On the Performance of Greedy Algorithms in
Packet Buffering

Susanne Albefs Markus Schmidt

Abstract

We study a basic buffer management problem that arises wonetswitches. Considem input
ports, each of which is equipped with a buffer (queue) oftiémicapacity. Data packets arrive online
and can be stored in the buffers if space permits; othervaskei loss occurs. In each time step the
switch can transmit one packet from one of the buffers to titpwd port. The goal is to maximize the
number of transmitted packets. Simple arguments show tlyatesonable algorithm, which serves any
non-empty buffer, is 2-competitive. Azar and Richter rebepresented a randomized online algorithm
and gave lower bounds for deterministic and randomizetesfies.

In practice greedy algorithms are very important becauseg #ine fast, use little extra memory and
reduce packet loss by always serving a longest queue. Irmp#pser we first settle the competitive
performance of the entire family of greedy strategies. Vée@that greedy algorithms are not better than
2-competitive no matter how ties are broken. Our lower boprodf uses a new recursive construction
for building adversarial buffer configurations that may badependent interest. We also give improved
lower bounds for deterministic and randomized online atgors.

In the second part of the paper we present the first deteniginisline algorithm that is better than
2-competitive. We develop a modified greedy algorithm,ecBemi-Greedyand prove that it achieves
a competitive ratio 017/9 ~ 1.89. The new algorithm is simple, fast and uses little extra mmnly
when the risk of packet loss is low, it does not serve the lehgeeue. Additionally we study scenarios
when an online algorithm is granted additional resource® cdhsider resource augmentation with
respect to memory and speed, i.e. an online algorithm majvka targer buffers or higher transmission
rates. We analyze greedy and other online strategies.

1 Introduction

The performance of high-speed networks critically depesdswitches that route data packets arriving
at the input ports to the appropriate output ports so thaptukets can reach their correct destinations
in the network. To reduce packet loss when the traffic is pugsirts are equipped with buffers where
packets can be stored temporarily. However the buffers ftended capacity so that effective buffer
management strategies are important to maximize the thpuigt a switch. As a result there has recently
been considerable research interest in the design andsamafyarious buffer management policies [1-11].
We study a very basic problem in this context. Considgnput ports which serve a given output port.
Each input port has a buffer that can simultaneously stor® Up packets and is organized as a queue. In
any time step new packets may arrive at the input ports antdeappended to the corresponding buffers if

*A preliminary version of this paper appeared at36¢h Annual ACM Symposium on Theory of Computing (STOC'04).

finstitut fur Informatik, Albert-Ludwigs-Universitt Freiburg, Georgesdhler-Allee 79, 79110 Freiburg, Germany.
sal bers@nformati k. uni -frei burg. de Work supported by the Deutsche ForschungsgemeinschajiegpAL 464/4-1,
and by the EU, projects APPOL and APPOL II.

Hinstitut fur Informatik, Albert-Ludwigs-Universitt Freiburg, Georgesdhler-Allee 79, 79110 Freiburg, Germany.
mar kus. schmi dt @ nformati k. uni -frei burg. de

space permits. More specifically, suppose that the buffpodt currently store$; packets and that; new
packets arrive there. lf; + a; < B, then all new packets can be accepted; otherwjse b; — B packets
must be dropped. In any time step the switch can select onemgty buffer and transmit the packet at the
head through the output port. We assume w.l.0.g. that thegpacrival step precedes the transmission step.
The goal is to maximize théaroughput i.e. the total number of transmitted packets. The scenaistudy
here arises, for instance, in input-queued (IQ) switcheighvtepresent the dominant switch architecture
today. In an 1Q switch withn input andm output ports packets that arrive at inp@ind have to be routed to
output; are buffered in a virtual output queds;. In each time step, for any outpgitone data packet from
queues?;;, 1 < ¢ < m, can be sent to that output. The buffer sizés large, typically several hundreds or
thousands. We emphasize that we consider all packets touadyegmportant, i.e. they all have the same
value. Most current networks, in particular IP networksatrpackets from different data streams equally in
intermediate switches.

Information on future packet arrivals usually is very ligdtor not available at all. We make no proba-
bilistic assumptions about the input and investigate amerdetting where at any time future packet arrivals
are unknown. We are interested in online buffer managentesttiegies that have a provably good per-
formance. Following [12] we call a deterministic online althm ALG c-competitive ifc - Targ(o) >
Topr (o), for all packet arrival sequences HereTs1.c(o) andTppr (o) denote the throughputs achieved
by ALG and by an optimal offline algorithr® PT' that knows the entire input in advance. IfALG is a
randomized algorithm, thefiy 1. (o) has to be replaced by the expected throughgats ¢ (o))

In practice greedy algorithms are most important. At anyetergreedy algorithm serves a queue that
currently buffers the largest number of packets. Servirgltimgest queue is a very reasonable strategy
to avoid packet loss if future arrival patterns are unknowhioreover, greedy strategies are interesting
because they are fast and use little extra memory. A switchataafford complex computations to decide
which queue to serve, nor has it sufficient memory to maint&itailed information on past or current
configurations. In this paper we present a thorough studyesfay algorithms and their variants.

Previous work: A simple observation shows that any reasonable algorth@®, which serves any non-
empty queue, is 2-competitive: Partitieninto subsequences such thatALG's buffers are empty at the
end of eacly;. W.l.o.g. we postpone the beginningaf,; until OPT has emptied its buffers, too. @ PT
buffersb; packets in queuéat the end of subsequeneg then at leash; packets must have arrived there
in ;. ALG has transmitted at lea$t;~ ; b; packets whil@D PT delivers} ;" ; b; more thanALG does.

Up to now no deterministic online algorithm with a compegtratio smaller thal has been known.
Azar and Richter [3] showed thatB = 1, no deterministic strategy can be better tlizn %)-competitive.
For arbitraryB, they gave a lower bound of 1.366. Azar and Richter also densd randomized algorithms
and presented a strategy that achieves a competitivenegéeof 1) ~ 1.58. For B = 1, they showed a
lower bound of 1.46 on the performance of any randomizederdigorithm.

Bar-Noy et al. [5] and Koga [11] studied buffer managemetitps when buffers have unlimited capac-
ity and one wishes to minimize the maximum queue length. Tregented® (log m)-competitive online
algorithms. Additional results are known when packets halaes and the goal is to maximize the total
value of the transmitted packets. Almost all of the previaosk has focused on the single queue problem,
i.e. we have to maintain only one buffer. Kesselman et alggfle 2-competitive algorithms for various
models where preemption is allowed i.e. packets admittadeaqueue may be discarded in the event of
buffer overflow. Recently, Kesselman et al. [9] develope®83-competitive algorithm when packets must
be transmitted in the order they arrive. Aiello et al. [1]estigated single queue problems assuming that
preemption is not allowed. For this scenario Andelman ef2hlshowed tight bounds aP(log), where
«a is the ratio of the maximum to the minimum packet value.

Recently Azar and Richter [3] presented a technique thastoams anyc-competitive algorithm for
a single queue into ac-competitive algorithm form queues. Using results from [2, 7] they derived
4-competitive preemptive aritk[In «]- competitive non-preemptive algorithms.

Our contribution: In the first part of the paper we settle the competitive pentoice of the entire
family of greedy algorithms. We prove that a greedy algonitannot be better than 2-competitive, no matter
how ties are broken. Since any reasonable algorithm is Zetitive, the competitiveness of any greedy
policy is indeed 2. Our lower bound construction is involaed relies on a new recursive construction for
building dynamic adversarial buffer configurations. Waded that our technique may be useful for proving
lower bounds in other multi-queue buffering problems. letfave use a variant of our technique to develop
a lower bound for any deterministic online algorithm. Wewltbat, for any buffer sizé3, no deterministic
online strategyALG can achieve a competitiveness smaller thie—1) ~ 1.58. Interestingly, we establish
this bound by comparing the throughputAifGto that of any greedy algorithm. Using an approach different
from [3] we show that for anyB, a randomized online algorithm cannot be better than 1of6petitive.

Although in terms of competitiveness greedy algorithmsrerebetter than arbitrary reasonable algo-
rithms, greedy strategies are important from a practicadtyd view. Therefore it is interesting to consider
variants of greedy policies and to analyze greedy appraaichextended problem settings. In the second
part of the paper we develop a slightly modified determiaigtieedy stategy, calleB8emi-Greedy (SGR)
and prove that it achieves a competitive ratid ©f9 ~ 1.89. We conjecture the8GRis actually an optimal
deterministic algorithm because f& = 2, it achieves an optimal competitivenessi8f7 ~ 1.86. These
results show, in particular, that deterministic algorithoan beat the factor & and perform better than
arbitrary reasonable strategies.

The newSGRalgorithm is simple. If there is a queue buffering more th&72| packetsSGRserves a
longest queue. If all queues store at mad3y2| packetsSGRserves a longest queue that has never buffered
B packets provided there is one; otherw&8Rserves a longest queue. The idea of this rule is to establish
some fairness among the queu&&Ris essentially as fast as greedy. It can be implemented $iattat
most one extra comparison is needed in each time step. Treragmory requirements are also low. For
each queue, we just have to maintain one bit indicating vérethnot the queue has ever buffef@gackets.
SGRdoes not follow the standard greedy strategy only if eaclugumiffers at mostB /2| packets and,
hence, the risk of packet loss is low. Thus we cons&igRto be a very practical algorithm. We anal\ &R
by defining a new potential function that measures the nummibegackets thaSGRhas already lost or could
lose if an adversary replenishes corresponding queuesninast to standard amortized analysis we do not
bound the potential change in each time step. We rather giavif the potential increased At time steps
andT; > C; for some constanf', then the potential must have decreasethatteps withT, > Cs.

