� 1m B � 1m jXi=1 li = m� 1m (B + jXi=1 li)� m� 1m (B + jXi=1(m� 1m)iB) = j+1Xi=1 �m� 1m �iB:
If there aren rounds, then the throughputs ofADV andALG areTADV = (m + n)B andE[TALG℄ =TADV �Pni=1 li � (m+ n)B �Pni=1(m�1m)iB giving the ratio

r = TADVE[TALG℄ � (m+ n)B(m+ n)B �Pni=1(m�1m)iB = m+ nm+ n�Pni=1(m�1m)i :
The number of roundsn is to be chosen such thatr is maximized. Hence we want to maximize1m+nPni=1(m�1m)i. In order to analyze this ratio we shall prove some lemmas.

Let m 2 N, 0 < q < 1. For n 2 N, we definean := 1n+mPni=1 qi. Sincean = 1n+m q�qn+11�q , we

extend(an)n to ax = 1x+m q�qx+11�q for all positive realsx.

Lemma 5 If an+1 < an, thenan+2 < an+1.
Proof. Let an+1 < an. Algebraic manipulations give(m + n)Pn+1i=1 qi < (m + n + 1)Pni=1 qi and(m+ n)qn+1 <Pni=1 qi. Using the latter inequality we obtain

(m+ n+ 1)qn+2 < (m+ n)qn+1 + qn+2 < nXi=1 qi + qn+2 < n+1Xi=1 qi:
This implies

(m+ n+ 1) n+1Xi=1 qi + (m+ n+ 1)qn+2 < (m+ n+ 1) n+1Xi=1 qi + n+1Xi=1 qi = (m+ n+ 2) n+1Xi=1 qi:
13

We conclude (m+ n+ 1) n+2Xi=1 qi < (m+ n+ 2) n+1Xi=1 qi
and finally, as desired, 1m+ n+ 2 n+2Xi=1 qi < 1m+ n+ 1 n+1Xi=1 qi: 2
Corollary 1 There exists a uniquen 2 N such thatan�1 � an andan > an+1. For thisn, there holdsan = maxr2N ar.
Lemma 6 There is a uniquen 2 N such thatq < anqn � 1.

Proof. By Corollary 1, there exists a uniquen 2 N such thatan�1 � an andan > an+1. These two
inequalities are equivalent to

Pn�1i=1 qi � (m+n� 1)qn and
Pni=1 qi > (m+n)qn+1. This is equivalent to(m+ n)qn+1 < Pni=1 qi � (m+ n)qn. Dividing by qn andm+ n, we obtain the inequality to be proven.2

Corollary 2 an = maxr2N ar if and only ifq < anqn � 1.

Lemma 7 If q = (m� 1)=m andan(m) = maxr2N ar, thenlimm!1 n(m)=m = x, wherex is the unique
positive solution of the equationex = x+ 2:
Proof. We fix m and look forn such thatan=qn = 1. Then, by Corollary 2,n(m) = bn. Define~q byq~q = 1. We have~q � 1 = m=(m � 1) � 1 = 1=(m � 1) andm = ~q=(~q � 1). The equationanqn = 1 is

equivalent to
Pni=1 qi = (m + n)qn, which in turn is equivalent to

Pni=1 ~q�i = (m + n)~q�n. We obtainPn�1i=0 ~qi = m + n, and hence~qn � 1 = (m + n)=(m � 1). Thus~qn = (2m + n � 1)=(m � 1). Sincem = ~q=(~q � 1) we have~qn = (2 ~q~q � 1 + n� 1)=(~q~q � 1 � 1) = 2~q + (n� 1)(~q � 1) = (~q � 1)n+ (~q + 1):
Define� by n = �m.

