
BETTER BOUNDS FOR ONLINE SCHEDULING�SUSANNE ALBERSyAbstract. We study a classical problem in online scheduling. A sequence of jobs must bescheduled on m identical parallel machines. As each job arrives, its processing time is known. Thegoal is to minimize the makespan. Bartal, Fiat, Karlo� and Vohra [3] gave a deterministic onlinealgorithm that is 1.986-competitive. Karger, Phillips and Torng [11] generalized the algorithm andproved an upper bound of 1.945. The best lower bound currently known on the competitive ratiothat can be achieved by deterministic online algorithms it equal to 1.837. In this paper we presentan improved deterministic online scheduling algorithm that is 1.923-competitive, for all m � 2. Thealgorithm is based on a new scheduling strategy, i.e., it is not a generalization of the approach byBartal et al. Also, the algorithm has a simple structure. Furthermore, we develop a better lowerbound. We prove that, for general m, no deterministic online scheduling algorithm can be betterthan 1.852-competitive.Key words. makespan minimization, online algorithm, competitive analysisAMS subject classi�cations. 68Q20, 68Q25, 90B351. Introduction. We study a classical problem in online scheduling. A sequenceof jobs must be scheduled on m identical parallel machines. Whenever a job arrives,its processing time is known in advance, and the job must be scheduled immediatelyon one of the machines, without knowledge of any future jobs. Preemption of jobs isnot allowed. The goal is to minimize the makespan, i.e., the completion time of thelast job that �nishes.Algorithms for this scheduling problem are used in multiprocessor scheduling.Moreover, the problem is important because it is the root of many problem variantswhere, for instance, preemption is allowed, precedence constraints exist among jobs, ormachines run at di�erent speeds. The problem was �rst investigated by Graham [10].In fact, Graham also studied the o�ine version of the problem, when all jobs areknown in advance. The problem of computing an optimal o�ine schedule for a givenjob sequence in NP-hard [9]. Graham gave a fast scheduling heuristic that achievesa good approximation ratio. He developed the well-known List algorithm that takesthe given jobs one by one and always schedules them on the least loaded machine.Clearly, List is also an online algorithm.Following [13], we call a deterministic online scheduling algorithm A c-competitiveif, for all job sequences � = J1; J2; : : : ; Jn,A(�) � c �OPT (�);where A(�) is the makespan of the schedule produced by A and OPT (�) is themakespan of an optimal schedule for �.Graham's List algorithm is (2� 1m)-competitive. Galambos and Woeginger pre-sented an algorithm that is (2� 1m � �m)-competitive, where �m > 0, but �m tends to0 as m goes to in�nity. It was unknown for a long time whether there is an algorithmthat achieves a competitive ratio of c, c < 2, for general m. Bartal, Fiat, Karlo� and�A preliminary version of this paper was presented at the 29th Annual ACM Symposium onTheory of Computing (STOC), 1997.yMax-Planck-Institut f�ur Informatik, Im Stadtwald, D{66123 Saarbr�ucken, Germany. E-mail:albers@mpi-sb.mpg.de. Work supported in part by the EU ESPRIT LTR Project N. 20244(ALCOM-IT). 1



2 S. ALBERSVohra [3] then gave an algorithm that is 1.986-competitive, for all m � 70. Karger,Phillips and Torng [11] generalized the algorithm and proved a competitive ratio of1.945, for all m. This has been the best upper bound known so far for general m. Forthe special case m = 4, Chen, van Vliet and Woeginger [6] developed an algorithmthat is 1.733-competitive. With respect to lower bounds, Faigle, Kern and Turan [7]showed that no deterministic online algorithm can have a competitive ratio smallerthan (2 � 1m ) for m = 2 and m = 3. Thus, for these values of m, List is optimal.Faigle et al. [7] also proved that no deterministic online algorithm can be better than1.707-competitive, for any m � 4. The best lower bound known so far for generalm is due to Bartal, Karlo� and Rabani [4] who showed that no deterministic onlinealgorithm can have a competitive ratio smaller than 1.837, for m � 3454. For morework on related online scheduling problems see, for instance, [1, 2, 5, 12, 14].In this paper we present an improved deterministic online algorithm for thescheduling problem de�ned above. The algorithm is 1.923-competitive, for all m � 2.Our algorithm is based on a new scheduling strategy, i.e., it is not a generalization ofthe approach by Bartal et al. [3]. Moreover, the algorithm has a simple structure. Atany time, the algorithm maintains a set S1 of bm2 c machines with a low load and aset S2 of dm2 e machines with a high load. Every job is either scheduled on the leastloaded machine in S1 or on the least loaded machine in S2. The decision, which ofthe two machines to choose, depends on the ratio of the load on machines in S1 tothe load on machines in S2. A description of the algorithm is given in Section 2. Adetailed analysis follows in Section 3. We also develop a better lower bound for onlinescheduling. In Section 4 we show that if a deterministic online scheduling algorithmis c-competitive for all m � 80, then c � 1:852.2. The new scheduling algorithm. For the description of the algorithm weneed some de�nitions. Let the load of a machine be the sum of the processing timesof the jobs already assigned to it. At any time, the algorithm maintains a list of themachines sorted in non-decreasing order by current load. Let M ti denote the machinewith the i-th smallest load, 1 � i � m, after exactly t jobs have been scheduled. Inparticular, M t1 is the machine with the smallest load and M tm is the machine with thelargest load. We denote by lti the load of machine M ti , 1 � i � m. Note that the loadltm of the most loaded machine is always equal to the current makespan.As previous algorithms [3, 11], our new scheduling strategy tries to prevent sched-ules in which the load on all machines is about the same. If all machines have the sameload, with all previous jobs being very small, an adversary can present an additionallarge job and force a competitive ratio of (2� 1m ). This is the worst-case scenario forList .Our new algorithm, called M2 , always tries to maintain k machines with a lowload and m � k machine with a high load, where k = bm2 c. The goal is to alwayshave a schedule in which the total load Ll on the k lightly loaded machines is at most� times the total load Lh on the m � k heavily loaded machines, for some � to bespeci�ed later. A schedule satisfying Ll � �Lh is always prepared to handle a largeincoming job and can easily maintain a competitive ratio of c, where c is 1.923.Algorithm M2 always schedules a new job Jt with processing time pt on theleast loaded machine as long as Ll � �Lh is satis�ed after the assignment. Note thatduring this assignment, the load Ll on the lightly loaded machines does not necessarilyincrease by pt because the least loaded machine might become one of the machinesM ti , k < i � m. If an assignment of Jt to the least loaded machine results in Ll > �Lh,then M2 considers scheduling Jt on the machine with the (k + 1)-st smallest load.