In the second part of the paper we also study the case thatiae atgorithm is granted more resources
than an optimal offline algorithm and show that we can beatdmepetitiveness of 2. We consider resource
augmentation with respect tnemoryandspeed i.e. we study settings in which an online algorithm has
(a) larger buffers in each queue or (b) a higher transmigsiten For scenario (a) we prove that any reason-
able algorithm, and in particular any greedy algorithm,i@eods a competitive ratio & + 2)/(c + 1) if it
has an additional buffer ol = ¢B in each queue. We show that this bound is tight for greedyesjies.
Hence doubling the buffer capacities we obtain a performaatio of 1.5. For scenario (b) we show an
upper bound ofl + 1/k if in each time step an online algorithm can transinttmes as many packets as
an adversary. Again, doubling the transmission rate weirobtaompetitiveness of 1.5. Finally, we give a
linear time offline algorithm for computing an optimal sewischedule maximizing the throughput.

This paper is organized as follows. In Section 2 we develogawer bounds. In Section 3 we present
the newSGRalgorithm and investigate scenarios with resource augatient The optimal offline algorithm
is given in Section 4.

2 Lower bounds

We first analyze greedy algorithms and then develop lowen@stior arbitrary deterministic and random-
ized online strategies.

2.1 Greedy Algorithms

Formally, we call an online algorithrf@R greedyif GR always serves a longest queue.

Theorem 1 For any B, the competitive ratio of any randomized greedypaigm GR is not smaller than
2—-1/B.

Proof. Fix a buffer sizeB > 0. We show that there exist infinitely many and associated packet arrival se-
guences form queues such that the throughput achieved by an adverd®y is at least
2—1/B — @(m—l/QB_z) times that achieved b R. This proves the theorem. We use arrival sequences
where whenever there are several queues of maximum leraiithisese queues are served once before the
next packets arrive. Thus, the tie-breaking criteria nesdga considered.

Let > 2 be an integer and = 2872, Setm = ©P. We construct a recursive partitioning of the
m queues. Foranywith1 <i < B—2, letm; = ml/?" Them queues are divided int@; blocks, each of
them consisting ofny subsequent queues. These blocks are laligled, m in ascending order. Block;
with 1 < n; < m; is subdivided intan, blocks, each of them consisting of; subsequent queues labeled
(n1,1),...,(n1,mz2). This partitioning is repeated up to levBl— 2. In general, any blockn,...,n;)
at leveli consisting ofm; queues is subdivided intm; 1 blocks each containing:; 1 queues. These
blocks are labeleth,...,n;,1),...,(n1,...,n;,m;+1). Note that a blockn,,...,np_2) atlevel B —2
consists of exactly. queues. We define a lexicographic ordering on(tBe- 2)-tuples(ny, ...,np_2) in
the standard way. Givefn,..., ng_2) and(n},...,nz_,) we have(ni,...,np_2) < (n},...,n5_5)
if n; < nj, for somei andn; = n} forall 1 < j < i. Furthermore(ny,...,ng_2) < (n},...,np o) if
(n1,...,np_2) < (n},...,nzg_y)orn; =n;foralll1 <i< B —2.

The basic idea of the lower bound construction is to mairdaitaircase of packeis GR’s queues that
is centered at some blodk, ...,np_2). GR’'s queues in any blockn}, ..., n’;_,) buffer: packets if
n; = n; forl < j <4, butn;, 1 # n;H. The staircase center moves through the blocks in incrgasin
lexicographic order. When the center is locatedrat, ..., np_2) we force a packet loss dB at each
of GR’s queues in that blockADV will be able to accept all packets and essentially has fullugs in
all blocks(n1,...,n’z_,) that are lexicographically smaller th@n,,...,np_2). When the construction
ends, almost all oADV'’s queues are fully populated whilgR’s queues are empty. Since a total of nearly
m B packets are transmitted BWDV and GR during the construction, this gives the desired lower bound

Formally, we process block3:,...,np_2) with n; > 2 for all ¢ in increasing lexicographic order.
Blocks (n1, ..., np—2) with n, = 1 for some: are special in that less tha® packets will arrive there.
When we start processing a blogk , . .., np_2) with n; > 2 for all 4, certain invariants given below hold.
We show how to process it such that the invariants are also wigestart processing the next block.

(G1) Let(n},...,nlz o) beablockwith(n},...,nls ,) < ni,...,np_2)andn, > 2foralli. GR buffers

exactlyj + 1 packets ifj is the largest index with} = n1,...,n; = n;.

(G2) Let(n},...,n ,) be ablock with(n},...,nz ») < (n1,...,np—2) such that; = 1 andn; > 2
forall1 <j <i—1. GR hasj + 1 packets in each of the queuem_(,f: n; foralll <j <i—1.

(G3) Let(ni,...,n’z_,) beablockwith(n},...,n’s_5) > (n1,...,np_2). GR buffers exactlyj packets

if j is the largest index with; = ny, ..., n; = n;.

B
(nl - 1a 1)
‘ —1,n92,1
(n1 — 1) Zi — 1,22,71)3)
ny — 1,n2,n3 + 1)
(2,1) (n1,1) (n1,1)
(29271) nlan291) (n17n291)
nl,ng,ng)
ni, N2, N3 + 1)
(n1,n2 + 1)
ADV GR ADV

Figure 1. Queue configurations when Figure 2: Queue configurations when we start processing
we start processing blodR, 2, 2). block (n1, ng, ng).

(A1) Let(n,...,n’y_,) be ablock with(n},...,n%s_5) < (n1,...,np_2) andn} > 2 for all <. ADV has
B packets in each of the firstg o — 1 = u — 1 queues and — 1 packets in the last queue of this
block.

(A2) Let(n},...,np ,) be ablock with(n},...,nz ») < (n1,...,np—2) such that; = 1 andn; > 2
forall1 < j <¢— 1. ADV has two packets in each of the queues;-if: n;foralll <j<i-—-1
and one packet in those queues otherwise.

(A3) Let (n},...,n)z) be ablock with(n},...,nls 5) > (n1,...,np_2). ADV has 0 packets in each
of those queues.

Initialization: We show how to establish the six invariants for the bl¢2k .., 2). At the beginning
there arrive2m, packets in the queues of blo¢k) at level 1, two packets in each queue, andpackets
in the queues of block2) at level 1, one packet in each queu@R starts transmission from block 1 while
ADV does so from block 2. After botf R andADV have transmitteeh; packets, we jump to level 2 where
the arrival pattern is adopted in gauge: there argiwe; packets in block2, 1), two in each queue, and
mg packets in blocK2, 2), one in each queue. We continue to copy and scale down therpaintil blocks
(2,...,2,1)and(2,...,2,2) atlevel B — 2 are reached. At level GR always clearsn; packets in block
(2,...,2,1) while ADV does so in(2, ..., 2,2). Figure 1 shows these initial configurations.

Invariants (A1) and (G1) trivially hold because there is hack N’ < (2,...,2) with n] > 2, for all
1<i<B-1If N <(2...,2) andj is the smallest index with; = 1, thenn} = ... =n}_; = 2.
Queues inV' received; + 1 packets; — 1 of which have been transmitted BYDV, while only one of them
has been transmitted b¥R. Hence, invariants (A2) and (G2) hold. N’ > (2,...,2) andj is the largest
index withn} = ny, ... ,n;- = nj, then queues iV’ received; packets, all of which have been transmitted
by ADV, while none of them have been transmitted®g, giving that invariants (A3) and (G3) hold.

Processing of a blockWe next describe how to process blabk= (ni,...,np_3). Figure 2 shows
the buffer configurations when the processing startsglet ., ¢m_, be themp_5 queues in that block.
By (G3), GR has B — 2 packets in each of these queues. By (ABRV stores no packets there. We
subsequently apply the following arrival pattern to eachtha last of they;'s: There arriveB packets at

queueg; and one packet at quegg, 1. First, GR accepts two packets in and one packet igp. Theng; is
completely populated whilg, still has one free buffer left. AfterwardSR transmits a packet fromp . At
the arrival of B packets atp, GR must reject all but one of them and can accept the additicazkqs atys
as well. This behavior is repeated until the last queu®iis reached. In contrasfDV always processes
the single packet i, in order to be able to accept packets in the next step. Whéhpackets arrive
atgm, ,, We leave the additional packet out because we would cresbdbndary to the next block of
level B — 2. We assume that bothDV and GR then transmit one packet frog,,, ,. HenceGR stores
B —1 packets in each queue df, wherea®ADV buffers B packets in all but the last queue aBd-1 packets
in the last one. We next show how to establish the six invésifor the next blockV = (71,...,7p 2)
in the lexicographic order satisfying > 2, for all ;. We distinguish cases depending on whether or not
ng o =npg 2+ L.

Case 1 If np_y = np_s + 1, thenN and N belong to the same block of levé — 3. By (G3),
GR buffers B — 3 packets in each queue &f. Now there arrivenz_, packets atV, one at each of the
queues. Thus, each queueNhbuffers B — 1 packets, and each queueMbuffers B — 2 ones. In the
following mp_o time stepsGR transmits one packet from each queuéVirwhile ADV serves the queues
in N, which are then empty again l\DV’s configuration. Since onlyv and N have been affected, the
invariants (G1), (G2) and (G3) hold fa¥ as well. The same is true for (A1) because the statement holds
for block N, as argued at the end of the last paragraph. (A2) was notedfeltiring the processing of
becausea; > 2, forall1 < i < B — 1. Since no new packets arrived at blocks that are lexicogcafin
larger thanV, (A3) is also satisfied.

