
EXPLORING UNKNOWN ENVIRONMENTS�SUSANNE ALBERSy AND MONIKA R. HENZINGERzAbstract. We consider exploration problems where a robot has to construct a complete mapof an unknown environment. We assume that the environment is modeled by a directed, stronglyconnected graph. The robot's task is to visit all nodes and edges of the graph using the minimumnumber R of edge traversals. Koutsoupias [16] gave a lower bound for R of 
(d2m), and Deng andPapadimitriou [12] showed an upper bound of dO(d)m, where m is the number of edges in the graphand d is the minimum number of edges that have to be added to make the graph Eulerian. We givethe �rst sub-exponential algorithm for this exploration problem, which achieves an upper bound ofdO(log d)m. We also show a matching lower bound of d
(log d)m for our algorithm. Additionally, wegive lower bounds of 2
(d)m, resp. d
(log d)m for various other natural exploration algorithms.Key words. directed graph, exploration algorithmAMS subject classi�cations. 05C20, 68Q20, 68Q25, 68R101. Introduction. Suppose that a robot has to construct a complete map of anunknown environment using a path that is as short as possible. In many situationsit is convenient to model the environment in which the robot operates by a graph.This allows to neglect geometric features of the environment and to concentrate oncombinatorial aspects of the exploration problem. Deng and Papadimitriou [12] for-mulated thus the following exploration problem. A robot has to explore all nodes andedges of an unknown, strongly connected directed graph. The robot visits an edgewhen it traverses the edge. A node or edge is explored when it is visited for the �rsttime. The goal is to determine a map, i.e. the adjacency matrix, of the graph usingthe minimum number R of edge traversals. At any point in time the robot knows (1)all visited nodes and edges and can recognize them when encountered again; and (2)the number of unvisited edges leaving any visited node. The robot does not know thehead of unvisited edges leaving a visited node or the unvisited edges leading into avisited node. At each point in time, the robot visits a current node and has the choiceof leaving the current node by traversing a speci�c known or an arbitrary (i.e. givenby an adversary) unvisited outgoing edge. An edge can only be traversed from tail tohead, not vice versa.If the graph is Eulerian, 2m edge traversals su�ce [12], where m is the numberof edges. This immediately implies that undirected graphs can be explored withat most 4m traversals. In fact, using depth-�rst-search they can be explored using2m edge traversals. For a non-Eulerian graph, let the de�ciency d be the minimumnumber of edges that have to be added to make the graph Eulerian. Deng andPapadimitriou [12] suggested to study the dependence of R on m and d and showedthe �rst upper and lower bounds: they gave a graph such that any algorithm needs
(d2m= logd) edge traversals, and they also presented an algorithm that achievesan upper bound of dO(d)m. Koutsoupias [16] improved the lower bound to 
(d2m).�A preliminary version of this paper was presented at the 29th Annual ACM Symposium onTheory of Computing (STOC), 1997.yMax-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�ucken, Germany. E-mail:albers@mpi-sb.mpg.de. Work supported in part by the Deutsche Forschungsgemeinschaft, Project Al464/1-1.zSystems Research Center, Compaq Computer Corporation, 130 Lytton Ave, Palo Alto, CA94301. Email: monika@pa.dec.com. This work was supported by the NSF CAREER Award, GrantNo. CCR-9501712. 1



2 S. ALBERS AND M. R. HENZINGERDeng and Papadimitriou asked the question whether the exponential gap between theupper and lower bound can be closed. Our paper is a �rst step in this direction: wegive an algorithm that is sub-exponential in d, namely it achieves an upper bound ofdO(log d)m. We also show a matching lower bound for our algorithm and exponentiallower bounds for various other exploration algorithms.Note that d arises also in the complexity of the \o�line" version of the problem:Consider a directed cycle with one edge replaced by d + 1 parallel edges. On thisgraph any Eulerian traversal requires 
(dm) edge traversals. A simple modi�cationof the Eulerian online algorithm solves the o�ine problem on any directed graph withO(dm) edge traversals.Related Work. Exploration and navigation problems for robots have been stud-ied extensively in the past. The exploration problem in this paper was formulated byDeng and Papadimitriou based on a learning problem proposed by Rivest [19]. Betkeet al. [8] and Awerbuch et al. [1] studied the problem of exploring an undirectedgraph and requiring additionally that the robot returns to its starting point every sooften. Bender and Slonim [9] showed how two cooperating robots can learn a directedgraph with indistinguishable nodes, where each node has the same number of outgo-ing edges. Subsequent to the work in [12], Deng et al. [11] investigated a geometricexploration problem, whose goal is to explore a room with or without polygonal ob-stacles. Ho�mann et al. [15] gave an improved exploration strategy for rooms withoutobstacles. More generally, theoretical studies of exploration and navigation problemsin unknown environments were initiated by Papadimitriou and Yannakakis [18]. Theyconsidered the problem of �nding a shortest path from a point s to a point t in anunknown environment and presented many geometric and graph based variants ofthis problem. Blum et al. [7] investigated the problem of �nding a shortest path in anunfamiliar terrain with convex obstacles. More work on this problem includes [2, 5, 6].Our Results. Our main result is a new robot strategy that explores an arbitrarygraph with de�ciency d and traverses each edge at most (d + 1)7d2 log d times, seeSection 3. The algorithm does not need to know d in advance. The total numberof traversals needed by the algorithm is also O(minfnm; dn2 +mg), where n is thenumber of nodes. At the end of Section 3 we show that any exploration algorithmthat ful�lls two intuitive conditions achieves an upper bound of O(minfnm; dn2+mg).A depth-�rst search strategy obtaining this bound was independently developed byKwek [17].In Section 4 we demonstrate that our analysis of the new robot strategy is tight:There exists a graph that is explored by our algorithm using d
(log d)m edge traversals.We also show that various variants of the algorithm have the same lower bound. InSection 2, we present lower bounds of 2
(d)m, resp. d
(log d)m for various other naturalexploration algorithms to give some intuition for the problem.Our exploration algorithm tries to explore new edges that have not been visited sofar. That is, starting at some visited node x with unvisited outgoing edges, the robotexplores new edges until it gets stuck at a node y, i.e., it reaches y on an unvisitedincoming edge and y has no unvisited outgoing edge. Since the robot is not allowedto traverse edges in the reverse direction, an adversary can always force the robot tovisit unvisited nodes until it �nally gets stuck at a visited node.The robot then relocates, using visited edges, to some visited node z with un-explored outgoing edges and continues the exploration. The choice of z is the onlydi�erence between various algorithms and the relocation to z is the only step where therobot traverses visited edges. To minimize R we have to minimize the total number