BETTER BOUNDS FOR ONLINE SCHEDULING 3However, if this assignment increases the makespan and the new makespan exceedsc � (Ll+Lh)=m, then Jt is �nally scheduled on the least loaded machine, ignoring theviolation of Ll � �Lh. Note that Ll + Lh is the sum of the processing times of alljobs that have arrived so far, and thus (Ll+Lh)=m is a lower bound on the optimummakespan.Algorithm M2: Set c = 1:923, k = bm2 c and j = 0:29m. Set � = (c�1)k�j=2(c�1)(m�k) .Every new job Jt is scheduled as follows. Let Ll be the sum of the loads on machinesM t1; : : : ;M tk if Jt is scheduled on the least loaded machine. Similarly, let Lh be thesum of the loads on machines M tk+1; : : : ;M tm if Jt is scheduled on the least loadedmachine. Let �tm be the makespan, i.e. the load of the most loaded machine, if Jt isscheduled on the machine with the (k + 1)-st smallest load. Recall that lt�1m is themakespan before the assignment of Jt.Schedule Jt on the least loaded machine if one of the following conditions holds.(a) Ll � �Lh(b) �tm > lt�1m and �tm > c � Ll+LhmOtherwise schedule Jt on the machine with the (k + 1)-st smallest load.Theorem 2.1. Algorithm M2 is 1.923-competitive, for all m � 2.Before analyzing the algorithm in the next section, we discuss the choice of �.First observe that 0 < � < 1, for m � 2. The inequality 0 < � holds becausec � 1 > 1=2 and k > j; thus (c � 1)k � j=2 > 0. Inequality � < 1 holds because(c � 1)k � (c � 1)(m � k) and j=2 > 0. In fact, for even m, � = (c�1)�j=mc�1 � 0:686and, for odd m, � tends to this value as m goes to in�nity. Always setting � = 0:686in the algorithm M2 asymptotically results in the same competitive ratio of 1.923.Choosing � = (c�1)k�j=2(c�1)(m�k) has two advantages. (1) We can prove a competitiveness of1.923 for even small m. (2) In the analysis we can do symbolic calculations where a�xed � = 0:686 would require numeric calculations.3. Analysis of the algorithm. We present a detailed proof of Theorem 2.1.The analysis presented by Graham [10] for the List algorithm, combined with theobservation that algorithmM2 only schedules a job on the machine with the (k + 1)-stsmallest load if the resulting makespan does not exceed 1.923 times the optimummakespan, shows that M2 is c-competitive, where c = maxf(2 � 1m); 1:923g, for allm � 2. This gives the desired bound for small m. For m � 8, the following analysisapplies.Consider an arbitrary job sequence � = J1; J2; : : : ; Jn. Let pt be the processingtime of Jt, 1 � t � n. We will show that M2 schedules every job Jt, 1 � t � n, suchthat M2(�t) � 1:923 �OPT (�t);where M2(�t) is the makespan of the schedule produced by M2 on the subsequence�t = J1; J2; : : : ; Jt and OPT (�t) is the makespan of an optimal schedule for �t.3.1. The basic analysis. Suppose that M2 has already scheduled the �rst t�1jobs and that a competitive ratio of c = 1:923 was maintained at all times. LetL = tXs=1 ps:L is the sum of the loads on all machines after Jt is assigned.