Case 2 If mp_s # np_s + 1, thenN andN do not belong to the same block at lev@l- 3. Leti be
the largest index such that < m;, i.e. there is another block at levelHenceN = (nq,...,n;_1,n; + 1,
2,...,2). In the following time steps, no new packets arrive, andesif@1) and (G2) holdGR transmits
m; packets from the queues of blo¢k,, . ..,n;, m;y1,...,m;), forj = B —2,...,i+ 1. During each
iteration, one packet is transmitted from each of these egidn these time steps, for=B —2,...,i+ 1,
ADV transmits one packet from each of the queue@in. .., n;, mi;1,...,m;_1,1). By invariant (A2),
these queues hold exactly two packet&DV’'s configuration and store precisely one packet after thestra
mission. In the next time step; packets arrive at the queues (efi,...,n; + 1), one packet at each of
these queues. At that time BR’s configuration, the queues (m1, ..., n;) buffer exactly: + 1 packets
while all other queues buffer les€7R then transmits one packet from each of the queuésin. .., n;)
while ADV serves the queues {m1,...,n; + 1) so that they are empty again. In the following steps we
restore iNnGR’s configuration the full staircase on top of th@ackets in the queues ¢y, ...,n; + 1).
More precisely, there arrivem;; packets at the queues@fy, ..., n; + 1, 1), two at each of these queues,
andm;;, packets at the queues @t,,...,n; + 1,2), one packet at each of these queués transmits
one packet from each queue(iny, ...,n; + 1,1) while ADV clears blockni,...,n; + 1,2). Then there
arrive2m;, o packets inny,...,n; +1,2,1) andm;,o packets inNny,...,n; + 1,2,2). Again GR serves
the queues in the first of these blocks whiiBV clears the second. This process continues up to blocks
(n1,...,m;+1,2,...,2,1)and(ny,...,n; + 1,2,...,2) atlevel B — 2.

Lemma 1 Invariants (G1-3) and (A1-3) hold when we start proces@¥ng: (n1,...,n; +1,2,...,2).

Proof. Consider blockV = (n1,...,n; +1,2,...,2) =: (f1,...,lig_2). Let N' = (n},...,ny ,) be
an arbitrary block. We first study (G1). L&’ < N, n} > 2 for all j, and letk be the largest index such
thatn] = nq,...,n), = ng. If k& < i, then there is nothing to show because the queué$'ihave not
been touched bz R since the processing of started. Ifk > ¢, we haveN’ = (nq,...,n;, mit1,. .., Mg,
Ny, 1,---,Mp_s). SON'Iis affected at the iteration steps fpr= k,...,4, hencek — i + 1 times, where
iteration: corresponds to the subsequent transmission of one paoketfich queue ifny, . ..,n;). Since
N' bufferedk + 1 packets before the processingMfstarted, there ark + 1 — (k — i + 1) = i packets
after the iteration steps. On the other hahd, 1 = max{j : n{ = 71,...,n; = m;}. For N’ = N the

6

statement of (G1) also holds because exactigickets are buffered at these queuesV'lf< N, statement
(G2) holds because of the same arguments, starting Aviitackets before the processing and eventually
getting: packets.

If N < N’ < N, then letj be the largest index with| = 7y, ..., n; = n;. We havei < j < B —2
andn} , = 1. Sincen;; = ... =n} = 2, GR buffers exactlyj + 1 packets in the queues &f'. Hence
(G2) holds here as well. Moreover, sin6& hasB — 2 packets in the queues 8, (G3) holds forN' = N.

If N’ > N, then we distinguish two cases.nif > m; for somel < < g, there is nothing to show because

GR’s configuration in these queues has not changed and thestangex;j with ny = nf,...,n; = n; is
equal to the largest indekwith m; = nf,...,7; = n; If n} =mn1,...,n, =n; =n,; + 1, then letj be the
largest index wit} =7y, . .. ,nz- =mn;. We haven] ; =2,... ,n;- =2 andn;-+1 > 2. Hence the queues

in N’ store exactlyj packets and (G3) holds.

Invariant (A1) obviously holds because it held when we staprocessingVv and the desired property
was established for block. There exist no block$V’ with N < N’ < N andn, > 2 for all 7. In-
variant (A2) is satisfied for block&” with N’ < N because during the processingéf ADV served the
queues ifny, . ..,n;, mi41,...,mj_1,1)forj = B—1,...,i+ 1 exactly once, thus reducing the number
of packets stored there from 2 to 1. M > N, then the queues store exactly two packets, as desired.
Finally, (A3) holds becaus&DV has transmitted all packets that have arrived at bldéks N. O

After processing the last blodkn, ..., mp_2), no further packets arrive, but the iteration steps are
executed as if there were another block. Then, we have th@violg configurations: From invariants
(Gl), (G2) and (G3), we derive th&R buffers one packet in each queue. Due to (Al), (A2) and (A3),
ADV buffers B — 1 or B packets in the queues in blocks, ...,np_2) with n; > 2 for all while the
others buffer exactly one packet likeR does.

Let Tz be the throughput achieved iyR andT'4 be the throughput achieved B\DV. For any block

(n1,...,np_2) withn;, > 2 for all i, GR transmitsB packets from each of the associated queues. For any
block (n1,...,n;—1,1) withn; > 2,forj = 1,...,% — 1, GR transmitsi 4+ 1 packets from each queue.
There arg[iZ} (m; — 1) such blocks, each containimg; queues. Thu§g = (m — 1) B + 61, where
B-2i-1 B-2i-1
V:ZH(mj— m; ZH D)m;(i + 1).
i=1 j=1 i=1 j=1

The throughput oADV is equal to that ofGR plus the number of packets that areABV’s final configu-
ration when the processing of blocks ends minus the numheacKets that are iG'R’s final configuration
when the processing of blocks ends. In this final configunadiceues in block&ny, ..., np_o) withn; > 2
for all ¢ store B packets, except for the last of these queues which buffdys Bn- 1 packets. All other
queues are empty. Hen@g = Tg + (m — m)B — 62 — (m — m), wheredy = (m — m)/u. Hence
Ty > Ta + (m m)(B 1) — mu . Moreovenn e G)(Hf 2my) = ([T 2 miar) = O(m! "3BT,

mu~' € ©(m' 3 7), andd; € O(B B 2mj) =0(Bm' ~35-7). This implies

Ta o (m—ﬁ”b)B+51+(m—7”h)(B—1)—m,u*1_2_(m—7”h)+51+m,u*1
Tc — (m—m)B—i—él N (m—ﬁ”L)B—i-(h
1
1 61 +mpt 1 Bm'~ 352 1 < 1>
> 2- = — 2-——0|——— | =2—-—--96 57)
= "B (m-mB+é& - B mB B e

2.2 Arbitrary Algorithms

We first study deterministic online algorithms and then addrandomized strategies.

7

Theorem 2 The competitive ratio of any deterministic online algomitALG is at lease/(e — 1).

Proof. Let B be a positive integer representing the buffer size. For asitige integeV, letm = (B+1)V

be the number of queues. Let tBebuffer columns be indexed . .., B where columnB is the one at the
head of the queues and colurhns the one at the tails. At the beginning there arri¥gackets at each
of them queues such that all buffers are fully populated. We presesxchemes for constructing request
sequences. Our scheme has the property that the throughput achievad byversary is at least(e — 1)
times the throughput obtained by any greedy algorithm aadttie throughput of any greedy strategy is
at least as large as the throughput of any deterministinerigorithmALG. This establishes the theorem.
It will be sufficient to consider the standard greedy aldomit denoted byGR, which serves the smallest
indexed queue in case there is more than one queue of maxiemgthl

A request sequence consists of superphaseB,..., Pg. SuperphaseP; consists of phases
(i,N),...,(i,1). In a phas€(i, s) packets arrive at the, = (B + 1)*~! most populated queues in the
online configuration. We first present an informal desooiptof the superphases and phases, explaining
how GR would serve them. Then we give a formal definition with resgeany online strategy. When
superphas@; is finished, the lagtcolumns inGR’s buffers are empty while the other columns are fully pop-
ulated. In particular, whea ends, all buffers are empty. Superph@%és meant to empty column After
phase, s) the firstm —gs queues contai® —i packets while the remaining queues buffer i+ 1 packets.

We first describe superpha#t and start with phasgl, N). Initially, all gx+1 = m queues are fully
populated. During the firsgy B time steps no packets arrive aidR transmits a packet from each of
the firstqy B queues. TherB packets arrive at each of the remainipg queues, all of which must be
dropped byGR because the lagty queues already buffd® packets each. An adversary, on the other hand,
could transmit all packets from the lagt, queues during the firgty B time steps so that no packet loss
occurs. At the end of phadéa, N) the lastgy queues are fully populated i@R’s buffer configuration.
The arrival pattern now repeats for the other phasdy irAt the beginning of 1, s) the lastg,+; queues in
GR’s configuration stord3 packets each. During the firgtB time steps no packets arrive aG@ transmits
one packet from each of the firgi B of theseqs 1 queues. TherB packets are sent to each of the last
gs queues, all of which are lost b R. Again, an adversary can accept all packets by transmiftorg the
lastgs queues in the previous time steps. At the endlol) the last queue iz R’s configuration contains
B packets while all other queues buffBr— 1 packets. Now there is one time step without packet arrivals
such thatGR can transmit one packet from the last queue and has exBctlyl packets in each of its
buffers.

Superphasé is similar. In(2, N) there are no packet arrivals during the figgtB time units. Then
there arriveB packets at each of the lagly queues. This timé&’R losesB — 1 packets at each of the last
gueues, which are then fully populated again. To thesglagueues we recursively apply the packet arrival
pattern used to empty columnin P;. In phase(2, s) there are no packet arrivals during the figsB time
units. ThenB packets are sent to the lagtqueues, causing a packet losg Bf— 1) at each of these buffers.
To empty the last column of these queues, we recursivelyyapplpattern ofP;. In general, in any phase
(i, s) of P; there areg, B time units without packet arrivals, followed by the arrivdl B packets at each
of the lastgs queues.GR losesB — i + 1 packets at each of these buffers, which are then fully popdla
again. To empty the last— 1 columns of these buffers we recursively apply the patteed us ;1.