EXPLORING UNKNOWN EMVIRONMENTS 3of edges traversed during all relocations. It turns out that a locally greedy algorithmthat tries to minimize the number of traversed edges during each relocation is notoptimal: it has a lower bound of 2
(d)m (see Section 2).Instead, our algorithm uses a divide-and-conquer approach. The robot exploresa graph with de�ciency d by exploring d2 subgraphs with de�ciencies d=2 each anduses the same approach recursively on each of the subgraphs. To create subgraphswith small de�ciencies, the robot keeps track of visited nodes that have more visitedoutgoing than visited incoming edges. Intuitively, these nodes are expensive becausethe robot, when exploring new edges, can get stuck there. The relocation strategytries to keep portions of the explored subgraphs \balanced" with respect to theirexpensive nodes. If the robot gets stuck at some node, then it relocates to a nodez such that \its" portion of the explored subgraph contains the minimum number ofexpensive nodes.2. Lower bounds for various algorithms. In this section we prove a lowerbound of 2
(d)m for a locally greedy, a depth-�rst and a breadth-�rst algorithm. Wealso give a lower bound of d
(log d)m for a generalized greedy strategy.A related problem for which lower bounds have been studied extensively, is thes{t connectivity problem in directed graphs, see [3, 4, 14] and references therein.Given a directed graph, the problem is to decide whether there exists a path from adistinguished node s to a distinguished node t. Most of the results are developed inthe JAG model by Cook and Racko� [10]. The best time{space tradeo�s currentlyknown [4, 14] only imply a polynomial lower bound on the computation time if noupper bounds are imposed in the space used by the computation. Given the currentknowledge of the s{t connectivity problem it seems unlikely that one can prove super-polynomial lower bounds for a general class of graph exploration algorithms.In the following let G be a directed, strongly connected graph and let v bea node of G. Let in(v) and out(v) denote the number of incoming, resp. outgo-ing edges of v. Let the balance bal(v) = out(v) � in(v). For a graph with de�-ciency d there exist at most d nodes si, 1 � i � d, such that bal(si) < 0. Everynode si with bal(si) < 0 is called a sink. Note that �Ps;bal(s)<0 bal(s) = d. Weuse the term chain to denote a path. A chain is a sequence of nodes and edgesx1; (x1; x2); x2; (x2; x3); : : : ; (xk�1; xk); xk for k > 1.Greedy: If stuck at a node y, move to the nearest node z that has new outgoingedges.Generalized-Greedy: At any time, for each path in the subgraph explored so far,de�ne a lexicographic vector as follows. For each edge on the path, determine itscurrent cost, which is the number of times the edge was traversed so far. Sort thesecosts in non-increasing order and assign this vector to the path. Whenever stuck ata node y, out of all paths to nodes with new outgoing edges traverse the path whosevector is lexicographic minimum.Depth-First: If stuck at a node y, move to the most recently discovered node zthat can be reached and that has new outgoing edges.Breadth-First: Let v be the node where the exploration starts initially. If stuck ata node y, move to the node z that has the smallest distance from v among all nodeswith new outgoing edges that can be reached from y.Theorem 2.1. For Greedy, Depth-First, and Breadth-First and for every d, thereexist graphs of de�ciency d that require 2
(d)m edge traversals.Proof. Greedy: BasicallyGreedy fails since it is easy to \hide" a subgraph. When-ever Greedy discovers this subgraph, the adversary can force it to repeat all the work



4 S. ALBERS AND M. R. HENZINGERdone so far.The graph G consists of two parts, (1) a cycle C0 of three edges and nodes v,v1(C0), and v2(C0), and (2) a recursively de�ned problem P d. A problem P �, for anyinteger � � 2, is a subgraph that has two incoming edges whose startnodes do notbelong to P � but whose endnodes do, and � outgoing edges whose startnode belongsto P � but whose endnodes do not. A problem P 1 is de�ned in the same way as aproblem P �, � � 2, except that P 1 has only one incoming edge. In the case of P d, thetwo incoming edges start at v1(C0) and v2(C0), respectively; the d outgoing edges allpoint to v.For the description of P � we also need recursively de�ned problems Q�. Theseproblems are identical to P � except that, for � > 2, Q� has exactly � incoming edges.A problem P �, � = 1; 2, consists of � chains of three edges each. The �rst edgeof each chain is an incoming edge into P �; the last edge of each chain is an outgoingedge. A problem Q�, � = 1; 2, is the same as P �.We proceed to de�ne P �, for � > 2. One of the incoming edges of P � is the �rstedge of a chain D� consisting of three edges, the other incoming edge is the �rst edgeof a long chain C�. For each of these chains C� and D� , the last edge is an outgoingedge of P �. If � = 3, the last interior node of each of the chains C� and D� has anadditional outgoing edge pointing into a problem P 1. If � � 4, (a) the last two interiornodes of C� each have an additional outgoing edge pointing into a subproblem P ��2,(b) the last two interior nodes of D� each have an additional outgoing edge pointinginto a subproblem Q��2. There are ��2 edges leaving P ��2, exactly maxf0; ��4g ofwhich point to nodes of Q��2 such that each node in Q��2 that has k more outgoingthan incoming edges, for some 0 � k � maxf0; � � 4g, receives k incoming edgesfrom P ��2. The remaining outgoing edges of P ��2 point to the interior nodes of D�that have additional outgoing edges. The problem Q��2 has � � 2 outgoing edges allof which are outgoing edges of P �. The total number of edges in C� is 2 plus thenumber of edges of D� plus the total number of edges contained in the subproblemQ��2 below D�.A problem Q�, � > 2, is the same as P � except that the subproblem P ��2 isreplaced by another Q��2 problem. That is, Q� is composed of chains C�, D� andproblems Q��2i , i = 1; 2. As mentioned before, Q� has exactly � incoming edges.C0 v
Qd�2Pd�2Cd Dd

Fig. 2.1. The graph for GreedyGreedy is started at node v and traverses �rst chain C0. Then it either exploresCd or Dd. In either case, afterwards Greedy explores all edges of Qd�2 since Cdis prohibitively long. Thus, P d�2 is \hidden" from Greedy. We exploit this in theanalysis: Let N(�) be the number of times that Greedy explores edges of a problemP � or Q�, gets stuck at some node and cannot relocate to a suitable node by using