4 S. ALBERSIf the makespan does not change during the assignment of Jt, then by inductionhypothesis there is nothing to show. Also, if the makespan changes but is boundedfrom above by c Lm , then we are done because Lm is a lower bound on the optimummakespan for �t.Thus we concentrate on the case that during the assignment of Jt, the makespanincreases and exceeds c Lm . Condition (b) in algorithmM2 implies that Jt is scheduledon the least loaded machine. Let l1 = lt�11 be the load of the least loaded machineimmediately before Jt is assigned.First we consider the case that l1 � (c� 1) Lm = 0:923 Lm . We haveM2(�t) = l1 + pt � (c� 1) Lm + pt:If pt � Lm , then M2(�t) � (c� 1) Lm + Lm � c Lm � c � OPT (�t):If pt = (1 + �) Lm , for some positive �, thenM2(�t) = l1 + pt� (c� 1) Lm + (1 + �) Lm� c � (1 + �) Lm = c � pt� c � max1�s�t ps � c � OPT (�t):Here we use the fact that max1�s�t ps is also lower bound on the optimum makespan.In the remainder of this proof we will study the situation that the load on theleast loaded machine is greater than (c � 1) Lm , i.e., l1 = (c � 1 + �) Lm for somepositive �. Since l1 cannot be greater than Lm , we have 0 < � � 2� c = 0:077. Notethat all machines must have a load of at least (c � 1 + �) Lm . Since Jt is assignedto the least loaded machine and the makespan after the assignment is greater thanc Lm , we have pt > c Lm � l1 � (1 � �) Lm � ( 12 + �) Lm . Our goal is to show that thesequence �t�1 = J1; J2; : : : ; Jt�1 contains m jobs, each with a processing time of atleast ( 12 + �) Lm . Then there are m+1 jobs with a processing time of at least ( 12 + �) Lm ,two of which must be scheduled on the same machine in an optimal schedule. ThusOPT (�t) � (1 + 2�) Lm :If pt � Lm , then M2(�t) = l1 + pt � (c� 1 + �) Lm + Lm� c(1 + �) Lm � c �OPT (�t):If pt = (1 + �) Lm for some positive �, thenM2(�t) = (c� 1 + �) Lm + pt � (c+ �+ �) Lm� c �maxf(1 + 2�); (1 + �)g Lm� c �OPT (�t):In each case, Theorem 2.1 is proved. It remains to show that the sequence �t�1 =J1; J2; : : : ; Jt�1 does contain m jobs, each with a processing time of at least ( 12 + �) Lm .



BETTER BOUNDS FOR ONLINE SCHEDULING 53.2. Identifying large jobs. We have to analyze jobs in the sequence �t�1. Lettime s, 1 � s � t, denote the point of time immediately after Js is scheduled. (Time0 is the point of time before any jobs are scheduled.) For any time s, 1 � s � t, letLs be the total load on the m machines, i.e.,Ls = sXr=1 pr:Note that Lt = L.Definition 3.1. At any time s, 1 � s � t, the schedule constructed by M2 iscalled steady if the total load on the k lightly loaded machines Ms1 ; : : : ;Msk is at most� times the total load on the m� k heavily loaded machines Msk+1; : : : ;Msm.In the following, when refering to machines Ms1 ; : : : ;Msm, we will often drop swhen the meaning is clear.Lemma 3.2. At time t� 1, i.e. immediately before Jt is scheduled, M2's scheduleis not steady.Proof. Immediately before Jt is scheduled, the total load on the machinesM1; : : : ;Mk is at least Ll = k(c� 1 + �) Lm> k(c� 1) Lm= ((c� 1)k � j2 ) Lm + j2 Lm= �(c� 1)(m� k) Lm + j2 Lm :If M2's schedule was steady, then the total load on machinesMk+1; : : : ;Mm would beat least 1�Ll. Thus the total load before the assignment of Jt would be at leastLt�1 � (1 + 1� )Ll> k(c� 1) Lm + (m� k)(c� 1) Lm + 1� j2 Lm :Here we used the facts Ll > k(c� 1) Lm and Ll > �(c� 1)(m� k) Lm + j2 Lm . ThusLt�1 > (c� 1)L+ j2� Lm= L+ (c� 2)L+ j2� Lm> Lbecause � = (c�1)k�j=2(c�1)(m�k) � (c�1)�j=mc�1 � 710 and hence (c � 2)L+ j2� Lm > �0:077L+0:2L > 0. We have a contradiction. 23.2.1. Analyzing load. Definition 3.3. At any time s, 1 � s � t, a machineis called full if its load is at least (c�1+ �) Lm . Recall that at time t�1, all machineshave a load of at least (c� 1 + �) Lm and, thus, are full.For i = 1; : : : ;m, let ti be the most recent time when exactly i machines werefull. Note that t1 < t2 < : : : < tm = t� 1:Of particular interest to us will be the time tm�bjc when exactly m � bjc machineswere full. Let t0, tm�bjc � t0 < t � 1, be the most recent time when M2's schedule