Formally, for any deterministic online algorithALG, o = P, ..., Pg, whereP; = (i, N), ..., (i, 1).

We call the BN phases inPy, ..., Pg main phases A main phase triggerauxiliary phases Auxiliary
phases are identified by their complete triggering patkp; lfs @ main phase ang; triggersy; 1, then the
auxiliary phasep,, is denoted byp1¢s ... ¢,]. Let ® be the set of phases. To identify sets of queues on
which phases work, we define a predecessor mapping@ — ®. For a main phase = (i, s), let: be the
level of p. If ¢ is a main phase, then(y) is the immediately preceding phaseif the same level if such
exists; otherwise we defing(y) = (0, 0). If ¢ is an auxiliary phase, ther(y) is the triggering phase.

e 7((i,N)) =(0,0) andn((i,s)) = (i,s +1)if s< N
o w([(i1,51) ... (in,3n)]) = [(F1,81) - - - (in—1, Sp—1)] If 8 = Sp—1 — 1
o 7([(%1,51) .. (in,sn)]) = [(4s,81) - - (bn, Sn + 1)] If 5y < 81— 1

Furthermore we need a recursive mappipg ® — P({1,...,m}) that associates phases with sets of
queues. LeQ(0,0) be the set of alin queues.
Each phase with suffix (i, s) consists of the following steps.

1. ¢ B time steps without packet arrival, i.e. only packet trarssioin.
2. Arrival of B packets at each of thg most populated queues@(7(y)); these queues for@(y).

3.1f ¢ > 1 and s > 1, triggering of the phasedyp,(1,s — 1)],...,[p,(1,1)],...,
[Spa(i_173_1)]""[907(1._171)] OnQ(QO)'

4. If s = 1, theni time steps without packet arrival.

Lemma 2 If a sequence of phas€$, s),...,(1,1),...,(i,s),...,(4,1) is served byGR on a setQg,s
consisting ofzs+1 = (B + 1)° consecutive queues, then after ph&se) the buffer configuration i) ¢ s

is as follows. Ifr > 1, then the lasly,. queues buffeB — j + 1 packets while the other queues buffer
B — j packets. Ifr = 1, then all queues buffeB — ;5 packets.

Proof. We first prove the statement of the lemma under the conditiahqueues not contained @
buffer less tharB — i packets. Then we show that the condition is always satisfied.

The proof is by induction ori. First consideri = 1. At the beginning all buffers iQ¢ s are full
because the sequence is either a sequence of main phasedsttr fully populated buffers or a sequence
of triggered phases which are also initiated on full buffendy. In (1, s) during the firstgs B time steps,
GR transmits a packet from the firgf B queues inQ¢,; because queues outsidg; s contain less than
B packets. In the next time step the packets arriving at theglagueues inQ¢ s are rejected because
the queues already buffé® packets. No further phases are triggeredlins). Thus the lasys queues
buffer B packets while the other queues std@te- 1 packets. Ifs = 1, theng, = 1 and in the last time
step in(1,1) a packet is transmitted from the last queue so that all queutsr exactlyB — 1 packets.
The desired statement on the buffer population holds afies@(1, s). Suppose inductively that it holds
after (1,r + 1). Then the last,, queues iQ¢,, storeB packets while the remaining queues each have
B — 1 packets. During the next B time steps in(1, r) one packet is transmitted from the fitgtB queues
among the lasj, ;1 buffers inQ¢ . Thus the lasy, queues irQ ¢, still have B packets while the remaining
gueues buffeB — 1 packets. Again, it = 1, one packet is transmitted from the last queue in the fina tim
steps in(1, r) so that all queues have exacy— 1 packets. Thus the stated buffer population is maintained
after phasé1, r) and the desired statement holds#et 1.

Suppose that the statement holds for integers smallerithae prove that it is also satisfied for As
above we can show that after phdses) the buffer population is as desired. Assume that the stateame
the buffer population holds up to but excluding phage:). At the beginning of j, r) the lastg,,; buffers
in Qg,s StoreB — j + 1 packets while the remaining queues contgir- j packets. During the next time
steps,GR transmits one packet from each of the figsB buffers among the, . last ones iQq, s because
buffers outsidel,, store less thalB — ¢ < B — j + 1 packets. Thus the lagl queues inQ¢,, store
B — j + 1 packets while the remaining queues each conain; packets. TheB packets arrive at the last
g- queues so that they are fully populated again: # 1, then no phases are triggered and sipce- 1,
only the last queue is fully populated. During the ngxime stepsj packets are transmitted from this last
queue and all queues (¢ ; then bufferB — j packets. The queues are populated as desired> 11, then

9

phasegl,r — 1),...,(1,1),...,(j — L,r —1),...,(j — 1,1) are triggered on the lagt fully populated
queues. The other queues buffer less tBan (j — 1) packets. By induction hypothesis when the triggered
phases end, the lagt queues buffer agaiB — j + 1 packets. Thus the buffers are populated as desired and
the desired statement holds for integéers

It remains to show that the condition mentioned at the begmof the proof holds, i.e. if a sequence
of phaseq1,s),..., (1,1),...,(4,s),...,(¢,1) is served on a se&P¢ s of queues, then all queues not
contained inQ¢ s store less tha®? — ¢ packets. The condition holds when the initial sequencé main
phases is started. Suppose that the condition holds foe@llences triggered after the beginningrdfut
before the start ofl, s),...,(1,1),...,(4,s),...,(4,1). Assume that the latter sequence is triggered by
phaséy; . .. ¢,] suchthaty; = (ij, s;) and phase; is executed on queues@,,. We havel,. 11 C Qy;
forj=1,...,n—1, and queues outsidg, contain less thai —i; packets. Thus all queues outsigg,
buffer less thanB — 4,, packets. The sequence is triggered on thedgsbuffers in@Q,,,. Since the first
s, B buffers in@Q,,,, storeB — i,, packets and, > i > ... > i, > 4, the sequence is triggered on a set of
buffers storing less thaB — i packets. The proof is complete. a

Lemma 3 The packet loss of any deterministic online algorithm AL@adssmaller than the one afR.

Proof. To establish the claim, we use Lemma 2. We consider sequetites = (1,s),...,(1,1),...,
(i,s),...,(z,1) processed bALG and GR on setd) 4 andQ¢ of g5 buffers each. For any given time since
the beginning ot (i, s) let Ng be the total number of packets #HR’s queues o) and letL¢ be the
total packet loss of7R accumulated since the start®fi, s). For algorithmALG, N4 and L 4 are defined
similarly. Furthermore lef4 be the number of time steps it{, s), where neither packets arrive nor does
ALG transmit a packet from queues@hy. We are interested in the following invariants.

(I1) Ny—Sa+Ls=Ng+ Lg (I2) Ny —Sa < Ng

We prove the following statement. If a sequenqg, s) is processed bALG and GR on setsQ 4
and Q¢, respectively, then after each phase invariants (11) aBdHold. The lemma then follows by
considering sequenee= (B, N). At the end of the sequence, by (IDy = Ng + Lg — (N4 — Sa).

By (12) we concludeL 4 > L.

We prove the desired statement by induction oRirst considei = 1. At the beginning ot (1, s) all
gueues i) 4 andQq are fully populated because sequencas well as triggered phases are initiated on
full buffers only. ThereforeV4 = Ng. Since initiallyL4 = Lg = 0 andS4 = 0, both invariants hold at
the beginning ob (1, s). While servings (1, s), in each time stejirR transmits a packet from queuesiy;.
Moreover,GR always serves a fully populated queue. Therefore, at ang, i always has the smallest
number of fully populated queues. By Lemma 2, at the begmafrphase 1, r) the lastg, .1 queues iQ¢
buffer B packets while all other queues stdBe- 1 packets. After the next. B time steps the lagt. queues
still buffer B packets such that all packets arriving in sgepf o(1,r) are lost. SincéALG has at leas{,
fully populated queueg\LG also loses all incoming packets. Therefore, at any time #uoiet loss 0ALG
and GR is the same. Sincé&R transmits a maximum number of packets and no incoming padeat be
accepted bALGandGR, Ny > Ng. If Ny — Ng = 6 > 0, then there must have beéiime units where
ALG did not transmit a packet. Therefore (11) and (12) hold tlgtoout the execution of (1, s).

Assume that the statement to be proven holds for integertesrtreani. We consider a sequeneéi, s).
Again (I11) and (12) hold initially, whero (i, s) is started. We show that if the invariants (I11) and (12)
hold before any phasgj, r), then they also hold after the phase. At the beginningjof), GR buffers
B —j+ 1 packets in the lasf.,; queues of) s and B — j packets in the remaining queues. During the first
g- B time steps,GR always transmits one packet. Consider any time stepL® also transmits a packet
from queues irQ 4, then bothN,4 and N decrease by. If ALG does not serve a queue@y, then only
N¢ decreases by but S4 increases byi. The invariants are maintained. Immediately before 2teb

10

phase(j,) let Q% be the set of the, most populated buffers i@ 4 to which packets are sent in step
SetQ% = Qa4 \ QY and letN’, be the number of packets @, = 1,2. Similarly, letQZ, be the set of
the ¢, most populated queues ¢, Q% = Q¢ \ Q& and N}, be the packet number i§%,,i = 1,2. Each
queue inQ% has exactlyB — j packets while each queuedy, buffers exactlyB — j + 1 packets. We have
N?% — 5S4 < NZ. Otherwise, ifN3 — S4 > N, then the most populated queuesJ would store at least
B — j + 1 packets. Henc&} > N/}, and (11) would be violated.