We conclude that the inequalityan=qn = 1 is equivalent to~qn = (~q � 1)n + (~q + 1), which in turn is
equivalent to�� mm� 1�m�� = � mm� 1 � 1��m+ � mm� 1 + 1� = mm� 1�+ 2m� 1m� 1 :
Form!1, this equation takes the forme� = �+ 2. 2

It remains to determine the competitive ratior. We havean(m) = Pb�mmi=1 (m�1m)im+ b�mm � m� 1m 1� (m�1m)m�m�11� m�1m 1m+ b�mm �!m!1 1� e��1 + � =: p:
For the ratior, there holdsr � 1=(1� p) = 1= 1� 1� e��1 + � ! = 1 + �1 + �� 1 + e�� = 1 + �1 + �e� e�:
Sincee� = �+ 2, we getr = (1 + �)(�+ 2)1 + �(�+ 2) = (1 + �)(�+ 2)�2 + 2�+ 1 = (�+ 1)(�+ 2)(�+ 1)2 = �+ 2�+ 1 = 1 + 1�+ 1 :
Numerically solving equatione� = �+ 2 yields� � 1:1462 andr � 1:4659. 2

14

3 Upper bounds

We first present our new algorithmSGRand then study the influence of resource augmentation.

3.1 A New Semi-Greedy Algorithm

Algorithm Semi-Greedy (SGR): In each time step the algorithm executes the first rule that applies to the
current buffer configuration.

1. If there is a queue buffering more thanbB=2 packets, serve the queue currently having the maximum
load.

2. If there is a queue the hitherto maximum load of which is less thanB, serve amongst these queues the
one currently having the maximum load.

3. Serve the queue currently having the maximum load.

Ties are broken by choosing the queue with the smallest index. The hitherto maximum load is reset to 0 for
all queues whenever all queues are unpopulated inSGR’s configuration.

In the remainder of this subsection we analyzeSGR. Let� be any packet arrival sequence. We divide�
into several phases where phaseP1 starts at timet = 0. PhasePi ends whenSGRhas completely cleared its
buffer for theith time, and phasePi+1 starts when the first packet arrives after the end of phasePi. W.l.o.g.
we can assume that at the beginning of each phaseADV’s buffer is empty as well because we can always
postpone the start of the subsequent phase until this state is reached, thus only enlargingADV’s throughput
and hence the throughput ratio. So, the total throughput is given by the sum of the throughputs in the distinct
phases if these were served separately. We derive that the ratio of the total throughputs cannot be worse than
the throughput ratio in a single phase. Hence we can restrictourselves to arrival sequences that terminate
whenSGRhas completely cleared its buffer. Furthermore it suffices to consider sequences where at any
time step, if there is packet loss at queuei, eitherSGRor ADV loses packets. If both lose packets, then we
can reduce the number of packets arriving ati by the minimum loss of any of the two algorithms.

For the analysis ofSGRwe introduce a new potential function. Letlit;A andlit;S be the load of queuei
at time t in the configurations ofADV and SGR, respectively. We define the potential of the queue as�it = (lit;A� lit;S)+ wherex+ = (x+ jxj)=2. The total potential at timet is given by�t =Pmi=1�it: LetT be the time whenSGRhas completely emptied its buffer. Since bothADV andSGRtransmit one packet
in each time step untilT , the potential�T describes their throughput difference. By�� we denote the
potential change�t��t�1. We assume that during each time step, the arrival step precedes the transmission
step.

Lemma 8 The potential� does not increase during the arrival step, but� decreases by the number of
packets lost by ADV.

Proof. Let p packets arrive at queuei at time stept. If neitherADV nor SGRloses any packet, there holdslit;A = li;t�1;A + p, lit;S = li;t�1;S + p, where we measure the load att � 1 after the transmission step.
Hence�it = (lit;A � lit;S)+ = ((li;t�1;A + p) � (li;t�1;S + p))+ = (li;t�1;A � li;t�1;S)+ = �i;t�1 and
the potential does not change due to the packet arrival at queue i. As mentioned above we can restrict
ourselves to arrival sequences where eitherADV or SGRloses packets whenever packet loss occurs. First
we assume thatSGRloses some packets. We deriveli;t�1;A < li;t�1;S and, hence,�i;t�1 = 0. After the
arrival of thep packets, there holdslit;S = B yielding lit;A � lit;S and, hence,�it = 0 = �i;t�1. Since
the single potentials do not change, nor does the total potential. Now we assume thatADV losesp0 of the
arrivingp packets. Then�i;t�1 = (li;t�1;A � li;t�1;S)+ � p0. After the arrival of thep packets, there holdlit;A = B = li;t�1;A + (p � p0) andlit;S = li;t�1;S + p yielding (lit;A � lit;S)+ = (li;t�1;A + (p � p0) �li;t�1;S � p)+ = (li;t�1;A � li;t�1;S � p0)+ = (li;t�1;A � li;t�1;S)+ � p0 and, hence,�it = �i;t�1 � p0. 2

15

Lemma 9 During each transmission step the potential can change by atmost 1.