EXPLORING UNKNOWN EMVIRONMENTS 5only edges in P � resp. Q�. We show that N(�) � 2�=2. Since the edge leaving v istraversed every time the algorithm cannot relocate by using only edges in P d, thebound follows.A problem P � contains two subproblems P ��2 and Q��2. Note (a) that, becauseof chain D� , no node in Q��2 can reach a node of P ��2 without leaving P �. Note (b)that Q��2 is completely explored when the exploration of P ��2 starts and all pathsstarting in P ��2 lead through D� or Q��2. Thus, every time Greedy gets stuck ina subproblem P ��2 or Q��2 and has to leave P ��2 resp. Q��2 in order to resumeexploration, it also has to leave P �. For Q��2 the statement follows from (a); forP ��2 it follows from (a) and (b). In the same way we can argue for a problem Q�.Thus, N(�) � 2N(� � 2). Since, for � = 1; 2, N(�) � 1, we obtain N(�) � 2�=2.This implies that the edge e on C0 leaving v is traversed 2
(d) times. The desiredbound follows by replacing e by a path consisting of �(m) edges.Depth-First: We can use the same graph as in the case of the Greedy algorithm.Depth-First will explore all edges in Qd�2 before it will start exploring P d�2.Breadth-First: Again we can use the same graph as in the lower bound for Greedy.The last two interior nodes of Cd have a larger distance from the initial node v than allnodes on Dd and in Qd�2. Thus Qd�2 is �nished before Breadth-First starts exploringP d�2.Theorem 2.2. For Generalized-Greedy and for every d, there exists a graph ofde�ciency d that requires d
(log d)m edge traversals.Proof. The graph used for the lower bound is outlined in Figure 2.2. The basicidea in the lower bound construction is as follows. Generalized-Greedy explores eachsubgraph Q
i and its sibling R
i \in parallel". Without loss of generality we canassume that the last chain traversed in the two subgraphs lies in Q
i and the algorithmcontinues to explore Q
i+1 and R
i+1. Let N(
) denote the number of times that thealgorithm has to leave R
i and traverse the root. We will show that N(4
) � 
N(
),which implies that the root has to be traversed N(d) � d
(log d) times.C0Q
1Q
2
Q

�1

R
1R
2R

�1P

P

+1 Fig. 2.2. The graph for Generalized-Greedy



6 S. ALBERS AND M. R. HENZINGERTo be precise we show the bound for d being a power of 4. The bound for allvalues of d follows by \rounding" down to the largest power of 4 smaller than d.The graph G consists of two parts, (1) a cycle C0 with nodes v, v1(C0) and v2(C0),and (2) a recursively de�ned subproblem P d. Problem P d has two incoming edges,one starting at v1(C0) and one starting at v2(C0). It also has d outgoing edges, allpointing to v. The subproblem P d is a union of chains C, each of which consists ofthree edges, a startnode, an endnode and two interior nodes v1(C) and v2(C). Theinterior nodes have at most one additional outgoing edge. We proceed to de�ne P �and the \sibling" graphs Q� and R�, for all � � d that are a power of 4, and thenshow the lower bound on this graph.A problem P � , � > 1, is a graph with two incoming edges and exactly � outgoingedges. A problem R�, � > 1, consists of P � with ��2 additional incoming edges. Theproblem Q� consists of R� with two additional incoming and two additional outgoingedges.� = 1: A problem P 1 consists of one chain. The incoming edge of P 1 is the �rstedge of the chain, and the outgoing edge of P 1 is the last edge of the chain. In P 1,the interior nodes of the chain have no additional outgoing edges, in Q1 each interiornode has one additional incoming and one additional outgoing edge. Problem R1 isequal to P 1.� = 4: A problem P 4 consists of two subproblems P 11 and P 12 , and chains C11 andD11, whose �rst interior nodes have one additional outgoing edge. The outgoing edgeof C11 is the incoming edge of P 11 and the corresponding edge of D11 is the incomingedge of P 12 . The last edge of C11 and of D11 and the outgoing edges of P 11 and P 12 areoutgoing edges of P 4. A problem R4 is P 4 with two additional incoming edges, oneat the startnode of P 11 and one at the startnode of P 12 . A problem Q4 is R4 with twoadditional incoming and outgoing edges; each interior node of P 11 has an additionalincoming and outgoing edge. D11C11 P 11 P 12Fig. 2.3. The subproblem P 4� = 4l, for some l � 2: Let 
 = �=4. It is simpler to describe Q� �rst. Theconstruction is depicted in Figure 2.4. Every node has the same indegree as outdegree,i.e., there are no sinks. ProblemQ� consists of subproblemsQ
i and R
i , for 1 � i � 
,connected by chains C
i and D
i , for 1 � i � 
, whose interior nodes each have anadditional outgoing edge.The C-chains andQ-subproblems are interleaved as follows. The two edges leavingthe interior nodes of C
1 point into Q
1 . In general, the edges leaving the interior nodesof C
i point into Q
i . The same holds for the D-chains and R-subproblems. The �rstedge of C
i and of D
i are incoming edges of Q�, for i = 1, and start in Q
i�1, for1 < i � 
, on a node of the leftmost subproblem Q1 contained in Q
i�1. Recall thatthis problem consists of one chain with two additional incoming and outgoing edges.One of these outgoing edges is the �rst edge of C
i and the second outgoing edge isthe �rst edge of D
i .



EXPLORING UNKNOWN EMVIRONMENTS 7Additionally, the subproblems are connected as follows. Recall that 
 edges leaveR
i . For i = 1, the edges leaving R
i are outgoing edges of Q�. For 1 < i � 
, twoedges leaving R
i point to the interior edges of D
i�1. Additionally, there are 
 � 2edges leaving R
i and pointing into R
i�1 such that every node in R
i�1 that has kmore outgoing than incoming edges, for k > 0, receives k edges from R
i . The sameholds for Q
i with C
i�1. The problem Q

 has 
 incoming edges which are incomingedges for Q�, the problem R

 has 
 � 2 incoming edges which are incoming edges forQ�. There are 4
 + 2 = � + 2 outgoing edges in Q�: The last edge of C
i and the lastedge of D
i , for 1 � i � 
, all edges leaving R
1 , all but two edges leaving Q
1 (theother two are the incoming edges of D
2 and C
2 ), and two edges leaving Q

 . Thereare also � + 2 incoming edges: the �rst edge of C
1 and of D
1 , the edges pointing tothe two interior nodes of C

 and D

 , the 
 incoming edges of Q

 , the 
� 2 incomingedges of R

 , and 2
 � 2 incoming edges ending at the startnodes of C
i and D
i , for2 � i � 
.A problem P � consists of 2
 chains C
i and D
i , 1 � i � 
, as well as twosubproblems P 
i , 
 � i � 
 +1, and 2(
 � 1) subproblems Q
i and R
i , 1 � i � 
 � 1.These components are assembled in the same way as in Q�, except that Q

 is replacedby P 

+1, and R

 is replaced by P 

 . Problems P 

 and P 

+1 each have only twoincoming edges from C

 and D

 , respectively.There are 4
 = � outgoing edges in P � : The last edge of C
i and the last edgeof D
i , for 1 � i � 
, all but two edges leaving Q
1 (the other two are the incomingedges of D
2 and C
2 ), all edges leaving R
1 . There are two incoming edges in P �. The�rst edge of C
1 and of D
1 are incoming edges in every problem P �. The following� � 2 nodes are sources for P � : the two interior nodes of C

 and of D

 , the 2
 � 2startnodes of C
i and D
i , for 2 � i � 
, the 
� 2 sources of P 

 and the 
� 2 sourcesof P 

+1.A problem R� is a problem P � with an incoming edge into every source of P �.Thus there are � incoming and � outgoing edges.
C
2A problem P � D�i D
1 R
1D
2