Now consider the effect of stepof phase(j,r) in which the queues af!, and @}, are refilled. If
L4 — Lg changes by, thenNg — N4 changes by so that (11) is maintained. Sind€} = N} after the
step andV% — S4 < NZ, invariant (12) also holds. If = 1, then no phases are triggered and there are
j more time steps with packet transmission in which the iards are maintained. #f > 1, then phases
(L,r=1),...,(L,1),...,(—1,r—=1),...,(j —1,1) are triggered in stepof (4, 7). The triggered phases
are executed o}y and@},. SinceN} = N} initially, the desired invariants hold at the beginning loé t
triggered sequence. By induction hypothesis we hsiye— S4 + LY = N} + L andN} — S% < N}
when the sequence is finished. Hérg andL1G denote the loss incurred during the sequence&pis the
number of time step#ALG does not transmit packets fro@t,. Let S;’l be the number of time steps in the
triggered sequence whefd G works neither or@ nor onQ? and IetSi{2 be the number of time steps
whereALG does not work o9y but does transmit packets frof?,. Thens’;, = S%;' + 5%;*. Before step
3 of the phase (11) held an¥}; = N}. ThereforeN% — S4 + L4 = NZ + L and, as argued above,
N3 -S4 < NC%. Using the invariants for the triggered sequence we obtain

(N} + N% —SY%) = (Sa+ SYY) + (La+LY) = (NL+ N2) + (L + LE)

and
(N4 + N3 —S3%) = (Sa+ 83" < (NG + NE).

The invariants thus hold at the end of phé&ge’) becauseéVy + N3 — 5}4’2 is the total number of packets
in queues fromQ 4,54 + S;’l is the total number of time stegd_G does not transmit packets frog@4
andN/. + N2 is the number of packets i Finally, L4 + L', is the total loss accumulated By-G and
L¢ + L, is the corresponding value &R. The inductive proof is complete. m

Lemma 4 The throughput of the adversary ADV is at leagte — 1) times that ofGR.

Proof. We analyze the competitive ratio of tl§eR algorithm. To this end we analyze the throughbuby
achieved by an adversa®/DV and the throughpuf; of GR. At the beginning otr, all queues are fully
populated. Whewlr ends, by Lemma 2, all offR’s buffers are empty. We describe holDV servess. In
phase(i, s) during the firstg; B time stepsADV transmits all packets from thg queues at which packets
arrive in ste@ of the phase. It = 1, then in stepl of the phasé@DV is idle and does not transmit packets.
Thus in each phas&DV can always accept all incoming packets and at the end of thgepdl buffers are
full. Let S4py the total number of time steps wheA®V is idle ino. Since GR transmits a packet in each
time step and\DV's queues contaim B packets at the end of, we havel ;s = Tapy — mB + Sapy.

We estimates 4 py. The adversary is idle in a phage= [... ¢,] with ¢; = (i, s;) if s, = 1. Since
i1 > ... > iy andij > 1forj < n, there are B | (f)(N — 1)~ < N such phases, in each of which
ADV is idle for at mostB time units. ThusS,py < BNE and the competitive ratio affR is at least

mB NBB mB ~ NB
c2Tapv/Te=>1/|1- + >1/(1- +
ov / (Tapv TADV) / (Tapy m >

becausd’spy > mB. To lower bound the last expression we have to upper b@ung, . The throughput
of ADV is equal to then B packets initially buffered in the queues plus the packetsjpied byA DV during
the service obr. As argued aboveADV can always accept all packets. lgt; be the number of packets

11

accepted bADV in a phaséi, s). We show by induction ofthata; s < (B +1)*(££%)i~2. The inequality
holds for: = 1 becausealS = ¢sB = (B + 1)* ' B. Suppose that the inequality holds fbrWe have
Ait+1,8 = QSB‘I'Z =1 Er 1050 = Gjsta;s 1+...F+a;1 < (B+1)Z 2 (B+1) (3;1)1_1(34‘1)5-
The total number of accepted packetsrm; at most

UL B) N+1 _ B .
;;ai,s < ;—:1(3;—1)12(3—!—1)3 1 < (B_‘_l)N;_:l(%)ll
= B+1)VB(1+4+1/B)? -1)=mB((1+1/B)® —1).

Since the initial buffer configuration storesB packets, we hav&ypy < mB(1 + %)B and we
concludec > 1/(1—(1+1/B)~B 4+ NB/m) and for largeB and N this expression can be arbitrarily close
toe/(e —1). O

Lemmas 3 and 4 establish the theorem. O

For B = 2 we can show a stronger bound.

Theorem 3 For B = 2, no deterministic online algorithm can achieve a compegitiess smaller thais /7.

Proof. We enhance the request sequesiggesented in the proof of Theorem 2. Let therenbadditional
gueues for botADV andALG. At the beginning, there arrives one packet in each oRthejueues. During

the firstm time stepsADV serves those queues not serveddhys during this period. Theng is applied

to those queues already servedAyV. Let Typy andT 41 denote the throughputs DV and ALG,
respectively, foro, again, and lefl”, ,,, andT’; . denote the respective throughputs for the composed
request sequence. Sin€4,, = Tupv + 2m andT); . = Targ + m, the throughput difference for
any online algorithm is the same as fGR. Hence, we can apply Lemma 3 again and adopt the proof of
Lemma 4. Lefl; andT(, denote the respective throughputs&R. SinceT}, = T,), —(m+1)B+Sapv
andmB < Ty, < m(B(1 + 5)? + 2), we get for the competitive ratio that

m(B + 1) NB

¢z T,ILXDV/Té >1/ (1 - Tapy m

) > 1/(1— (B+1)(B(+)P +2)™ + N¥/m),

taking values arbitrarily close tb/(1 — (B + 1)(B(1 £)P +2)1) for large N. PuttingB = 2 yields
c>1/(1=-32(1+5)+2))=1/1-3(F)") =1/(1-) = 2. 0

1_3) -7
We next consider randomized algorithms. Azar and Richfestidwed that ifB = 1, no randomized
online algorithm can achieve a competitive ratio smallantti.4659. We prove the same lower bound for
any buffer sizeB.

Theorem 4 If ALG is a randomized online algorithm, its competitiveioatannot be smaller than 1.4659,
for any buffer sizeB.

Proof. Let each queue be populated Bypackets at the beginning. We cdl subsequent time steps a
round. At the end of each round packets arrive in the queue currently having the expectedmusn
load. Since the adversaADV knows where the next packets will arrive, it serves this gueuring the
precedingB time steps. Henc&DV can accept all packets wherg®sG has an expected loss Bfpackets

in rounds. First, we show that
n n -1 7
N>y <m—> B. (1)

i=1 =1 m

12

Then, we will derive three lemmas from which we eventuallpadade our claim.

We show (1) by induction oi. Leti = 1. After B time stepsALG has a population ahB — B =
(m — 1)B packets. Hence, the average queue IengfﬁrgiéB. So, the expected maximum queue length is
at least™ 1 B, yielding an expected logs > ™1 B. Now assumé&_’_, [; > Y7, (™-1)'B. Until the
end of roundj + 1, ALG has transmittedj + 1) B packets while its expected number of accepted packets is
jB —>"1_, l;. Hence, its expected buffer population is

j
mB - (j+1)B+jB-)Y li=(m—-1)B-> .
=1 =1

So, the expected average queue length is

1 13

(m-1B->1)-""tp_ Ly

—(m - - i)=——b—— i

m =1 m m =1

We derive that the expected maximum gqueue length after rguridis at Ieast’”T_lB — % {:1 l;, yielding
an expected losg 1 > 2B — L 57 [, Hence

j+1
J+ 1 J

;li > Zl+—B—Ele— B+Zl

S m—l(B_i_zj:(m—l)iB)_Jf(m—l)iB
B m -1 M B =1~ .
If there aren rounds, then the throughputs @DV andALG areTapy = (m + n)B andE[Targ] =
Tapy — Y1l < (m+n)B — Y (21) B giving the ratio
Tapy (m+n)B _ m+n

== Z m—1 - B n m—1\;"
E[Tare] =~ (m+n)B - Y (™1)iB m+n— Y0 (1)

The number of rounds is to be chosen such thatis maximized. Hence we want to maximize

1 n (—1)l In order to analyze this ratio we shall prove some lemmas.
m-+4n £«1=1
1

Letm € N,0 < ¢ < 1. Forn € N, we definea,, := s

_ - n+1

1
™, ¢'. Sincea, = o l‘iq

, We

_gTt1 .
extend(a,), t0 a, = 95T . for all positive realse.

r+m
Lemmab If ap11 < ag, thena, 1o < apyq.
Proof. Letan+1 < an. Algebraic manipulations givém + n) Sttt < (m+n+ 1), ¢ and
(m+n)g™ ™t < 3P, ¢*. Using the latter inequality we obtain

n+1
(m+n+1)qn+2 (m_|_n) n+1+qn+2<zq +qn+2<zq
1=1 i=1

This implies

n+1 n+1 n+1 n+1

(m—i—n—!—l)E:qi—l—(m—l—n—l—l)q”"’2 (m+n+1) Zq —I—Zq m—l—n—I—Z)Zqi.
i=1 i=1 i=1

13

We conclude
n-+2 n+1)

(m+n+1)Y ¢ <(m+n+2)) ¢
=1 =1
and finally, as desired,
1 n+2 1 n+1

_ U — ’
m+n+2izzlq m—}-n—}-lizzlq
O
Corollary 1 There exists a unique € N such thata,, 1 < a, anda, > a,11. For thisn, there holds
ap = MaXpeN Ar.
Lemma 6 There is a uniques € N such thaly < Z—z <1

Proof. By Corollary 1, there exists a unigue € N such thatan 1 < an, anda, > anr1. These two

inequalities are equivalent 87! ¢' < (m+n—1)¢" andX"; ¢* > (m +n)¢""'. Thisis equivalent to

(m+n)g"t <3 ¢ < (m+ n) ". Dividing by ¢" andm + n, we obtain the inequality to be proven.
]

Corollary 2 a, = maxa, ifand only ifg < %2 <1.
reN q

Lemma7 If ¢ = (m—1)/m anda,(,) = max,eN ar, thenlimy, . n(m)/m = z, wherez is the unique
positive solution of the equatiaf = x + 2.