Proof. If ADV andSGRserve the same queue, the potential does not change at all. Let ADV serve queuei
while SGRserves queuej 6= i. Let ta andt be the moments after the arrival and the transmission steps,
respectively.�it = (lit;A�lit;S)+ = (lita;A�1�lita;S)+ = (lita;A�lita;S�1)+ and�jt = (ljt;A�ljt;S)+ =(ljta;A�(ljta;S�1))+ = (ljta;A�ljta;S+1)+. Since0 � (x+1)+�x+ � 1, we derive�1 � �it��ita � 0
and0 � �jt � �jta � 1. Hence there holds�1 � �t ��ta � 1. 2
Lemma 10 During transmission stept the potential increases if and only if ADV serves a queue currently
having potential 0 while SGR serves a queue having positive potential afterwards.

Proof. Let the potential increase by 1. LetADV serve queuei while SGRserves queuej 6= i. As shown in
Lemma 9,�1 � ��it � 0 and0 � ��jt � 1. Hence the potential increases by 1 if and only if��it = 0
and��jt = 1. On the one hand, if�i;t�1 > 0, there holds�it = �i;t�1 � 1 and, hence,��it = �1. On
the other hand, if�jt = 0, there holds�j;t�1 = 0 and, hence,��jt = 0. So, the potential increases if and
only if �i;t�1 = 0 and�jt > 0. 2

If the potential increases, the queue served bySGRis called thecausal queuewhereas the one served by
ADV is termedcounter queue. Whenever the potential increases, the situation ofADV worsens in such a way
thatADV buffers more packets in queuej thanSGRdoes. But, the same is true, mutatis mutandis, forSGR
and queuei. The difference of the number of packets held byADV andSGRin queuei increases whenever� increases andADV servesi. Hence,� measures the number of packets thatSGRhas already lost or could
lose if ADV replenishes the corresponding queues. These replenishments are necessary to generate a larger
throughput forADV.

If t is a time step where the potential does not increase during packet transmission, we callt anadditional
time stepand denote their number byT0. Hence,� increasesT � T0 times. LetT�1 be the number of time
steps where the potential decreases during packet transmission. Obviously,T�1 � T0. Furthermore, we
derive from Lemma 8 that� decreases byL0 during the arrival steps whereL0 is the total number of
packets lost byADV. We have�T = T � T0 � T�1 � L0. Let TA andTS denote the throughputs ofADV
andSGR, respectively. FromTA = TS +�T andTS = T , we deriveTATS = T +�TT � T + T � T0 � T�1 � L0T = 2� T0 + T�1 + L0T : (2)

In the following, we shall present situations where the potential does not increase and hence derive thatT0+T�1+L0T � 19 , establishing the(2� 19)-competitiveness ofSGR.
We introduce some further notations. The queues are dividedinto B setsQ1; : : : ; QB where queueq

membersQk if and only if k is the maximum load ofq in SGR’s configuration while processing�. Fur-
thermore, depending onSGR’s configuration atq, we callq a Q2-queueif SGRcurrently buffers at leastjB2 k + 1 packets inq. In case ofSGR’s buffering at most

jB2 k packets inq, we callq aQ12-queueif q has
already had a total load ofB packets, i.e. all buffers have been populated, otherwise wecall it aQ11-queue.
By s11; s12; ands2 we denote the number of time steps where the potential increases whileSGRserves aQ11; Q12; andQ2-queue, respectively. We partitions11 into s111 ands112 where we assign ans11 time
step tos111 if the counter queue is aQ11-queue inSGR’s configuration and tos112, otherwise. Finally, letb = jB2 k ; L = f1; : : : ; bg, R = fb+ 1; : : : ; Bg andR� = R n fBg.