6 S. ALBERSwas steady. If M2's schedule was not steady during the time interval [tm�bjc; t � 1],then let t0 = tm�bjc. Let f be the number of machines that are full at time t0.Our goal is to show that at time t0, the total load on the non-full machinesM1; : : : ;Mm�f in M2's schedule is at most (c � 1:5)(m � f) Lm . We will show thisusing the following two lemmas. LetX = (c�1)c LY = (c�1)2c L� j2 Lm :Lemma 3.4. If at time t0, the total load on the non-full machines M1; : : : ;Mm�fin M2's schedule were greater than (c � 1:5)(m � f) Lm , then the total load at time twould satisfy L > X + Y (1� cm )�(bjc+1).The proof of Lemma 3.4 is presented in the Appendix.Lemma 3.5. X + Y (1� cm )�(bjc+1) � LProof. We have (1� cm )�(bjc+1) � (1� cm )�j � ecj=m:The �rst inequality follows because bjc+ 1 � j. Thus,X + Y (1� cm )�(bjc+1) � (c�1)c L+ ( (c�1)2c L� j2mL) � ecj=m= (1� 11:923 )L+ ( 0:9232�1:923�0:1451:923 L) � e0:29�1:923:Evaluating the last expression gives that it is at least 1 � L. 2We summarize the results of Lemmas 3.4 and 3.5.Lemma 3.6. At time t0, the total load on the non-full machines M1; : : : ;Mm�fis at most (c� 1:5)(m� f) Lm .3.2.2. Tracing the assignment of large jobs. We now identify jobs with aprocessing time of at least ( 12 + �) Lm .Lemma 3.7. During the time interval (tm�k; t0], f �m+ k jobs, each of size atleast ( 12 + �) Lm , are scheduled.Proof. At time tm�k, m � k machines are full. At time t0, f machines are full,where f � m� bjc. Consider the f �m+ k steps in (tm�k; t0] at which the numberof full machines increases. Since at least m� k machines are full, the number of fullmachines can only increase if a job is scheduled on the least loaded machine. ByLemma 3.6, at time t0, the total load on the m� f least loaded machines is at most(c� 1:5)(m� f) Lm . This implies that at time t0, the load on the least loaded machineis at most (c� 1:5) Lm . Thus, at any of the f �m+ k steps in (tm�k; t0] at which thenumber of full machines increases, the load on the least loaded machine is at most(c � 1:5) Lm . Hence jobs of size at least (c � 1 + �) Lm � (c � 1:5) Lm = ( 12 + �) Lm areintroduced. 2Lemma 3.8. At time tm�k, each of the machines M1; : : : ;Mf�m+k+1 has a loadof at most (c� 1:5) Lm . The total load on the machines Mf�m+k+1; : : : ;Mk is at most(c� 1:5)(m� f) Lm .Proof. The machine with the (f � m + k + 1)-st smallest load at time tm�kbecomes the least loaded machine no later than time t0, when f machines are full.Thus, if at time tm�k, machine Mf�m+k+1 (or any machine Mi with i � f �m+ k)had a load greater than (c � 1:5) Lm , then the load of the least loaded machine at



BETTER BOUNDS FOR ONLINE SCHEDULING 7time t0 would be greater than (c� 1:5) Lm . Lemma 3.6 implies that this is impossible.Similarly, if at time tm�k, machines Mf�m+k+1; : : : ;Mk had a total load of at least(c� 1:5)(m� f) Lm , then the total load on M1; : : : ;Mm�f at time t0 would be at least(c� 1:5)(m� f) Lm . Again, Lemma 3.6 gives the desired statement. 2Lemma 3.9. During the time interval (t0; t�1], m�f jobs of size at least ( 12+�) Lmare scheduled.Proof. By the de�nition of t0, M2's schedule is not steady during [t0+1; t�1]. Lets 2 [t0 +1; t� 1] be any of the m� f time steps in [t0 +1; t� 1] at which the numberof full machines has just increased. If the load on the least loaded machine is at most(c� 1:5) Lm when Js is scheduled, then ps � (c� 1 + �) Lm � (c� 1:5) Lm = ( 12 + �) Lm .Suppose that immediately before the assignment of Js, the least loaded machinehas a load greater than (c�1:5) Lm . Let ls�1k+1 be the load of machineMk+1 and supposels�1k+1 = (c�1+�+�) Lm for some non-negative �. By the de�nition of t0, at leastm�bjcmachines are full at any time in [t0; t� 1]. Thus,Ls�1 � (m� bjc)(c� 1 + �) Lm + bjc(c� 1:5) Lm + (m� k)� Lm� (c� 1)L� 12bjc Lm + (m� bjc)� Lm + �2L� (c� 1)L� j2 Lm + (m� j)� Lm + �2L:The second inequality follows because m�k � 12m. SinceM2's schedule is not steady,M2 would prefer to schedule Js on machine Mk+1 but cannot becausels�1k+1 + ps > c(Ls�1 + ps)=m:Hence, ps � ( cmLs�1 � ls�1k+1)=(1� cm )� cmLs�1 � ls�1k+1� c(c� 1� j2m ) Lm � (c� 1) Lm + c(1� jm )� Lm � � Lm + c�2 Lm � � Lm :The load ls�1k+1 = (c�1+�+�) Lm cannot be greater than (3�c��) Lm since otherwise wewould have, at time t� 1, m� k machines each with a load greater than (3� c� �) Lmand k machines each with a load of at least (c � 1 + �) Lm , resulting in a total loadgreater than L. Thus, � � 4� 2c� 2� andps � ((c� 1)2 � cj2m ) Lm + (c� 1� cjm )� Lm + 2( c2 � 1)(2� c� �) Lm= ((c� 1)2 � (c� 2)2 � cj2m ) Lm + (1� cjm )� Lm� 0:567 Lm + 0:442� Lm� ( 12 + �) Lmfor all � � 0:12. Recall that our � is at most 2� c = 0:077. 2We now consider the time tm�k�bjc when exactly m� k � bjc machines are full.Let t00 be the earliest point of time in the interval [tm�k�bjc ; tm�k] at which themachine with the (k + 1)-st smallest load has a load greater than (c� 1:5) Lm .Lemma 3.10. During the time interval (t00; tm�k], every job is scheduled on theleast loaded machine.Proof. We �rst show that at any time s 2 [t00; tm�k], M2's schedule is steady.Lemma 3.8 implies that at time s the total load on the lightly loaded machines