R

�1Q

�1P

+1 P



D
1 R
1D
2
C
1C�iQ
1C
2

R

�1R

Q

 Q

�1
A problem Q� C
1 Q
1

Fig. 2.4. The subproblems Q� and P �



8 S. ALBERS AND M. R. HENZINGERWe analyze Generalized-Greedy on G. For simplicity we only discuss the explo-ration of a problem Q�. The argument for P � and R� is analogous. As before, let
 = �=4. We show inductively that the symmetric construction of Q
i and R
i at-tached to C
i and D
i as well as the de�nition of Generalized-Greedy imply that Q
iand R
i are explored symmetrically. That is, during two consecutive traversals ofC (in order to resume exploration in Q
i or R
i ), Generalized-Greedy proceeds onceinto Q
i and once into R
i , where C is the chain at which chains C
i and D
i start.This obviously holds for i = 1. Assume it holds for i and we want to show it fori + 1. Note that Q
i and R
i di�er only in the last chain that Generalized-Greedyexplores in Q
i , rep. R
i . Thus, until the traversal of the earlier of the last chain ofQ
i and the last chain of R
i , Generalized-Greedy does not distinguish Q
i from R
i .Hence we can assume without loss of generality that Generalized-Greedy traverses�rst the last chain of R
i and afterwards the last chain of Q
i . (Think of an adversary\giving" to Generalized-Greedy �rst the last chain of R
i and then the last chain ofQ
i .) Then Generalized-Greedy explores C
i+1 and D
i+1 and afterwards Q
i+1 and R
i+1symmetrically. Thus, when Generalized-Greedy explores a subproblem R
i , 1 � i � 
,subproblems R
j with 1 � j < i are already �nished.Whenever Generalized-Greedy gets stuck in R
i , 1 � i � 
, and has to leave R
iin order to resume exploration, it also has to leave the \parent problem" Q� (or P �,R�). This is because the chains D
i , 1 � i � 
, prevent the algorithm from reaching achain in Q
j , 1 � j � i, from where un�nished chains in Q�, (P � , R�) can be reached.On the way from R
i to an outgoing edge of the parent problem, Generalized-Greedycan traverse problems R
j , j � i. As shown above, the subproblems are �nished, nofurther exploration of R
j is possible. The same arguments hold when the algorithmgets stuck in a problem P 

 .For any �, 4 � � � d, let N(�) be the number of times Generalized-Greedygenerates a chain in P � or R�, gets stuck and has to leave P � or R� in order tocontinue exploration. Then N(�) � 
N(
) = �=4N(�=4). Since N(1) � 1, we haveN(d) � d
(log d) and hence the edge leaving node v is traversed d
(log d) times.3. An algorithm for graphs with de�ciency d.3.1. The Balance algorithm. We present an algorithm that explores an un-known, strongly connected graph with de�ciency d, without knowing d in advance.First we give some de�nitions. At the start of the algorithm, all edges are unvisitedor new. An edge becomes visited whenever the robot traverses it. A node is �nishedwhenever all its outgoing edges are visited. The robot is stuck at a node y if the robotenters a �nished node y on an unvisited edge. A sink is discovered whenever the robotgets stuck at the sink for the �rst time. We assume that whenever the robot discoversa new sink, the subgraph of explored edges is strongly connected. This does not holdin general, but by properly restarting the algorithm the problem can be reduced tothe case described here. Details are given in Section 3.2.Assume the algorithm knew the d missing edges (s1; t1); (s2; t2); : : : ; (sd; td) anda path from each si to ti. Then a modi�ed version of the Eulerian algorithm couldbe executed: Whenever the original Eulerian algorithm traverses an edge (si; ti), themodi�ed Eulerian algorithm traverses the corresponding path from si to ti. Obviously,the modi�ed algorithm traverses each edge at most 2d+ 2 times. Thus, the problemis to �nd the missing edges and corresponding paths.Our algorithm tries to �nd the missing edges by maintaining d edge-disjoint chainssuch that the endnode of chain i is si and the startnode of chain i is our current guessof ti. As the algorithm progresses paths can be appended at the start of each chain.



EXPLORING UNKNOWN EMVIRONMENTS 9At termination, the startnode of chain i is indeed ti. To mark chain i all edges onchain i are colored with color i.The algorithm consists of two phases.Phase 1: Run the algorithm of [12] for Eulerian graphs. Since G is not Eulerian,the robot will get stuck at a sink s. At this point stop the Eulerian graph algorithmand goto Phase 2. The part of the graph explored so far contains a cycle C0 containings [12]. We assume that at the end of Phase 1 all visited nodes and edges not belongingto C0 are marked again as unvisited.Phase 2: Phase 2 consists of subphases. During each subphase the robot visits acurrent node x of a current chain C and makes progress towards �nishing the nodesof C. The current node of the �rst subphase is s, its current chain is C0. The currentnode and current chain of subphase j depend on the outcome of subphase j � 1.A chain can be in one of three states: fresh, in progress, or �nished. A chain Cis �nished when all its nodes are �nished; C is in progress in subphase j if C was acurrent chain in a subphase j0 � j and C is not yet �nished; C is fresh if it is not�nished and not yet in progress.At the same time up to d+1 chains in progress and up to d fresh chains can exist.The invariant that there are always at most d+1 chains in progress is convenient butnot essential in the analysis of the algorithm. The invariant that there exist alwaysat most d fresh chains is crucial. Every startnode of a fresh chain has more visitedoutgoing than visited incoming edges and, thus, the robot can get stuck there. In theanalysis we require that there always exist at most d such nodes.The algorithmmarks the current guess for ti with a token �i, for 1 � i � d. In fact,every startnode of a fresh chain represents the current guess for some ti, 1 � i � d,and thus has a token �i. To simplify the description of the relocation process, eachtoken is also assigned an owner which is a chain that contains the node on which thetoken is placed. More speci�cally, the owner of �i is the chain that was current chainwhen the path from the current guess of ti to si was extended last. Note that theowner is not the chain from the current guess of ti to si. A node can be the currentguess for more than one node ti and, thus, have more than one token.From a high-level point of view, at any time, the subgraph explored so far ispartitioned into chains, namely C0 and the chains generated in Phase 2. During theactual exploration in the subphases, the robot travels between chains. While doingso, it generates or extends fresh chains, which will be taken into progress later, and�nishes the chains currently in progress.We give the details of a subphase. First, the algorithm tests if x has an unvisitedoutgoing edge.1. If x does not have an unvisited outgoing edge and x is not the endnode of C, thenthe next node of C becomes the current node and a new subphase is started.2. If x has no unvisited outgoing edge and x is the endnode of C, procedure Relocateis called to decide which chain becomes the current chain and to move the robotto the startnode z of this chain. Node z becomes the current node.3. If x has unvisited outgoing edges, the robot repeatedly explores unvisited edgesuntil it gets stuck at a node y. Let P be the path traversed. We distinguish fourcases:Case 1: y = xCut C at x and add P to C. See Figure 3.1. The robot returns to x and the nextphase has the same current node and current chain.Case 2: y 6= x, y has a token �i and is the startnode of a fresh chain D (see