Lemma 11 There holds the inequalityL0 + T0 � (s2 � (B � b)Xk2RQk)+:
16

Proof. Let k 2 R and j 2 Qk be a queueSGR’s serving of which has already increaseds2 at leastB � b times. Hence, at leastB packets have arrived atj. For each further increase ofs2, a buffer in
queuej must have been repopulated due to a further packet arrival. If ADV can accept the arriving packet,
ADV must have servedj, too. In these time steps,ADV serves a queue having positive potential. Hence,
they are additional. IfADV cannot accept the arriving packet,ADV has a further packet loss. Hences2 can
increase at mostB � b times atSGR’s servingj without additional time steps or packet loss. 2
Lemma 12 There holds the inequalityT0 � (s111 � bjQBj)+ + s112 + s12 + (B � 2b)jQBj � T�1:
Proof. We investigates11 ands12 increases and focus on steps in which queuei is counter queue. We first
study the case thati is aQ11-queue and then consider the setting thati is aQ12-queue.

We first observe that ifi is aQ11-queue, then by the definition ofSGRthe potential increase cannot
be one assigned tos12. Suppose thati is usedni times as a counter queue for ans11 increase whilei is aQ11 queue itself. We denote these time steps byt1 < : : : < tni . First, we assume thati 2 Qk; k < B.
Hence,SGRhas no packet loss ini. Due to Lemma 10,ADV buffers at most as many packets ini asSGR
before the transmission steps att1; : : : ; tni . Since each packet is transmitted only once, there exist time
stepst01 < : : : < t0ni , with t0j > tj ; 1 � j � ni, whereSGRservesi while ADV does not andSGRbuffers
more packets thanADV in i. These time steps are additional. Now, assume thati 2 QB and thatSGR
buffersB packets ini for the first time at timet. Sincei cannot be aQ11 queue aftert, we derive thattni < t. At eachtj ; 1 � j � ni, SGRbuffers at mostb packets ini. We claim that there exist time stepst01 < : : : < t0ni�b < t, with t0j > tj; 1 � j � ni�b, whereSGRserves queuei while ADV does not andSGR
buffers more packets thanADV in queuei. These time steps are additional. To see the claim, take the time
stepstj in increasing order and match each one with the next unmatched time stept0j > tj at whichSGR
servesi. Clearly, the unmatchedtj form a consecutive subsequence oft1; : : : ; tni that includestni . Each
unmatched time step corresponds to an increase of 1 in the buffer population difference betweenSGRand
ADV. If more thanb time steps were unmatched, thenSGRwould buffer more thanb packets ini at timetni ,
contradicting the fact thati is aQ12-queue at that time. Hence, at most theb time stepstj ; ni � b < j � ni
are not matched. Combining the arguments of this paragraph,we derive thatT0 � �s111 � bjQBj�+.

Now, we assume that at timet0, queuei is aQ12-queue and used as a counter queue for ans11 or s12
increase. Then, there holdsi 2 QB andt0 � t. By Lemma 10, in bothADV’s andSGR’s configurations,
only theL-part is populated in queuei. If i is used as a counter queue duringn0i > b increases ofs11 ors12 at all of which it is aQ12-queue, then, as above, we can prove that there are at leastn0i � b time steps
whereSGRserves queuei while ADV does not andSGRbuffers more packets thanADV in queuei. These
time steps are additional. Moreover, these time steps are different from those identified in the last paragraph
because they occur aftert.

Next, we consider the first use ofi being aQ12-queue as a counter queue for ans11 or s12 increase.
Consider the firstB � b time steps aftert satisfying one of the following properties: (a) bothSGRandADV
servei; (b) only the algorithm currently having the larger buffer population ini servesi. These time steps
exist and all occur before the first use ofi being aQ12-queue becauseSGRservesi at leastB � b times
during that time window. TheB � b time steps are additional. However, they need not be distinct for the
various queuesi andi0 and need not be distinct from the additional time steps identified so far. If a time
step is counted twice,ADV servesi having a larger population thanSGRin that queue, whileSGRservesi0 having a larger population in there. Note that the potentialdrops during packet transmission in this case.
In order not to count one and the same time step twice when summing up over all queues, we diminish this
amount of time steps byT�1. Sincen0i� b+B� b = n0i+ (B� 2b), combining the arguments of the three
paragraphs, we obtain the lemma. 2

17

While the two lemmas above cover the case that there are a lot of time steps where the potential increases,
the following one considers the opposite situation.