8 S. ALBERSM1; : : : ;Mk is at most Ll = k(c � 1:5) Lm . By the de�nition of t00, the total loadon the heavily loaded machines Mk+1; : : : ;Mm at time s is at leastLh = (m� k � bjc)(c� 1) Lm + bjc(c� 1:5) Lm= (m� k)(c� 1) Lm � bjc2 Lm :We show that at time s, the total load on the lightly loaded machines is at most �times the load on the heavily loaded machines. This holds if Ll � �Lh, i.e., ifk(c� 1:5) Lm � k(c�1)�j=2(c�1)(m�k) ((m� k)(c� 1) Lm � bjc2 Lm );which is equivalent to(c� 1)(kbjc+ (m� k)j)� j bjc2 � (c� 1)k(m� k):This in turn holds if jm� j22(c�1) � k(m� k):The left-hand side is at most 0:245m2, and the right-hand side is 14m2 for even m atand least 0:246m2 for odd m � 9. Thus, at time s, M2's schedule is steady.Now consider job Js+1 scheduled at time s + 1. Let ls1 be the load on the leastloaded machine at time s. We have ls1 � (c� 1:5) Lm . Let p be a processing time suchthat ls1 + p = (c � 1:5) Lm . The property stated in Lemma 3.8 must also hold at times because the load on the lightly loaded machines M1; : : : ;Mk can only be smaller.Thus, if Js+1 has a processing time of at most p, scheduling Js+1 on the least loadedmachine results in a total load of at most k(c�1:5) Lm on machinesM1; : : : ;Mk. Sincethe total load on machines Mk+1; : : : ;Mm is at least (m � k)(c � 1) Lm � bjc2 Lm , thecalculations of the preceding paragraph show that M2's schedule must be steady afterthe assignment.Suppose that Js+1 has a processing time ps+1 > p and that scheduling Js+1 on theleast loaded machine results in a load of k(c� 1:5) Lm + � Lm on machines M1; : : : ;Mk,for some � > 0. This implies that at time s + 1, the load on any of the machinesMk+1; : : : ;Mk+bjc must be at least (c � 1:5 + �) Lm . With the above de�nitions of Lland Lh, we conclude that after the assignment of Js+1 to the least loaded machine,the total load on M1; : : : ;Mk is at most Ll+� Lm and the total load onMk+1; : : : ;Mmis at least Lh + bjc� Lm . Since, for m � 8, we have bjc � 2 and � � 12 , M2's schedulemust be steady. 2Lemma 3.11. At time t00 � 1, the load on machine Mk+1 is at most (c� 1:5) Lm .Proof. If t00 > tm�k�bjc , then the lemma follows from the de�nition of t00. Weshow that t00 cannot be equal to tm�k�bjc. Recall that f � m�bjc. Thus, Lemma 3.8implies that at time tm�k, machine Mk�bjc+1 has a load of at most (c � 1:5) Lm . Ift00 = tm�k�bjc, then there are bjc steps in (t00; tm�k] at which the number of fullmachines increases. By Lemma 3.10, at all these steps, the jobs are assigned to theleast loaded machine. Thus at time t00, the load of machine Mk+1 cannot be greaterthan the load of machine Mk�bjc+1 at time tm�k. This means that Mk+1 has a loadof at most (c� 1:5) Lm at time t00, contradicting the choice of t00. 2Lemma 3.12. During time interval (0; tm�k], m�k jobs of size at least ( 12 + �) Lmare scheduled.



BETTER BOUNDS FOR ONLINE SCHEDULING 9Proof. Let i be the number of machines that are full at time t00. Consider the isteps in (0; t00] at which the number of full machines increases. At any of these steps,before the assignment of the job, the load on M1 and Mk+1 is at most (c � 1:5) Lmeach, see Lemma 3.11. Thus jobs of size at least (c�1+ �) Lm � (c�1:5) Lm � ( 12 + �) Lmmust be scheduled. At the m� k � i steps in (t00; tm�k] at which the number of fullmachines increases, jobs are scheduled on the least loaded machine (Lemma 3.10).The least loaded machine has a load of at most (c � 1:5) Lm and we conclude againthat jobs of size at least ( 12 + �) Lm must be scheduled. 2Lemma 3.7 as well as Lemmas 3.9 and 3.12 imply the following statement.Lemma 3.13. During time interval (0; t� 1], m jobs of size at least ( 12 + �) Lm arescheduled.By the discussion immediately preceding Section 3.2, the proof of Theorem 2.1 iscomplete.4. The lower bound. We develop an improved lower bound for deterministicscheduling algorithms.Theorem 4.1. Let A be a deterministic online scheduling algorithm. If A isc-competitive for all m � 80, then c � 1:852.Proof. We will construct a job sequence � such that A(�) � 1:852 �OPT (�). Thejob sequence consists of several rounds. We assume that m is a multiple of 40.Round 1: m jobs with a processing time of w = 0:01.Round 2: m jobs with a processing time of x = 0:06.Round 3:Subround 3.1: 1920m jobs with a processing time of y1 = 0:282.Subround 3.2: 120m jobs with a processing time of y2 = 0:4.Round 4:Subround 4.1: 12m jobs with a processing time of z1 = 0:5.Subround 4.2: 14m jobs with a processing time of z2 = 1� y2 = 0:6.Subround 4.3: 340m jobs with a processing time of z3 = 1� y1 = 0:718.Subround 4.4: 340m jobs with a processing time of z4 = 0:84.Subround 4.5: 110m+ 1 jobs with a processing time of z5 = 1.Note that in the fourth round, m+ 1 jobs have to be scheduled.In the following, when analyzing the various subrounds, we will often comparethe makespan produced by an online algorithm A in a subround to the optimummakespan at the end of the subround. It is clear that the optimum makespan duringthe subround can only be smaller.Analysis of Round 1 : Clearly, in order to maintain 1:852-competitiveness, onlinealgorithm