10 S. ALBERS AND M. R. HENZINGERx x xPP =)C CFig. 3.1. Case 1Figure 3.2)Append P at D to create a longer fresh chain, and move the token from y to x.The current chain C becomes the owner of the token, the previous owner becomesthe current chain, and y becomes the current node.C C0x P DyFig. 3.2. Case 2Case 3: y 6= x, y has a token �i but is not the startnode of a fresh chain.This is the same as Case 2 except that no fresh chain starts at y. The algorithmcreates a new fresh chain of color i consisting of P . It moves the token from y to xand C becomes the owner of the token. The previous owner of the token becomesthe current chain and y becomes the current node.Case 4: y 6= x and y does not own a token.In this case bal(y) < 0. If bal(y) = �k, then this case occurs k times for y. Leti be the number of existing tokens. The algorithm puts a new token �i+1 on xwith owner C, creates a fresh chain of color i + 1 consisting of P (the �rst chainwith color i+1), and moves the robot back to s. The initial chain C0 becomes thecurrent chain, s becomes the current node.This leads to the algorithm given in Figure 3.3. We use x to denote the currentnode, C to denote the current chain, k the number of tokens used, and j the highestindex of a chain. Lines 4{17 of the code correspond to item 3 above. Line 6 and7 correspond to Case 1, lines 8{13 correspond to Cases 2 and 3, and lines 14{16 toCase 4. Lines 18 and 19 implement item 1 and item 2, respectively. In line 13, C 0 isthe chain that was the previous owner of �i and becomes the new current chain.Additionally, the algorithmmaintains a tree T such that each chain C correspondsto a node v(C) of T and v(C 0) is a child of v(C) if the last subpath appended to C 0was explored while C was the current chain. Reversely, we use C(v) to denote thechain represented by node v. For, each chain, there is exactly one node in the tree.Note that the tree changes dynamically. If in line 10 of the algorithm, a path P isappended at a chain D, then the node representing the resulting chain becomes achild of v(C), i.e. a child of the node representing the current chain C. The nodev(D) is removed. Since only fresh chains are reassigned, each added or removed nodeis a leaf. This process ensures that the structure of nodes is indeed a tree.We use Tv to denote the subtree of T rooted at v and say C is contained in Tvif v(C) lies in Tv. We also say a token � or an edge e is contained in Tv if owner(�),respectively the chain of e is contained in Tv. If all chains in Tv are �nished, we saythat Tv is �nished. To represent T , the algorithm assigns a parent to each chain.To relocate the robot needs to be able to move on explored edges from the endpoint



EXPLORING UNKNOWN EMVIRONMENTS 11Algorithm Balance1. j := 0, k := 0, x := s, C := C0.2. repeat3. while C is un�nished do4. while 9 new outgoing edge at x do5. Traverse new edges starting at x until stuck at a node y.Call this path P .6. if y = x then7. Insert P into C;8. else if y has a token �i then9. if 9 chain D of color i starting in y and D is fresh then10. Concatenate P with D;11. else12. j := j + 1; Cj := chain that consists of P ;13. C 0 := owner(�i); Place �i on x; owner(�i) := C; x := y;C := C 0;14. else (� y 6= x and y has no token �)15. j := j + 1; Cj := chain that consists of P ;16. k := k + 1; Place token �k on x; owner(�k) := C; x := s;C := C0;17. Move robot to x;18. Move robot to �rst un�nished node z that appears on C after itsstartnode; x := z;19. C := Relocate(C); x := startnode of C;20. until C = empty chain.Fig. 3.3. The Balance algorithmof a chain C to its startnode. This is always possible, since at the beginning of eachsubphase the explored edges form a strongly connected graph. To avoid that an edgeis traversed often for this purpose, we de�ne for each chain C a path closure(C)connecting the endnode of C with the startnode of C such that an edge belongs toclosure(C) for at most dO(log d) chains C. Finally, we will show that closure(C) istraversed at most O(d2) times.A path Q is called a C-completion if it connects the endnode of a chain C withthe startnode of C. A path Q in the graph is called i-uniform if it is a concatenationof chains of color i. Let u be a node of T . A path Q in the graph is Tu-homogeneousif any maximal subpath R of Q that does not belong to Tu is (a) i-uniform for somecolor i; (b) the edge of Q preceding R is the last edge of a chain of color i; and (c)the edge of Q after R is the �rst edge of a chain of color i. Intuitively, if a maximalsubpath R of Q that does not belong to Tu is preceded by an edge of color i, then R isjust the path of color i that leads to the previous chain of color i in Tu. In Figure 3.4solid, dashed and dotted lines denote di�erent colors. In the corresponding tree, theroot v(C0) has two children, namely v(C1) and v(C5). Consider the path Q thatstarts at x, follows the solid chains to v and w and then follows the dashed edges to u.(Path Q is shown in bold.) Path Q is a C2-completion. It is also Tv(C1)-homogenousbecause the two chains C3 and C4 not belonging to Tv(C1) have the same color as C1and C2.We try to choose closure(C) to be \as local to C" as possible: Let S(C) be the set
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Fig. 3.4. The path from x to u via v and w is Tv(C1)-homogenousof explored edges when C becomes the current chain for the �rst time. Given S(C),a(C) is the lowest ancestor of v(C) in T such that a Ta(C)-homogeneous completionof C exists in S(C). Note that a(C) is well-de�ned since each chain has a Tv(C0)-homogeneous completion. The path closure(C) is an arbitrary Ta(C)-homogeneouscompletion of C using only edges of S(C). The algorithm can compute closure(C)whenever C becomes the current chain for the �rst time without moving the robot.We describe the Relocation procedure, see Figure 3.5. In the relocation step, therobot repeatedly moves from the current chain to its parent until it reaches a chainC such that Tv(C) is un�nished. To move from a chain X to its parent X 0, the robotproceeds along X to the endnode of X and traverses closure(X) to the startnodeof X , which belongs to X 0. When reaching C, the robot repeatedly moves from thestartnode of the current chain X to the startnode of one of its children until it reachesthe startnode of an un�nished chain. It chooses the child X 0 of X such that amongall subtrees rooted at children of X and containing un�nished chains, Tv(X0) has theminimum number of tokens.Procedure Relocate(C)1. if all chains are �nished then return(empty chain).2. else Move robot to the startnode of C along closure(C);3. while C 6= C0 and Tv(C) is �nished do4. Move robot to the startnode of parent(C) along closure(parent(C));5. C := parent(C);6. while C is �nished do7. Let C1; C2; : : : ; Cl be the chains with parent(Ck) = C, 1 � k � l.Let Ck be the chain such that Tv(Ck) contains the smallest numberof tokens among all Tv(C1); : : : ; Tv(Cl) having un�nished chains;8. C := Ck; x := startnode of C;9. Move robot to x;10. if C is not in progress then11. Compute closure(C);12. return(C) Fig. 3.5. The Relocation procedure3.2. The analysis of the algorithm.