Lemma 13 There holds the inequalityT0 � T0;11 + T0;12 + T0;2
where T0;11 = (Xk2L kjQkj+ Xk2R� bjQkj � s11)+T0;12 = (bjQBj � s12)+T0;2 = (Xk2R(k � b)jQkj � s2)+:
Proof. SGRmust serve each buffer cell that is populated at least once. If k 2 L and i 2 Qk, in SGR’s
configuration, the populated part only consists of thek first cells andi is always aQ11-queue and, hence,
can only causes11 increases. Ifk 2 R� andi 2 Qk, in SGR’s configuration,i is always aQ11-queue when
thejth cell,1 � j � b, becomes unpopulated and, hence, can only causes11 increases at these time steps. Ifi 2 QB, in SGR’s configuration,i is always aQ12-queue when thejth cell,1 � j � b, becomes unpopulated
after the buffer has once been populated byB packets and can only causes12 increases afterwards. Ifk 2 R
andi 2 Qk, in SGR’s configuration, the populatedR-part consists ofk � b cells. There must be additional
time steps if the potential increases less often than the number of populated buffer cells. 2
Lemma 14 If B � 2, there hold the following inequalities:T0 + T�1 � s122T0 + T�1 � s11 + (B � 2b)jQBjL0 + 5T0 + 2T�1 � s2 � (B � 2b) Xk2R� jQkj:
Proof. The first inequality is an immediate result of Lemma 12. Summing up the inequalities of Lemmas 12
and 13 yields2T0 + T�1 � (s111 � bjQBj)+ + s112 + s12 + (B � 2b)jQBj+ (bjQBj � s12)+� s111 + s112 + (�b+ (B � 2b) + b)jQBj= s11 + (B � 2b)jQBj;
establishing the second inequality. By the summation of theinequalities of Lemmas 11, 12 and 13, we getL0 + 3T0 + T�1 � (s2 � (B � b)Xk2RQk)+ + s112 + s12+(B � 2b)jQBj+ (bjQBj � s12)++(Xk2L kjQkj+ Xk2R� bjQkj � s11)+� s2 � s111 � (B � 2b) Xk2R� jQkj:
The addition of the second inequality of the lemma yieldsL0 + 5T0 + 2T�1 � s2 � (B � 2b)Pk2R� jQkj.2

18

Theorem 5 SGR achieves a competitive ratio of17=9.

Proof. Let Q denote(B � 2b)Pk2R� jQkj. If i 2 Qk andk 2 R�, at leastb + 1 packets arrive ati.
HenceT � (b + 1)Q, and, thus,QT � 1b+1 . The summation of the three inequalities in Lemma 14 yieldsL0 + 8T0 + 4T�1 � s11 + s12 + s2 �Q. We deriveL0 + 9T0 + 4T�1 � s11 + s12 + s2 + T0 �Q = T �Q
and, hence,L0 + T0 + T�1 � 19L0 + T0 + 49T�1 � T�Q9 ; yielding(L0 + T0 + T�1)=(T �Q) � 1=9:
If B is even, thenQ = 0 and(L0 + T0 + T�1)=T � 1=9 and by equation (2) the theorem follows. IfB is
odd, L0+T0+T�1T = L0+T0+T�1T�Q (1� QT) � 19(1� 1b+1) = 19(1� 2B+1). Let ÆB = 2B+1 . Then limB!1 ÆB = 0
and we derive by equation (2) thatTA=TS � 2� (1� ÆB)=9 = 17=9 + ÆB=9! 17=9 asB !1: 2

We can strengthen our analysis and show that, forB = 2, SGRis optimal.

Theorem 6 For B = 2, SGR achieves a competitive ratio of13=7.