A must schedule the m jobs in Round 1 on di�erent machines.Analysis of Round 2 : Algorithm A must schedule the m jobs in Round 2 ondi�erent machines. Otherwise, A's makespan would be at least w + 2x = 0:13. Sincethe optimum makespan during the round is always at most w + x = 0:07 and 0:130:07 >1:857, A would not be 1.852-competitive. At the end of the second round, A has aload of l2 = w + x = 0:07 on each of its machines.Analysis of Round 3 : At the end of Subround 3.1, the optimum makespan isat most x + y1 = 0:342. On each of 1920m machines, OPT schedules an x-job anda y1-job. The remaining 120m machines have an x-job and 20 jobs of size w. If Adoes not schedule the jobs in Subround 3.1 on di�erent machines, then its makespanis at least w + x + 2y1 = 0:634 > 1:853(x + y1). The optimum makespan after



10 S. ALBERSSubround 3.2 is y1 + 2x = 0:402. In an optimal schedule, 120m machines have a y2-job, 12mmachines have a y1-job and two x-jobs. The remaining machines have a y1-joband at most three w-jobs. Online algorithm A must schedule the jobs of Subround 3.2on di�erent machines and these machines may not contain any y1-job since otherwiseA's makespan is at least w+x+y1+y2 = 0:752 > 1:87(y1+2x). At the end of Round 3,the least loaded machine in A's schedule has a load of l3 = w + x+ y1 = 0:352.Analysis of Round 4 : Subround 4.1: After Subround 4.1, the optimum makespanis y1 + y2 = 0:682. In an optimal schedule, 120m machines contain a y1 and a y2. 12mmachines contain a z1, two w and two x. 920m machines contain two y1. AlgorithmA must schedule all z1-jobs on di�erent machines. Otherwise its makespan would beat least l3 + 2z1 = 1:352 > 1:98(y1 + y2).Subround 4.2 : At the end of the subround, the optimum makespan is y1 + z1 =0:782. In OPT's schedule, 12m machines have a y1 and a z1. 120m machines have ay1 and a y2. 15m machines have two y1, three w and three x. 14m machines have az2 and some of them have two additional w and x. Algorithm A must schedule eachz2-job on a machine not containing any z1 or z2. Otherwise its makespan would beat least l3 + z1 + z2 = 1:452, which is greater than 1:856(y1 + z1).Subround 4.3 : The optimum makespan after the subround is 3y1 = 0:846. In anoptimal schedule 12m machines have a y1, a z1 and an x. 14m machines have a z2, twox and four w. 340m machines have a z3. 320m machines three y1. 140m machines twoy2. As before, A may not schedule any z3-job on a machine containing a z1, a z2 or az3 because this would result in a makespan of at least l3+z1+z3 = 1:57 > 1:855(3y1).Subround 4.4 : The optimum makespan is y2 + z1 = 0:9. In OPT's schedule, allthe z-jobs are scheduled on di�erent machines. 120m machines having a z1 also containa y2. ( 12 � 120 )m machines containing a z1 also have a y1, an x and up to three w.The 14m machines having a z2 also have a y1. Machines having a z3 also have three x.Machines having a z4 also have an x. At this point, OPT is left with 110m machineson which it has to schedule 14m jobs with a processing time of x and 14m jobs with aprocessing time of y1. This can be done by scheduling (a) 140m machines with ten xand one y1 each and (b) 340m machines with three y1. As usual, A may not schedulea z4-job on a machine having already any z-job; otherwise its makespan is at leastl3 + z1 + z4 = 1:692 = 1:88(y2 + z1).Subround 4.5 : The online algorithm A must schedule one of the z5-jobs on amachine already containing another z-job, because a total of m + 1 jobs have to bescheduled in Round 4. This gives a makespan of at least w+x+ y1+ z1+ z5 = 1:852.We will show that OPT can schedule all the jobs with a makespan of 1 if m � 80.An optimal schedule is as follows. 110m machines have a z5. 14m machines have twoz1. 340m machines have a z4, two w and two x. 340m machines have a z3 and a y1.15m machines have a z2, one y1, two w and one x. 120m machines have a z2 and ay2. 940m machines have three y1, two w and two x. OPT has 140m machines left onwhich it has to schedule one z5 and 15m jobs of size x. This can be done if at leasttwo machines are left, i.e. if m � 80. OPT can use one machine for the z5-job andthe remaining machines for the x-jobs. 25. Open problems. An interesting problem is to formulate and analyze a gen-eralization of the algorithm M2 that, at any time, is allowed to schedule a new jobon any of the m machines. In such an algorithm, the ratio of the load on the i-thsmallest machine to the load on the (i+1)-st smallest machine has to be bounded bysome �i, 1 � i � m� 1. The problem is to specify �i's and a proper scheduling rulethat is able to maintain these values. A �rst step in this direction is to maintain three