EXPLORING UNKNOWN EMVIRONMENTS 133.2.1. Correctness. Since the graph is strongly connected, all nodes of thegraph must be visited during the execution of the algorithm. When the algorithmterminates, all visited nodes are �nished. Thus, all edges must be explored. We shownext that each operation and each move of the robot are well-de�ned. Proposition 3.2shows that if a chain of color i is fresh, then �i lies at the startnode of the chain. Thus,in line 10, token �i lies on y. By assumption there exists a path from any �nishednode to s. Thus, the move in line 17 is well-de�ned. In line 18, the robot moves tothe next un�nished node of the current chain C. It would be possible to walk alongclosure(C), but Propositon 3.2, part 4, shows later that closure(C) is not needed.3.2.2. Fundamental properties of the algorithm.Lemma 3.1. At most d tokens are introduced during the execution of the Balancealgorithm.Proof. We say that the algorithm �rst introduces the token �k at y in line 16.Let inv(v) and outv(v) denoted the number of visited incoming and visited out-going edges of v, respectively. Let t(v) be the total number of tokens introduced onnode v in line 16. We show inductively that maxfinv(v) � outv(v); 0g = t(v). Sinceat termination inv(v) = in(v) and outv(v) = out(v), it follows that �bal(v) � t(v) ifbal(v) < 0 and t(v) = 0, otherwise. Thus, d = �Pv;with bal(v)<0 bal(v) �Pv t(v):The claim maxfinv(v) � outv(v); 0g = t(v) holds initially. Let P be the newlyexplored path when the �rst token is introduced on v, i.e. when the algorithm forthe �rst time gets stuck at v and there is no token at v. Before P enters v, inv(v) =outv(v). Traversing P increments inv(v) by 1 and sets inv(v)�outv(v) = 1. Thus, theclaim holds. Let P be the newly explored path when the i-th new token is introducedon v. It follows inductively that inv(v) � outv(v) = i � 1 before P enters v andtraversing P increments the value by 1 as before.We prove next some invariants.Proposition 3.2.1. For every chain C that is in progress or that was in progress and is �nished,parent(C) is �nished.2. Let C be a chain of color i, 1 � i � d. (a) If C is fresh, C does not owna token, �i is located at the startnode of C, and parent(C) = owner(�i). (b)If C is in progress and not the current chain, then C is the owner of sometoken � .3. Every chain C is the parent of at most d chains.4. If the Balance algorithm gets stuck at a node y of a chain C and y holds atoken with C being the owner, then the startnode of C and all nodes of Clying between the startnode and y are �nished.Proof. Part 1. Procedure Relocate ensures that parent(C) is �nished before C istaken into progress.Part 2a. When C is �rst created in line 12 or 15 of Balance, �i is placed on thestartnode of C. Whenever the robot gets stuck at the current startnode of C andremoves �i, chain C is extended by a path P because C is not in progress. Token �iis placed on the new startnode of C. Lines 13 and 16 ensure that the parent of C isalways the owner of �i.Part 2b. We show that whenever C is the current chain and Balance leaves C tocontinue work on an other chain, C becomes the owner of a token. This su�ces toprove part 2b because the children of a chain, and thus the corresponding tokens, canonly be taken over by the current chain, see lines 13 and 16 of the algorithm.Chain C is un�nished. Thus, if C is the current chain, Balance can only leave



14 S. ALBERS AND M. R. HENZINGERC to continue work on an other chain during lines 5{17 of the algorithm. In thissituation, Balance places a token on a node of C and C becomes the owner of thattoken.Part 3. Chain C can become the parent of other chains while C is in progress andun�nished. During this time, every chain C 0 with parent(C 0) = C is not in progress,see Part 1. By Part 2a, the startnode of such a chain C 0 holds a token and C is theowner of that token. Since there are only d token, the proposition follows.Part 4. Since y holds a token, with C being the owner, y must have been thecurrent node in a subphase when C was current chain. The node selection rule inline 18 of Balance ensures that the startnode of C and every node on C betweenthe startnode and y are �nished since, otherwise, the robot would have moved to anun�nished node z before y.The next lemma shows that our algorithm always balances the number of tokenscontained in neighboring subtrees of T . For a subtree Tv of T , let the weight w(Tv)be the number of tokens contained in Tv. Let active(Tv) = 1 if the current chain is inTv; otherwise let active(Tv) = 0.Lemma 3.3. Let u; v 2 T be siblings in T such that Tu and Tv contain un�nishedchains. Then jw(Tu) + active(Tu)� w(Tv)� active(Tv)j � 1.Proof. Let active(C) = 1 i� C is the current chain, and let active(C) = 0otherwise. Let token(C) be the number of tokens owned by C, and let g(C) =token(C) + active(C). Finally, let g(v) =PC;v(C)2Tv g(C) = w(Tv) + active(Tv). Weshow by induction on the steps of the algorithm that jg(u)� g(v)j � 1:The claim holds initially. For a subtree Tv of T , the values w(Tv) and active(Tv)only change in lines 13, 16, and 19 of Balance and in lines 4 and 9 of procedureRelocate. Additionally, T changes in lines 10, 12, and 15.Note �rst that changes in T do not a�ect the invariant: Whenever T changes,v(C) receives a new child and C is not yet �nished (or the algorithm has not yetdetermined that C is �nished). Thus, the children of C are not yet in progress, i.e.they do not own any tokens by Proposition 3.2. Thus, the claim holds for any pair ofchildren of v(C).We consider next all changes to w(Tv) and active(Tv).Line 13: Let C be the current chain before the execution of line 13. Notethat token(C) increases by 1, active(C) becomes 0, token(C 0) decreases by 1, andactive(C 0) becomes 1. Thus, g(C) and g(C 0), and, hence, g(v) is unchanged for everynode v 2 T .Line 16: Note that (i) g(C) is unchanged by the same argument as for line 13, (ii)g(C 0) is unchanged, since token(C 0) and active(C 0) are unchanged, and (iii) g(C0) isincreased by 1. Since C0 only contributes to g(v(C0)) and v(C0) is the root of T , theclaim holds.Line 19 of Balance/Line 4 and 9 of Relocate: Let �C be the current chain beforethe execution of line 3 or 7 and let C be the current chain afterwards. In line 3, theclaim does not apply to Tv(C), since Tv(C) is �nished. Thus, we are left with line 7.Note that active( �C) drops to 0 and active(C) increases to 1. Thus, for every nodev such that Tv contains either both the parent and its child or neither the parentnor its child, g(v) is unchanged. The only remaining subtree is Tv(C). Before theexecution of line 7, for any sibling C 0 of C, w(Tv(C)) � w(Tv(C0)) � w(Tv(C)) + 1.Since active(C 0) = 0, jw(Tv(C))� w(Tv(C0)) + active(C)� active(C 0)j � 1:Lemma 3.4. Let C be a chain of color i, 1 � i � d, and, at the time when C istaken in progress, let u 2 T be the closest ancestor of v(C) that satis�es the following