Proof. If we put B = 2 into the inequalities of Lemmas 11, 12 and 13, they take the following forms:L0 + T0 � (s2 � jQ2j)+ , T0 � (s111 � jQ2j)+ + s112 + s12 � T�1 andT0 � (jQ1j � s11)+ + (jQ2j �s12)+ + (jQ2j � s2)+ from where we deduce the corresponding inequalities of Lemma 14 forB = 2:T0 + T�1 � s12 and2T0 + T�1 � s11. Summing up the 3 inequalities in Lemmas 11, 12 and 13, we can
strengthen the third inequality of Lemma 14:L0 + 3T0 + T�1 � (s2 � jQ2j)+ + s12 + (jQ2j � s12)+ �s2 � jQ2j+ s12 + jQ2j � s12 = s2. Since5T0 is replaced by3T0 in the left hand side, we get a competitive
factor of 137 instead of179 in Theorem 5. 2
3.2 Resource Augmentation

We first study the case that an online algorithm is granted additional buffer. Then we consider different
transmission rates.

3.2.1 Additional Buffer

Let ADV andALG have buffers of sizeB andB + A for each queue, respectively. We denote the ratio of
the additional bufferA and the standard bufferB by .
Theorem 7 Every reasonable online algorithm ALG having additional bufferA = B per queue is(+2+1)-
competitive.

Proof. Let� be any arrival sequence. As in the analysis ofSGRwe can restrict ourselves to arrival sequences
that terminate whenALG has completely cleared its buffer. Furthermore, we assume that in the case of
packet loss at a queue eitherADV or ALG loses packets. If there is no packet loss at all or if onlyADV
loses packets, then the throughput ofALG is at least at large as that ofADV and our claim holds. Hence we
may assume thatALG loses packets. We partition the queues into two disjoint setsQ` andQo whereQ`
comprises exactly those ones whereALG loses packets when serving�. The difference of the total packet

19

losses corresponds toADV’s buffer population at the time whenALG’s buffer reaches the state of emptiness.
LetTADV andTALG denote the throughputs ofADV andALG, respectively. ByLADV andLALG we denote
the losses ofADV andALG, respectively. We deriveTADV � TALG = LALG � LADV � jQ`jB:
Furthermore, the total throughput is given by the throughputs inQo andQ`, denoted byT oADV ; TÀDV ; T oALG
andTÀLG, respectively. SoTADV = T oADV + TÀDV andTALG = T oALG + TÀLG. Since there occurred
packet loss in the queues memberingQ`, at leastA+B = (1 +)B packets must have arrived there, all of
which could be accepted byALG. Hence there holdsTÀLG � (1 +)jQ`jB;
yielding TADVTALG = TALG + LALG � LADVTALG = 1 + LALG � LADVTALG = 1 + LALG � LADVT oALG + TÀLG� 1 + LALG � LADVTÀLG � 1 + jQ`jB(1 +)jQ`jB = 1 + 11 + = + 2+ 1 : 2
Theorem 8 For any greedy algorithmGR, the upper bound of+2+1 is tight for allB and allA = B.

Proof. For all values ofA andB we construct an instance with a throughput ratio arbitrarily close to+2+1 .
First, we assume that bothADV andGR have buffers of sizeB + A. From the previous section we know
that we can construct a staircase sequence such thatADV has a throughput of about2m(B + A) whereasGR has a throughput of onlym(B +A) packets. While the staircase is built up inGR, ADV always serves
the corresponding queues such that they are empty inADV’s configuration. This results in the fact thatADV
can accept additionalB+A packets in these queues. Although –now– the buffer ofADV is smaller than the
one ofGR, ADV can build up a staircase of levelB+A inGR’s configuration. The difference only consists
in ADV’s not being able to acceptB+A, but onlyB additional packets per queue, whileGR cannot accept
any of them. Hence,GR acceptsB + A packets per queue, whereasADV acceptsB + A + B = 2B + A
packets per queue. This results in the following throughputratio:TADVTGR = 2B +AB +A = 2B + BB + B = + 2+ 1 : 2
3.2.2 Increased Transmission Rate

Now we assume thatADV andALG have the same buffer sizes, butALG can transmitk packets per time
step whileADV is still able to transmit only one packet per time step.