BETTER BOUNDS FOR ONLINE SCHEDULING 11set S1, S2 and S3 of m=3 machines with a low, medium and high load, respectively.More generally, with respect to the scheduling problem studied here, a fundamen-tal open problem is to develop randomized online algorithms that achieve a competi-tive ratio smaller than the deterministic lower bound, for all m.Appendix. We prove Lemma 3.4. For convenience, we state the lemma again.Lemma 3.4. If at time t0, the total load on the non-full machines M1; : : : ;Mm�fin M2's schedule were greater than (c � 1:5)(m � f) Lm , then the total load at time twould satisfy L > X + Y (1� cm )�(bjc+1).Proof. In order to prove the lemma, we have to keep track of the load on the mmachines during the entire time interval [t0; t]. For i = f; : : : ;m+ 1, letZi = X + Y (1� cm )�(i�m+bjc):We will show by induction on i that for i = f; : : : ;m,Lti � �ti > Zi;(5.1)where � is a non-negative potential that we will de�ne in a moment. Using theinequality Ltm � �tm > Zm, we will then prove L > Zm+1.We �rst explain the purpose of the potential. We want to show that during thetime interval (t0; t� 1], every time another machine becomes full, a job J with a largeprocessing time p must be scheduled. Since, by the de�nition of t0, M2's schedule isnot steady in (t0; t � 1], M2 would prefer to assign J to machine Mk+1. However,M2 schedules J on the least loaded machine, causing another machine to becomefull. This implies that an assignment of J to machine Mk+1 results in an increasedmakespan that exceeds c times the average load on the machines, i.e., J 's processingtime p must be large. In some cases, when Mk+1 has a high load, we will not be ableto argue that J 's processing time is greater than a certain value. In these cases wewill pay some \missing processing time" out of the potential. This way we can ensurethat J 's amortized processing time is greater than the desired value. J 's amortizedprocessing time is the actual processing time plus the change in potential.Formally, the potential � is de�ned as follows. At time t0, we color some of theload in M2's schedule. More precisely, on each of the machines M1; : : : ;Mk+m�fwe color the load that is above level (c � 1) Lm . We can imagine that we draw ahorizontal line at level (c� 1) Lm across M2's schedule and color the load on machinesM1; : : : ;Mk+m�f that is above this line. Note that this way, a job might be partiallycolored. During time interval (t0; t], the colored load is updated as follows.1. Whenever M2 schedules a job that causes one more machine to become full,we choose the least loaded machine with colored load among Mk+1; : : : ;Mmand remove the color from its load.2. Whenever a job is assigned to a machine with colored load, we color that job.3. After the �nal job Jt is scheduled, the color is removed from all machines.At any time, let I = fijMi has colored loadg and let ci, i 2 I , be the amount ofthe load that is colored on Mi. De�ne� =Xi2I ci:During the interval (t0; t� 1], the following invariants hold.(I1) Whenever M2 schedules a job that causes one more machine to become full,there is a machine in fMk+1; : : : ;Mmg with colored load.



12 S. ALBERS(I2) If a machine has colored load, then all its load above level (c�1) Lm is colored.(I3) At any time, if machine Mk+1 has load (c�1+ �) Lm for some positive �, thenci � � Lm for all i 2 I with i � k + 1.(I4) At any time, there exists a machine among M1; : : : ;Mk with colored load atleast � Lm .Invariant (I1) holds because at time t0 there are m� f machines in fMk+1; : : : ;Mmgwith colored load, exactly m � f more jobs are scheduled in (t0; t � 1] that cause amachine to become full and every time this happens, by update rule 1, the numberof machines in fMk+1; : : : ;Mmg with colored load is reduced by exactly 1. Invariant(I2) follows from update rule 2. (I3) is immediate from (I2). Invariant (I4) holdsbecause initially, at time t0, we color load on the k lightly loaded machines that arefull and these machines remain in the set of lightly loaded machines during (t0; t� 1].Base of the induction. In order to prove inequality (5.1) for i = f , we have toevaluate Lt0 , the total load on the m machines at time t0. We will show thatLt0 � �t0 > Zf :(5.2)This implies that inequality (5.1) holds for i = f because between time t0 and timetf the number of full machines remains the same and whenever the load on the mmachines increases by p, the potential increases by at most p, see update rule 2.If M2's schedule is not steady at time t0, i.e., t0 = tm�bjc and f = m� bjc, thenZf = X + Y = (c� 1)L� j2 Lm � (c� 1)L� bjc2 Lm :(5.3)By assumption, at time t0, the load on the non-full machines is greater than (c �1:5)(m� f) Lm = (c� 1:5)bjc Lm = (c� 1)bjc Lm � bjc2 Lm . The load on the full machinesis at least (c� 1)f Lm + �t0 = (c� 1)(m� bjc) Lm +�t0 . We obtainLt0 � �t0 > (c� 1)L� bjc2 Lm :(5.4)Inequalities (5.3) and (5.4) give the desired