EXPLORING UNKNOWN EMVIRONMENTS 15condition. The path from u to v(C) in T contains d nodes u1; u2; : : : ; ud such thateach uj with 1 � j � d has a child vj(a) Tvj contains a node of color i; and (b) v(C) =2 Tvj .If there is no such ancestor u, then let u be v(C0). Then there exists a Tu-homogeneousC-completion.Proof. By assumption, the graph of explored edges is strongly connected, whichimplies that there exists a Tv(C0)-homogeneous C-completion. Suppose that thereare d nodes u1; : : : ; ud satisfying (a) and (b). For j = 1; : : : ; d, let Cuj be the chaincorresponding to uj . If one of the nodes u1; : : : ; ud, say uk, is of color i, then there isthe following Tuk -homogeneous C-completion: Follow edges of color i until you reachthe startnode of Cuk , then walk \down" in Tuk along ancestors of C to the startnodeof C.Thus, we are left with the case that none of the nodes u1; : : : ; ud has color i.For j = 1; : : : ; d, let Cj;1 2 Tvj be a chain of color i such that no ancestor of Cj;1contained in Tvj has color i. Let Cj;2; : : : ; Cj;l(j) be the ancestors of Cj;1 in Tuj . Moreprecisely, for k = 1; : : : ; l(j)� 1, Cj;k+1 = parent(Cj;k) and Cj;l(j) = Cuj is the chaincorresponding to uj .Following the edges of color i gives a Tu-homogeneous path from C to every chainCj;1 for 1 � j � d. We want to show that there exists a Tu-homogenous path toa chain Cj;l(j). We consider the following game on a d � maxj l(j) grid, where for1 � j � d, square (j; k) has the color of Cj;k for 1 � k � l(j) and no color for k > l(j).Thus, all squares (j; 1) have color i and no other squares have color i. Initially allsquares (j; 1) are checked, all other squares are unchecked. A square is checked if therobot can move to the startnode of the corresponding chain on a Tu-homogeneouspath. The rules of the game are: (Note that the startnode of Cj0 ;k0�1 belongs toCj0 ;k0 .)� A square (j; k) of color i0 gets checked whenever there exists a square (j0; k0)of color i0 such that square (j0; k0 � 1) is checked and there exists a path ofcolor-i0 edges from the endnode of Cj0 ;k0 to the startnode of Cj;k.� The game terminates when one of the squares (j; l(j)) is checked or when nomore square can be checked.We will show that one of the squares (j; l(j)) can be checked. This shows thatthere is a Tu-homogeneous path from C to Cj;l(j). Since uj is an ancestor of v(C), thesame argument as above shows that there exists a Tu-homogeneous C-completion.We employ the pigeon-hole principle: Initially, there are d checked squares (j; 1)for 1 � j � d and each square (j; 2) has a color i0 6= i. Since there are at most d � 1other colors, there must be two squares (s; 2) and (t; 2) with the same color i0. Sincethe edges of color i0 form a chain, there is either a path from Cs;2 to Ct;2 or vice versa.Thus, one of the two squares can be checked. Inductively, there are d checked squares(j; k(j)) such that (j; k(j) + 1) is unchecked. None of the squares (j; k(j) + 1) hascolor i and thus, there must be two squares (j; k(j) + 1) with the same color, whichleads to checking one of the two squares. The game continues until one of the squares(j; l(j)) has been checked.3.2.3. Counting the number of edge traversals.Lemma 3.5. Each edge is traversed at most d times during executions of line 17and at most d+ 1 times during executions of line 18 of the Balance algorithm.Proof. Let e be an arbitrary edge and let C be the chain e belongs to. Everytime e is traversed during an execution of line 17, a new token is placed on the graph.Since a total of d tokens are placed, the �rst statement of the lemma follows.