Theorem 9 Every reasonable online algorithm ALG is(1 + 1k)-competitive if its transmission rate is thek-fold of the adversary’s one.

Proof. As usual, we restrict ourselves to sequences which terminate whenALG has completely emptied its
buffer and assume that in the case of packet loss at a queue eitherADV or ALG loses packets. Letlit;ADV
and lit;ALG be the loads (i.e. the numbers of packets) in queuei at time t in the configurations ofADV
andALG, respectively. ByLit;ADV andLit;ALG we denote the numbers of packetsADV andALG lose at

20

queuei at timet, respectively. LetTADV ; LADV ; TALG andLALG denote the throughputs and losses of
ADV andALG, respectively. For each queuei we define a potential function�it = (lit;ALG � lit;ADV)+
which is summed up to�t = Pmi=1�it: At time t, ALG can lose packets in queuei only if �it > 0. Then��it = �Lit;ALG. During each transmission step,�it can increase only ifADV serves a queue not served
by ALG. But if so,ALG transmitsk packets from other queues, hence1k�Tt;ALG � ��it. So we derive��t � 1k�Tt;ALG � Lt;ALG:
Let � denote the time step whenALG’s buffer becomes empty. Since�0 = 0 = �� , there holds0 � TALGk � LALG, henceLALG � TALGk giving us the following throughput ratio:TADVTGR = TALG + (LALG � LADV)TALG � TALG + LALGTALG � 1 + 1=k: 2
Theorem 10 If B = 1, every reasonable online algorithm ALG having a transmission rate being thek-fold
of the adversary’s one has a competitive ratio of at least1 + 1=k.

Proof. Let there bem queues, each of them populated at the beginning. WhileALG serves kk+1m queues,
ADV serves the remaining1k+1m ones. In the latter ones, one packet arrives at time1k+1m. This pattern is
repeated on(1k+1)2m; (1k+1)3m; : : : queues not served byALG yet until the block size reaches 1. We getTADV =TALG = 1mPij=0(1k+1)jm and this expression tends to1=(1� 1k+1) = 1+ 1=k asi goes to infinity.2
4 An optimal offline algorithm

We present an optimal offline algorithm for our unit value throughput problem.

Algorithm Shortest Forward Overflow Distance (SFOD): If there cannot be any buffer overflow any
more, serve the queues in an arbitrary order. Otherwise select in each transmission stept a queue where the
next overflow would occur if none of the queues were served. More precisely, letli;t denote the length of
queuei at timet. Determinet0 such thatli;t +Pt0�1�=t+1 �i;� � B for all i andli;t +Pt0�=t+1 �i;� > B for
some queuei. If t0 exists, select queuei; otherwise serve any queue.

The algorithm can be implemented so that it runs in linear time.

Theorem 11 SFOD is an optimal offline algorithm.

Proof. We prove the following two statements, which imply the theorem.

1. For each arrival sequence� there exists an optimal schedule satisfying theSFODrule.

2. Each schedule satisfying theSFODrule is optimal.

We first prove statement 1. Let� be any arrival sequence and letS be an optimal schedule for�. We show
that we can convertS into anSFOD-scheduleS0 without decreasing the throughput. IfS satisfies theSFOD
property, then there is nothing to show. Now assume that there exists a time stept whereS does not satisfy
SFOD. LetS serve queuei at timet and let queuej be a queue where the next buffer overflow would occur
aftert. S0 is a copy ofS, but at timet, S0 serves queuej instead ofi. Let t0 denote the time step where the
next overflow in queuej will occur if it is not served any more. Due to theSFODrule, the next overflow in

21

queuej would occur before the next overflow in queuei. If S serves queuej at timet0 with t < t0 < t0,S0 serves queuei at timet0. Then at timet0 bothS andS0 are again in the same configuration and their
throughputs are the same. IfS does not serve queuej until t0, the buffer will overflow, andS will lose one
packet more thanS0 will. If there is an overflow at queuei later on,S0 will lose one packet more thanS will.
Then, the configurations ofS andS0 are the same, again, and yield to the same throughputs. Hence, in either
case, we getTS0 � TS . We can repeatedly apply this procedure until we obtain a scheduleS0 satisfying the
SFODrule. The procedure terminates due to the finiteness of�.