Proof. We fix m and look forn such that, /¢" = 1. Then, by Corollary 2n(m) = |n|. Defineg by
qq = 1. We haveq”— l=m/(m—1)—1=1/(m—1)andm = cj/(q”— 1). The equatiorfz = 11is

equivalent to>_" ; ¢* = (m + n)q¢", which in turn is equwalent 0,4 " = (m+n)g~". We obtain
Z? o G =m+mn,and hencg” — 1 = (m +n)/(m — 1). Thusg" (2m+n—1)/(m—1). Since
=q/(q — 1) we have
(2(1_—1+n—1)/(qi%—1)—2q+(n—1)(—1)=(G-Dn+(G+1).

Definea by n = am.
We conclude that the inequality, /¢" = 1 is equivalent taj” = (¢ — 1)n + (¢ + 1), which in turn is
equivalent to

(21)7) = G ems (R 1) = 5o 5y
m—1 S \m-—1 am m—1 _m—la m—1"

Form — oo, this equation takes the fora¥ = o + 2. O

It remains to determine the competitive ratioWe have

Z_amm (m 1) >m_11_(T—1)mamfl 1 1—e @
a — —— =ID.
"™ T T lamm] — m 1—m=L m+ |amm]| moe 14+« P
For the ratior, there holds
1—e™@ 1+« 14+«
>1/(1—-p)=1 = = e,
rz1/(1-p)= /< 1+a> l+a—1+e@ 1—}-0460‘6
Sincee® = a + 2, we get
I+ a)(a+2) (A+a)(a+2) (a+1)(a+2) a+2 n 1
C l4ala+2) a2+2a+1 (a+1)2 a+1 a+1’
Numerically solving equatiop® = « + 2 yieldsa ~ 1.1462 andr ~ 1.4659. O

14

3 Upper bounds

We first present our new algorithBGRand then study the influence of resource augmentation.

3.1 A New Semi-Greedy Algorithm

Algorithm Semi-Greedy (SGR): In each time step the algorithm executes the first rule thaliegpto the
current buffer configuration.

1. Ifthere is a queue buffering more thpB /2| packets, serve the queue currently having the maximum
load.

2. Ifthere is a queue the hitherto maximum load of which is teanB, serve amongst these queues the
one currently having the maximum load.

3. Serve the queue currently having the maximum load.

Ties are broken by choosing the queue with the smallest intlex hitherto maximum load is reset to 0 for
all queues whenever all queues are unpopulat&3Rs configuration.

In the remainder of this subsection we anal®R Let o be any packet arrival sequence. We divide
into several phases where phdgestarts at time = 0. PhaseP; ends wherSGRhas completely cleared its
buffer for theith time, and phasé&;; starts when the first packet arrives after the end of plras@/.l.o.g.
we can assume that at the beginning of each pA&»és buffer is empty as well because we can always
postpone the start of the subsequent phase until this stegached, thus only enlargiddV's throughput
and hence the throughput ratio. So, the total throughputéndyy the sum of the throughputs in the distinct
phases if these were served separately. We derive thattibeféhe total throughputs cannot be worse than
the throughput ratio in a single phase. Hence we can restiiselves to arrival sequences that terminate
whenSGRhas completely cleared its buffer. Furthermore it sufficesdnsider sequences where at any
time step, if there is packet loss at queéueitherSGRor ADV loses packets. If both lose packets, then we
can reduce the number of packets arriving lay the minimum loss of any of the two algorithms.

For the analysis 0d8GRwe introduce a new potential function. Ligt 4 andl;; s be the load of queuge
at timet¢ in the configurations oADV and SGR respectively. We define the potential of the queue as
@1 = (lit,a — lir,s)+ Wherez ;. = (z + |z|)/2. The total potential at timeis given by®, = >~ ®;;. Let
T be the time whei®GRhas completely emptied its buffer. Since béthV andSGRtransmit one packet
in each time step until’, the potentiakb describes their throughput difference. By® we denote the
potential chang®; — ®; ;. We assume that during each time step, the arrival stepgesdke transmission
step.

Lemma 8 The potentiald does not increase during the arrival step, lbitdecreases by the number of
packets lost by ADV.

Proof. Let p packets arrive at queueat time step. If neitherADV nor SGRIoses any packet, there holds
lit,a = Lig—1,4+p, lir,s = lit—1,5 + p, where we measure the loadtat 1 after the transmission step.
Hence®;; = (lia — lits)+ = ((lit—1,4 +p) — (lip—1,5 + p))+ = (lit—1,4 — lig—1,5)+ = Piy—1 and
the potential does not change due to the packet arrival ategueAs mentioned above we can restrict
ourselves to arrival sequences where eithBl or SGRIoses packets whenever packet loss occurs. First
we assume th&GRloses some packets. We deriye_; 4 < l;;—1,5 and, hence®; ;1 = 0. After the
arrival of thep packets, there holdsg;, s = B yieldingl;; 4 < l;; s and, hence®@;; = 0 = ®;; 4. Since
the single potentials do not change, nor does the total pateNow we assume tha8DV losespg of the
arrivingp packets. The®;; 1 = (l;+—1,4 — li+—1,5)+ > po. After the arrival of thep packets, there hold
lit,ta = B =lit-1,4+ (p — po) andliy,s = li1—1,s + pyielding (lix,a — lit,s)+ = (lig—1,4 + (P — o) —
lit-1,8 —p)+ = (lig-1,4 —lig-1,5 —po)+ = (lig—1,4 — lit—1,5)+ — po and, hence;; = ®;; 1 — po. O

15

Lemma 9 During each transmission step the potential can change Ioycast 1.

Proof. If ADV andSGRserve the same queue, the potential does not change at BADM\eserve queueé
while SGRserves queug # i. Lett® andt be the moments after the arrival and the transmission steps,
respectively®;; = (lig, a—lit,5)+ = (lita,aA—1=lita,5) 1 = (lita, aA—lita s—1) @NAP;; = (Lt A—lj1,5)+ =
(ljta,A_(ljta,S_l))-i- = (ljta,A_ljt“,S+1)+- Sinced < (.73+1)+—£L‘+ < 1,wederive—1 < ®;;—®;;a <0
and0 < ®;; — @, < 1. Hence there holds1 < ®; — ®;a < 1. O

Lemma 10 During transmission stepthe potential increases if and only if ADV serves a queueettily
having potential 0 while SGR serves a queue having posititengial afterwards.

Proof. Let the potential increase by 1. LADV serve queue while SGRserves queug # . As shown in
Lemma 9,—1 < A®; < 0and0 < A®;; < 1. Hence the potential increases by 1 if and onljip;; = 0
andA®;; = 1. On the one hand, i, ;_; > 0, there holdsb;; = ®; ;_; — 1 and, henceA®;; = —1. On
the other hand, i>;; = 0, there holdsP;; | = 0 and, henceA®;; = 0. So, the potential increases if and
onlyif ®;; 1 = 0and®;; > 0.]

If the potential increases, the queue serve®@BRis called thecausal queuahereas the one served by
ADV is termedcounter queueWhenever the potential increases, the situatiohl®¥ worsens in such a way
thatADV buffers more packets in quegiehanSGRdoes. But, the same is true, mutatis mutandisSIGR
and queué. The difference of the number of packets heldA)V andSGRin queues increases whenever
® increases andDV serves. Hence ® measures the number of packets tB&Rhas already lost or could
lose if ADV replenishes the corresponding queues. These replenisharemecessary to generate a larger
throughput forADV.

If ¢ is atime step where the potential does not increase duritigepransmission, we callnadditional
time stepand denote their number . Hence,® increased” — T, times. LetT' ; be the number of time
steps where the potential decreases during packet trasiemisObviously, I ; < Ty. Furthermore, we
derive from Lemma 8 tha® decreases by, during the arrival steps wherg, is the total number of
packets lost byADV. We haved, = T — Ty — T_1 — Lg. Let T4 andTs denote the throughputs &DV
andSGR respectively. Fronll'y = Tg + &7 andTs = T', we derive

T B T—l—‘i)T < T+T—T0—T_1—L0 _9_ T0+T_1—|-L0

Ts T = T T

(2)

In the following, we shall present situations where the ptiéd does not increase and hence derive that
TorToitho > 1 establishing th¢2 — 1)-competitiveness dBGR

We introduce some further notations. The queues are divitedB setsQ!, ..., Q" where queug
membersQ* if and only if & is the maximum load of in SGRs configuration while processing. Fur-
thermore, depending cBGRs configuration afy, we callg a Q2-queueif SGRcurrently buffers at least
L%J + 1 packets img. In case ofSGRs buffering at most{%J packets ing, we callg a Q12-queuef ¢ has
already had a total load @ packets, i.e. all buffers have been populated, otherwiseaé& a ()11-queue
By s11, s12, andse we denote the number of time steps where the potential ineseahileSGRserves a
Q11,Q12, and Q2-queue, respectively. We partition; into s111 and s112 where we assign agy; time
step tos;11 if the counter queue is @11-queue INSGRs configuration and t@112, otherwise. Finally, let

b=|Z],L={1,....,b}, R={b+1,..., B} andR* = R\ {B}.
Lemma 11 There holds the inequality

Lo+ Ty > (82 — (B —b) Z Qk)+
keR

16

Proof. Letk € R andj € Q* be a queusSGRs serving of which has already increasggdat least

B — b times. Hence, at lead® packets have arrived at For each further increase @f, a buffer in
gueuej must have been repopulated due to a further packet arrivADV can accept the arriving packet,
ADV must have serveg, too. In these time stepADV serves a queue having positive potential. Hence,
they are additional. IADV cannot accept the arriving pack@&V has a further packet loss. Hengecan
increase at mosB — b times atSGRs servingj without additional time steps or packet loss. m

Lemma 12 There holds the inequality
To > (s111 — b|QP|) 4 + s112 + s12 + (B — 2b)|Q5| — T1.