bound.We study the case that M2's schedule is steady at time t0. The total load onthe non-full machines is greater than (c � 1:5)(m� f) Lm . The load on each machineMm�f+1; : : : ;Mk is at least (c � 1 + �) Lm . Thus the total load Ll on the k lightlyloaded machines M1; : : : ;Mk isLl > (c� 1 + �)(k �m+ f) Lm + (c� 1:5)(m� f) Lm= (c� 1)k Lm � 12 (m� f) Lm + (k �m+ f)� Lm� (c� 1)k Lm � j2 Lm + 12 (f �m+ bjc) Lm + (k �m+ f)� Lm :Note that the load (k � m + f)� Lm will go into the potential. Since the schedule issteady, the total load Lh on the heavily loaded machines Mk+1; : : : ;Mm is at least 1�times the above expression. Neglecting the term 1� (k �m+ f)� Lm , we obtainLh > (c� 1)(m� k) Lm + 12� (f �m+ bjc) Lm :The load (c � 1)(m � k) Lm can �ll the machines Mk+1; : : : ;Mm up to a level of(c � 1) Lm . Of the additional load 12� (f � m + bjc) Lm , at least a fraction of f�km�k is



BETTER BOUNDS FOR ONLINE SCHEDULING 13located on machines Mk+m�f+1; : : : ;Mm and does not go into the potential. Thus,Lt0 � �t0 = Ll + Lh � �t0> (c� 1)L� j2 Lm + 12 (f �m+ bjc)(1 + 1� f�km�k ) Lm= X + Y + 12 (f �m+ bjc)(1 + 1� f�km�k ) Lm :We have to show that12 (f �m+ bjc)(1 + 1� f�km�k ) Lm � Y ((1� cm )�(f�m+bjc) � 1)(5.5)holds for every f 2 fm� bjc; : : : ;mg. This proves inequality (5.2).We de�ne functionsg(x) = 12 (x�m+ bjc)(1 + 1� x�km�k ) Lmh(x) = Y ((1� cm)�(x�m+bjc) � 1):The function g(x) is a polynomial of degree 2, and h(x) is an exponentially increasingfunction. Obviously, g(m� bjc) = h(m� bjc) = 0. We will show thatg0(m� bjc) > h0(m� bjc)(5.6)and g(y) > h(y) for some y > m:(5.7)This implies that g(x) > h(x) must hold for all x 2 (m�bjc;m]. (If g(z) � h(z) weretrue for some z 2 (m� bjc;m], then g(x) < h(x) for all x > z.)Recall that, as mentioned in the proof of Lemma 3.2, � � 710 . Also, evaluating Ywith its actual parameters gives Y � 0:299L. We haveg0(m� bjc) = 12 (1 + 1� m�bjc�km�k ) Lm� 12 (1 + 107 � m�k�bjcm�k ) Lm� ( 1714 � 107 jm ) Lm= 0:8 Lm :The last inequality holds because bjc � j and m � k � m=2. Also, h0(m � bjc) =Y ln((1� cm )�1) � 0:299 Lm ln((1� cm )�m) < 0:79 Lm . The last inequality holds becauseln((1� cm)�m) is decreasing inm and evaluates to less than 2.63 form � 4. This shows(5.6). For the proof of (5.7), let y = m + j � bjc. Then g(y) � 120:29m(1 + 107 ) Lm �0:35L. Also, h(y) = Y ((1 � cm )�0:29m � 1) � 0:299L((1� cm )�0:29m � 1). The lastexpression is decreasing in m and less than 0:341L for all m � 4. The proof ofinequality (5.5) is complete.Induction step. We show that if inequality (5.1) holds for i � 1, then it alsoholds for i. Let si be the earliest point of time when exactly i machines are full. Wehave ti�1 < si � ti. For all s 2 [ti�1; si � 1],Ls � �s > Zi�1:(5.8)



14 S. ALBERSThis is because of the induction hypothesis and the fact that if the load on the mmachines increases by p between time ti�1 and time si�1, then the potential increasesby at most p.Let Lsi�1 be the total load on the m machines at time si � 1 and let l = lsi�1k+1 bethe load on machine Mk+1 at time si � 1. Suppose l = (c� 1 + �) Lm for some � > 0.The job Jsi that causes the i-th machine to become full is scheduled on the leastloaded machine. Since M2's schedule is not steady at time si, M2 would prefer toschedule Jsi on machine Mk+1. Since this is not possible, condition (b) in algorithmM2 implies that the processing time psi of Jsi must satisfyl+ psi > c(Lsi�1 + psi)m ;which is equivalent to psi > ( cmLsi�1 � l)=(1� cm ):Consider the change in potential during the assignment of Jsi . Update rule 1 andinvariants (I1){(I3) imply that the potential drops by at least � Lm .psi ��� > ( cmLsi�1 � l)=(1� cm ) + � Lm� ( cm (Zi�1 +�si�1)� l)=(1� cm ) + � Lm� ( cmZi�1 + c�m Lm � (c� 1 + �) Lm )=(1� cm ) + � Lm= ( cmZi�1 � (c� 1) Lm )=(1� cm )= cYm (1� cm )�(i�m+bjc):The second inequality follows because of inequality (5.8). The third inequality holdsbecause at time si� 1, there is at least one machine in fMk+1; : : : ;Mmg with coloredload, i.e., �si�1 � � Lm . Thus,Lsi � �si � Lsi�1 � �si�1 + psi ���> Zi�1 + cYm (1� cm )�(i�m+bjc)= X + Y (1� cm )�(i�m+bjc)= Zi:The induction step is complete because during time interval (si; ti] the inequality ismaintained.We �nally have to prove L > Zm+1:(5.9)Our inductive proof shows Lt�1��t�1 > Zm. Job Jt is scheduled on the least loadedmachine and by assumption l1 + pt > c(Lt�1+pt)m , where l1 = (c� 1 + �) Lm is the loadof the least loaded machine at time t � 1, i.e., immediately before Jt is scheduled.Recall that at time t we remove the color from the load in M2's schedule. Invariant(I4) implies that the potential at time t must decrease by at least � Lm . Calculationsidentical to that in the inductive step show inequality (5.9). 2
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