We next show statement 2. If we start with an optimal scheduleS, we will get an optimal scheduleS0
satsifying theSFODrule. LetS be anSFOD-schedule and let̂S be an optimalSFOD-schedule. If there is
a packet loss inS at timet, Ŝ must lose the same number of packets because in both schedules queues have
been served where the next overflow was nearest in the future.Hence there can only be a difference betweenS andŜ if there are several queues whose next overflow is at the same time. If packet loss is inevitable att,S andŜ lose the same number of packets att because they served the queues concerned as often as possible.2
5 Open Problems

In this paper we have studied the problem of maximizing the throughput of unit-value packets at a switch
with m input buffers. We have developed improved upper and lower bounds on the competitive perfor-
mance of online algorithms. In particular, we have devised astrategy, calledSemi-Greedy, that achieves
a competitiveness of179 and is the first deterministic algorithm that beat the trivial upper bound of 2. An
important problem is to determine tight upper and lower bounds on the performance of deterministic algo-
rithms. Similarly, a challenging task is to determine the best possible performance of randomized solutions.
Up to now we know of no randomized algorithms whose competitiveness is below the deterministic lower
bound. Finally, it is interesting to study scenarios where data packets have values and we wish to maximize
the total value of transmitted packets. As mentioned in the introduction, Azar and Richter [3] gave a general
technique that transforms any-competitive algorithm for a single queue into a2-competitive algorithm for
multi-queue systems. As a result, they derived competitivealgorithms for various settings. It is conceivable
that improved solutions are possible by investigating the respective settings directly.

References

[1] W. Aiello, Y. Mansour, S. Rajagopolan and A. Rosén, Competitive queue policies for differentiated
services.Proc. INFOCOM, 431–440, 2000.

[2] N. Andelman, Y. Mansour and A. Zhu. Competitive queueingpolicies in QoS switches.Proc. 14th
ACM-SIAM Symp. on Discrete Algorithms, 761–770, 2003.

[3] Y. Azar and Y. Richter. Management of multi-queue switches in QoS Networks.Proc. 35th ACM Symp.
on Theory of Computing, 82–89, 2003.

[4] A. Aziz, A. Prakash and V. Ramachandran. A new optimal scheduler for switch-memory-switch
routers.Proc. 15th Annual ACM Symp. on Parallelism in Algorithms andArchitectures, 343–352,
2003.

[5] A. Bar-Noy, A. Freund, S. Landa and J. Naor. Competitive on-line switching policies.Proc. 13th
ACM-SIAM Symp. on Discrete Algorithms, 525–534, 2002.

22

[6] E.L. Hahne, A. Kesselman and Y. Mansour. Competitive buffer management for shared-memory
switches.Proc. 13th ACM Symp. on Parallel Algorithms and Architectures, 53–58, 2001.

[7] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber and M. Sviridenko. Buffer overflow
management in QoS switches.Proc. 31st ACM Symp. on Theory of Computing, 520–529, 2001.

[8] A. Kesselman and Y. Mansour. Loss-bounded analysis for differentiated services.Proc. 12th ACM-
SIAM Symp. on Discrete Algorithms, 591–600, 2001.

[9] A. Kesselman, Y. Mansour and R. van Stee. Improved competitive guarantees for QoS bufferingProc.
11th European Symp. on Algorithms, LNCS Vol. 2832, 361–372, 2003.

[10] A. Kesselman and A. Rosén. Scheduling policies for CIOQ switches.Proc. 15th Annual ACM Symp.
on Parallelism in Algorithms and Architectures, 353–361, 2003.

[11] H. Koga. Balanced scheduling towards loss-free packetqueueing and delay fairness.Proc. 12th Annual
International Symp. on Algorithms and Computation, LNCS Vol. 2223, 61–73, 2001.

[12] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.Comm. of the ACM,
28:202-208, 1985.

23