Proof. We investigates;; andsy» increases and focus on steps in which queisecounter queue. We first
study the case thatis a@Q11-queue and then consider the setting thataQ2-queue.

We first observe that if is a Q11-queue, then by the definition &GRthe potential increase cannot
be one assigned tg,. Suppose thatis usedn; times as a counter queue for a1 increase while is a
Q11 queue itself. We denote these time steps by ... < t,,. First, we assume thatc Q* k < B.
Hence,SGRhas no packet loss inh Due to Lemma 10ADV buffers at most as many packetsiinsSGR
before the transmission stepstaf. .., t,,. Since each packet is transmitted only once, there exig tim
stepst| < ... < ty,., with t;- > tj,1 < j < n;, whereSGRserves while ADV does not andGRbuffers
more packets thaADV in i. These time steps are additional. Now, assumeithatQ? and thatSGR
buffers B packets in; for the first time at time. Sincei cannot be &)1 queue aftet, we derive that
tn, < t. Ateacht;, 1 < j < n;, SGRbuffers at mosb packets ini. We claim that there exist time steps
th <...< t;”fb < t, with t;- > t;,1 < j < n;—b, whereSGRserves queugwhile ADV does not an&GR
buffers more packets thakDV in queuei. These time steps are additional. To see the claim, takentige t
stepst; in increasing order and match each one with the next unmatibme stept;- > t; at whichSGR
serves. Clearly, the unmatchet} form a consecutive subsequencetqf. . ., ¢,, that includes,,. Each
unmatched time step corresponds to an increase of 1 in ther [padpulation difference betwee&SGRand
ADV. If more tharnb time steps were unmatched, the@Rwould buffer more thah packets in at timet,,
contradicting the fact thatis a@Q12-queue at that time. Hence, at most thtéme stepsg;,n; — b < j < n;

are not matched. Combining the arguments of this paragvegkgerive thafly, > (3111 — b|QB|>+.

Now, we assume that at timt§ queue: is aQ12-queue and used as a counter queue fos;aror sqo
increase. Then, there holdss Q? andt’ > t. By Lemma 10, in bottADV’s and SGRs configurations,
only the L-part is populated in queuge If i is used as a counter queue durifg> b increases of;; or
s12 at all of which it is aQ12-queue, then, as above, we can prove that there are atleash time steps
whereSGRserves queugwhile ADV does not anéGRbuffers more packets thakDV in queuei. These
time steps are additional. Moreover, these time steps Hezett from those identified in the last paragraph
because they occur after

Next, we consider the first use obeing aQ12-queue as a counter queue for @&n or s increase.
Consider the firsB — b time steps aftet satisfying one of the following properties: (a) b&BRandADV
servei; (b) only the algorithm currently having the larger buffapulation ini servesi. These time steps
exist and all occur before the first useidbeing a@Q12-queue becauseGRserves at leastB — b times
during that time window. Thd3 — b time steps are additional. However, they need not be disiimt¢he
various queues ands’ and need not be distinct from the additional time steps ifledtso far. If a time
step is counted twiceADV servesi having a larger population the®GRin that queue, whil&SGRserves
' having a larger population in there. Note that the poteuii@aps during packet transmission in this case.
In order not to count one and the same time step twice when sugrup over all queues, we diminish this
amount of time steps BY_;. Sincen; —b+ B — b = n; + (B — 2b), combining the arguments of the three
paragraphs, we obtain the lemma. O

17

While the two lemmas above cover the case that there are tiotesteps where the potential increases,
the following one considers the opposite situation.

Lemma 13 There holds the inequality
To > To1 + Toa2 + To2
where

Tor = (D KIQ+ D blQ¥ —s11)+

keL keR*

Toa2 = (BQP|—s12)+

Toz = () (k—0b)|Q" — s2)+.
k€ER

Proof. SGRmust serve each buffer cell that is populated at least orfce.d L andi € Q*, in SGRs
configuration, the populated part only consists of khigst cells and; is always a@11-queue and, hence,
can only cause;; increases. Ik € R* andi € Q*, in SGRs configuration; is always a@;-queue when
thejt* cell, 1 < j < b, becomes unpopulated and, hence, can only caysecreases at these time steps. If
i € QF, in SGRs configuration; is always aQ12-queue when thg*" cell, 1 < j < b, becomes unpopulated
after the buffer has once been populatedibyackets and can only cause increases afterwards. Afe R
andi € Q*, in SGRs configuration, the populateR-part consists ok — b cells. There must be additional
time steps if the potential increases less often than theéoeuof populated buffer cells. O

Lemma 14 If B > 2, there hold the following inequalities:

To+T 1 = s12
2Ty +T 1 > s11+ (B —2b)|Q5
Lo+ 5Ty +2T1 > sy—(B—2b) Y |Q"|.
kER*

Proof. The firstinequality is an immediate result of Lemma 12. Sungmip the inequalities of Lemmas 12
and 13 yields

(5111 — b|Q®|) 4 + s112 + 512 + (B — 20)|Q”| + (b|QP| — 512) +
s111 + s112 + (b + (B — 2b) + b)|Q”|
= su+(B—2b)|Q",

2T0 + T,1

establishing the second inequality. By the summation ofribqualities of Lemmas 11, 12 and 13, we get

Lo+3To+T-1 > (s2—(B=b)> Q") +s112+s12
keR

+(B = 2b)|Q"| + (b|Q"| — s12)+
+OOEIQF + Y blQF| - s11)+

kel keR*

> sy—s111— (B—2b) Y |Q".

keR*

The addition of the second inequality of the lemma yidlgst 5Ty + 271 > s2 — (B — 2b) 3 c g+ |QF|.
O

18

Theorem 5 SGR achieves a competitive ratioldf/9.

Proof. Let Q denote(B — 2b) e g+ |Q’“|. If i € Q¥ andk € R*, at leasth + 1 packets arrive at.
HenceT > (b+ 1)@, and, thusQ < b+1 The summation of the three inequalities in Lemma 14 yields
Lo+ 8Ty +4T—1 > s11 + s12 + s2 — Q. We derive

Lo+9To+4T 1 > siu+si2+s2e+THh—-Q=T-Q
and, hencelLo + Ty + T_1 > $Lo + Tp + §7-1 > 159, yielding
(Lo—f—Tg—f—T_l)/(T—Q)Zl/g.

If Bis even, ther@ = 0 and(Lgy + Tp + T 1)/T >1/9 and by equation (2) the theorem follows.Bfis

odd, Lot Tt Log?gg—l(—2)> 11— 5) = 51— %) Letdp = 524 Then Jim 65 =0

and we derive by equation (2) that

Ty/Ts <2—(1—65)/9=17/9+dp/9 — 17/9 asB — co.

We can strengthen our analysis and show thatBfets 2, SGRIis optimal.

Theorem 6 For B = 2, SGR achieves a competitive ratioldf/7.

Proof. If we put B = 2 into the inequalities of Lemmas 11, 12 and 13, they take tHewiing forms:
Lo+ To > (s2 — Q%)+, To > (s111 — |Q?|)+ + s112 + s12 — T-1 andTp > (|QY| — s11)+ + (|Q% —
s12)+ + (|Q?| — s2)+ from where we deduce the corresponding inequalities of Lani for B =

To+ T-1 > s12 and2Ty + T-1 > s11. Summing up the 3 inequalities in Lemmas 11, 12 and 13, we can
strengthen the third inequality of Lemma 1By + 3Ty + T 1 > (s2 — |Q?|)+ + s12 + (|Q?] — s12)4 >

59— |Q?| + s12 + |Q?| — s12 = s2. SincebTy is replaced byTy in the left hand side, we get a competitive
factor of 12 instead of’ in Theorem 5. O

3.2 Resource Augmentation

We first study the case that an online algorithm is grantedtiaddl buffer. Then we consider different
transmission rates.

3.2.1 Additional Buffer

Let ADV andALG have buffers of sizé3 andB + A for each queue, respectively. We denote the ratio of
the additional bufferd and the standard buffd® by c.

Theorem 7 Every reasonable online algorithm ALG having additionalfbuA = ¢B per queue is{ijr—f)—
competitive.

Proof. Leto be any arrival sequence. As in the analysiSGRwe can restrict ourselves to arrival sequences
that terminate whe®ALG has completely cleared its buffer. Furthermore, we assinaiein the case of
packet loss at a queue eith&DV or ALG loses packets. If there is no packet loss at all or if ohV
loses packets, then the throughputafG is at least at large as that ADV and our claim holds. Hence we
may assume thaALG loses packets. We partition the queues into two disjoirg @étand Q° whereQ*
comprises exactly those ones whéieG loses packets when serviag The difference of the total packet

19

losses corresponds &DV's buffer population at the time wheklLG's buffer reaches the state of emptiness.
LetT4py andT a1 denote the throughputs 8DV andALG, respectively. By 4 py andL 4, we denote
the losses oADV andALG, respectively. We derive

Tapv — Tarc = Larc — Lapv < |Q°|B.

Furthermore, the total throughput is given by the througbpuQ° and@*, denoted b’ v/, T4 pvs T4 1.
andT4; g, respectively. S@upy = TSpy + Tipy andTare = TS o + T4 - Since there occurred
packet loss in the queues member{g at leastd + B = (1 + ¢) B packets must have arrived there, all of
which could be accepted ALG. Hence there holds

Tire = (1+0)Q"|B,

yielding
Tapy Tarc+ Larg — Lapv Larg — Lapv Lareg — Lapv
Tarc Tarc Tarc Tire +Tara
Larg — L ‘| B 1 2
< 1qfare—Laoy oy, QIB 1 _cF2
TALG (1+C)|Q |B 1+C C+1

Theorem 8 For any greedy algorithntR, the upper bound ogfj—f is tight for all B and all A = ¢B.

Proof. For all values ofA and B we construct an instance with a throughput ratio arbityadibse toij;—f.
First, we assume that bokDV and GR have buffers of sizé&3 + A. From the previous section we know
that we can construct a staircase sequence suci\Bithas a throughput of abo@in(B + A) whereas
GR has a throughput of only.(B + A) packets. While the staircase is built upG, ADV always serves
the corresponding queues such that they are emp&phi's configuration. This results in the fact thabV
can accept additiond + A packets in these queues. Although —now- the buffé&@¥ is smaller than the
one of GR, ADV can build up a staircase of levBl+ A in GR'’s configuration. The difference only consists
in ADV's not being able to acce® + A, but only B additional packets per queue, whitdk cannot accept
any of them. HenceZR acceptsB + A packets per queue, where®BV acceptsB + A+ B =2B + A

packets per queue. This results in the following throughatib:

Tipy 2B+A 2B+cB c+2

Ter B+A B+4+¢B c¢+1°

3.2.2 Increased Transmission Rate

Now we assume thaaDV and ALG have the same buffer sizes, RAILG can transmit: packets per time
step whileADV is still able to transmit only one packet per time step.

Theorem 9 Every reasonable online algorithm ALG (& + 1)-competitive if its transmission rate is the
k-fold of the adversary’s one.

Proof. As usual, we restrict ourselves to sequences which termimaenALG has completely emptied its
buffer and assume that in the case of packet loss at a quéwee ARV or ALG loses packets. Lé}; apy
andl;; arc be the loads (i.e. the numbers of packets) in queaetimet in the configurations oADV
andALG, respectively. ByL;; apy and L;; a1, We denote the numbers of pack&SV and ALG lose at

20

queuei at timet, respectively. LeTspy, Lapv,Tare and Lo denote the throughputs and losses of
ADV andALG, respectively. For each queueve define a potential functioft;; = (lir,anc — lit,aADv)+
which is summed up t&; = 7" ; ®;;. Attime ¢, ALG can lose packets in queu®nly if ®;; > 0. Then
A®;; = — Ly arc. During each transmission step;; can increase only ikDV serves a queue not served
by ALG. But if so, ALG transmitsk packets from other queues, hergATt,ALG > A®;;. So we derive

1
Ad; < EATt,ALG — Ly aLg.

Let 7 denote the time step wheAALG's buffer becomes empty. Sincg, = 0 = &,, there holds
0 < AL — Lapq, henceL g < T4Le giving us the following throughput ratio:

Tapv _ Tarc + (Lare — Lapy) _ Tare + Lare
Tcr Tara - Tarc

<1+1/k.
Od

Theorem 10 If B = 1, every reasonable online algorithm ALG having a transmissate being thé-fold
of the adversary’s one has a competitive ratio of at Idast1/k.

Proof. Let there ben queues, each of them populated at the beginning. VWiile serve%m queues,

ADV serves the remainingi—lm ones. In the latter ones, one packet arrives at %ijlpn This pattern is

repeated orf+7)’m, (7)*m, ... queues not served KYLG yet until the block size reaches 1. We get

Tapv/Tare = m > j—o(77)"m and this expression tends1g(1 — =) = 1+ 1/k asi goes to infinity.

|

4 An optimal offline algorithm

We present an optimal offline algorithm for our unit valuesighput problem.

Algorithm Shortest Forward Overflow Distance (SFOD): If there cannot be any buffer overflow any
more, serve the queues in an arbitrary order. Otherwisetsaleach transmission sté@ queue where the
next overflow would occur if none of the queues were servedreNpoecisely, let; ; denote the length of
queue: at timet. Determinety such that; ; + Zﬁ’:—tlﬂ oi~ < Bforalliandl;; + Zi(’:tﬂ oir > B for
some queue. If £y exists, select queue otherwise serve any queue.

The algorithm can be implemented so that it runs in lineaetim

Theorem 11 SFOD is an optimal offline algorithm.

Proof. We prove the following two statements, which imply the theor
1. For each arrival sequeneghere exists an optimal schedule satisfying&tODrule.
2. Each schedule satisfying t&&ODrule is optimal.

We first prove statement 1. Letbe any arrival sequence and kebe an optimal schedule fer. We show
that we can convel§ into anSFODschedules’ without decreasing the throughput.dfsatisfies th&&FOD
property, then there is nothing to show. Now assume thaéteests a time stepwhereS does not satisfy
SFOD Let S serve queueat timet and let queug be a queue where the next buffer overflow would occur
aftert. S’ is a copy ofS, but at timet, S’ serves queug instead ofi. Lett, denote the time step where the
next overflow in queug will occur if it is not served any more. Due to tis#-ODrule, the next overflow in

21

queuej would occur before the next overflow in queidf S serves queug at timet’ with t < ¢’ < tg,
S’ serves queue at timet’. Then at timet’ both S and S’ are again in the same configuration and their
throughputs are the same.dfdoes not serve queyeuntil ¢y, the buffer will overflow, ands will lose one
packet more thas’ will. If there is an overflow at queudater on,S’ will lose one packet more thahwill.
Then, the configurations & andS’ are the same, again, and yield to the same throughputs. Hareither
case, we gels: > Ts. We can repeatedly apply this procedure until we obtain adaleS’ satisfying the
SFODrule. The procedure terminates due to the finiteness of

We next show statement 2. If we start with an optimal sche@ulee will get an optimal schedul&’
satsifying theSFODrule. LetS be anSFOD-schedule and le§ be an optimaSFOD-schedule. If there is
a packet loss it at timet, S must lose the same number of packets because in both schegielees have
been served where the next overflow was nearest in the flli@rgce there can only be a difference between
S andS if there are several queues whose next overflow is at the damaelf packet loss is inevitable &t
S andS lose the same number of packets because they served the queues concerned as often asgossibl

|

5 Open Problems

In this paper we have studied the problem of maximizing theughput of unit-value packets at a switch
with m input buffers. We have developed improved upper and lowends on the competitive perfor-
mance of online algorithms. In particular, we have devisetrategy, calledsemi-Greedythat achieves

a competitiveness o]g and is the first deterministic algorithm that beat the ttivipper bound of 2. An
important problem is to determine tight upper and lower lsuon the performance of deterministic algo-
rithms. Similarly, a challenging task is to determine thstlpossible performance of randomized solutions.
Up to now we know of no randomized algorithms whose competiiess is below the deterministic lower
bound. Finally, it is interesting to study scenarios wheatagackets have values and we wish to maximize
the total value of transmitted packets. As mentioned intb@duction, Azar and Richter [3] gave a general
technique that transforms amcompetitive algorithm for a single queue int@acompetitive algorithm for
multi-queue systems. As a result, they derived competiigerithms for various settings. It is conceivable
that improved solutions are possible by investigating gspective settings directly.

References

[1] W. Aiello, Y. Mansour, S. Rajagopolan and A. Rws Competitive queue policies for differentiated
servicesProc. INFOCOM 431-440, 2000.

[2] N. Andelman, Y. Mansour and A. Zhu. Competitive queuepadicies in QoS switcheroc. 14th
ACM-SIAM Symp. on Discrete Algorithn¥61-770, 2003.

[3] Y. Azar and Y. Richter. Management of multi-queue swislin QoS Network$roc. 35th ACM Symp.
on Theory of Computin@2-89, 2003.

[4] A. Aziz, A. Prakash and V. Ramachandran. A new optimalesithier for switch-memory-switch
routers.Proc. 15th Annual ACM Symp. on Parallelism in Algorithms ardhitectures 343-352,
2003.

[5] A. Bar-Noy, A. Freund, S. Landa and J. Naor. Competitivelioe switching policiesProc. 13th
ACM-SIAM Symp. on Discrete Algorithni®25-534, 2002.

22

[6] E.L. Hahne, A. Kesselman and Y. Mansour. Competitivefdqlumanagement for shared-memory
switchesProc. 13th ACM Symp. on Parallel Algorithms and Architeegi63-58, 2001.

[7] A.Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, Bhigber and M. Sviridenko. Buffer overflow
management in QoS switché&oc. 31st ACM Symp. on Theory of Computisg0-529, 2001.

[8] A. Kesselman and Y. Mansour. Loss-bounded analysis ifiterdntiated servicesProc. 12th ACM-
SIAM Symp. on Discrete Algorithirs91-600, 2001.

[9] A. Kesselman, Y. Mansour and R. van Stee. Improved coitiyeetjuarantees for QoS bufferimgyoc.
11th European Symp. on Algorithni$NCS Vol. 2832, 361-372, 2003.

[10] A. Kesselman and A. Ré®s. Scheduling policies for CIOQ switchd&oc. 15th Annual ACM Symp.
on Parallelism in Algorithms and Architecture353—-361, 2003.

[11] H. Koga. Balanced scheduling towards loss-free pagitetieing and delay fairne$xoc. 12th Annual
International Symp. on Algorithms and ComputatibNCS Vol. 2223, 61-73, 2001.

[12] D.D. Sleator and R.E. Tarjan. Amortized efficiency st lipdate and paging rulé&Somm. of the ACM
28:202-208, 1985.

23