16 S. ALBERS AND M. R. HENZINGERNext we analyze executions of line 18. Let x and y be the tail and the head of e,i.e. e = (x; y). Let C1 be the portion of C that consists of the path from the startnodeof C to x. Similarly, let C2 be the path from y to the endnode of C.By Proposition 3.2, part 4, e is traversed in line 18 when all nodes on C1 are�nished and the robot moves to the next un�nished node on C2. Thus, e is traversed(a) if the robot gets stuck at a node on C1 and moves to the next un�nished nodeof C, or (b) if the robot traverses C from its startnode, since procedure Relocatereturned chain C. Every time case (a) occurs, a token is removed from C1, andthis token cannot be placed again on C1. Whenever the robot interrupts the workon C2, another token is placed on some node of C2. Every time case (b) occurs,token(C)+active(C) increases by 1, while no other step of the algorithm can decreasethis value as long as C is un�nished. Note that a token is placed on a node of C2.Since there are only d tokens, cases (a) and (b) occur a total of at most d+ 1 times.Thus, it only remains to bound how often an edge is traversed in Relocate. Achain C 0 is dependent on a chain C, C 6= C 0, if C 0 2 Tv(C) and closure(C 0) is notTu-homogeneous for any true descendant u of v(C).Lemma 3.6. For every chain C, there exist at most d2 log d+1 chains C 0 2 Tv(C)that are dependent on C.Proof. Let ni(C) be the total number of chains of color i dependent on C. For acolor i, 1 � i � d, and an integer �, 1 � � � d, letNi(�) = maxCfni(C);Tv(C) contains at most � of the d tokens wheneveractive(Tv(C)) = 1g.We will show that for any �, 1 � � � d, and any color i, (1) Ni(�) � d2Ni(b�=2c) and(2) Ni(1) = 1: This implies Ni(d) � d2 log d: SincePdi=1Ni(d) � d � d2 log d; the lemmafollows.To prove (1), �x a color i and an integer �. Consider a subtree Tv(C) that containsat most � tokens when active(Tv(C)) = 1. Out of all chains of color i dependent on C,let C 0 be the chain whose closure is computed last. We show that when the algorithmcomputes closure(C 0), then the number of chains of color i that are already dependenton C is at most d(d�1)Ni(b�=2c). Thus, ni(C) � d(d�1)Ni(b�=2c)+1 � d2Ni(b�=2c).Let u1; u2; : : : ; ul be the sequence of nodes (from lowest to highest) on the pathfrom v(C 0) to v(C) such that every node uj , j = 1; 2; : : : ; l, has a child vj with (a) Tvjcontains a node of color i, and (b) v(C 0) =2 Tvj . By Lemma 3.4, l � d. Suppose thatnode uj , 1 � j � l, has c(j) children, vj;1; vj;2; : : : ; vj;c(j) with v 2 Tvj;1 . By condition(b), 2 � c(j) � d.For �xed j and k � 2, we have to show: Up to the time when closure(C 0) iscomputed, whenever active(Tvj;k) = 1, then w(Tvj;k ) � b�=2c. Consider the point intime when closure(C 0) is computed. Since Tvj;1 contains C 0, Tvj;1 is un�nished. ByLemma 3.3, Balance distributes the tokens contained in Tuj evenly among the subtreesTvj;1 ; Tvj;2 ; : : : ; Tvj;c(j) that contain un�nished chains. Thus, for each un�nished Tvj;kwith k � 2, w(Tvj;k ) was up to now at most b�=2c whenever active(Tvj;k ) = 1. Foreach �nished Tvj;k , consider the last point of time when an un�nished chain of Tvj;kbecomes the current chain. Since vj;1 exists, Tvj;1 is un�nished and, by Lemma 3.3,w(Tvj;k ) is up to this point in time at most b�=2c whenever active(Tvj;k ) = 1. Weconclude that up to the time when closure(C 0) is computed, Tvj;k contains at mostNi(b�=2c) chains of color i that can be dependent on the chain corresponding to vj;k,and, thus, can be dependent on C. Summing up, we obtain that Tv(C) contains at



EXPLORING UNKNOWN EMVIRONMENTS 17most dXj=1 c(j)Xk=2Ni(b�=2c) � d(d� 1)Ni(b�=2c)chains of color i that can be dependent on C.Finally we show that Ni(1) = 1. If a subtree Tv(C) contains at most one tokenwhenever active(Tv(C)) = 1, then each node in Tv(C) has only one child, by Proposi-tion 3.2. Since Tv(C) never branches, it can contain at most one chain of color i thatis dependent on C.Lemma 3.7. For every chain C, there exist at most d2 log d+1 chains C 0 2 Tv(C)such that closure(C 0) uses edges of C.Proof. Let C be an arbitrary chain and let v 2 T be the node corresponding toC. We show that if a chain C 0 2 Tv(C) is not dependent on C, then closure(C 0) doesnot use edges of C. Lemma 3.7 follows immediately from Lemma 3.6.If a chain C 0 2 Tv(C) is not dependent on C, then the path closure(C 0) is Tu-homogeneous for a descendant u of v. Suppose that a Tu-homogeneous path P woulduse edges of C. Let i be the color of C. Chain C does not belong to Tu. Thus, afterP has visited C, it may only traverse chains of color i until it reaches again a chainof color i that belongs to Tu. Note that all chains of color i that are reachable fromC via edges of color i must have been generated earlier than C. However, all chainin Tu were generated later than C. We conclude that a Tu-homogeneous path cannotuse edges of C.Lemma 3.8. For every chain C, there exist at most (d + 2)d2 log d+2 chainsC 0 =2 Tv(C) such that closure(C 0) uses edges of C.Proof. A chain C 0 needs a chain C if closure(C 0) uses edges of C and C 0 is u-hard if closure(C 0) is Tu-homogeneous, but not Tv-homogeneous for any child v of u.For each chain C 0 there exists a unique node u of T such that C 0 is u-hard. If C 0 isdependent on chain C, then C 0 is v(C)-hard of u-hard for a true ancestor u of v(C). IfC 0 is u-hard and v is a descendant of u and an ancestor of v(C 0), then C 0 is dependenton C(v). To prove the lemma it su�ces to show the following two claims:Claim 3.9. There are at most d2 log d+2 chains C 0 62 Tv(C) such that C 0 needs Cand C 0 is u-hard for some ancestor u of v(C).Claim 3.10. There are at most (d + 1)d2 log d+2 chains C 0 62 Tv(C) such that C 0needs C and C 0 is u-hard for some node u that is not an ancestor of v(C).Proof of Claim 3.9. If C 0 needs C, then C 0 either does not yet exist or is un�nishedwhen C is taken into progress. Consider the point in time when C is taken intoprogress. Let u1; u2; : : : ; ul be the ancestors of v(C) in T that ful�ll the followingconditions: Each node uj has a child vj such that (a) Tvj contains un�nished chains,and (b) v(C) =2 Tvj . Thus, every chain that needs C lies in one of the subtrees Tvj .Note that l � d, since by Proposition 3.2, every subtree that contains an un�nishedchain not equal to the current chain must own a token. Assume C 0 belongs to Tvj .Since uj is the least common ancestor of v(C) and v(C 0), and C 0 is u-hard for anancestor u of v(C), C 0 is dependent on C(uj). Since by Lemma 3.6 there are at mostd2 log d+1 chains that are dependent on C(uj), there can be at most l � d2 log d+1 �d2 log d+2 chains C 0 =2 Tv(C) that need C and are u-hard for an ancestor of v(C).Proof of Claim 3.10. Let i be the color of C. Let us denote the concatenation ofall chains of color i as the path of color i. Note that the path of color i introduces alinear order on the chains of color i. We say a chain C lies between two other chainson the path of color i if C is not equal to one of the chains and lies between them



18 S. ALBERS AND M. R. HENZINGERin the linear order. We de�ne �rst the nearest predecessor of a chain. Then we show(1) that for each chain C 0 62 Tv(C) that needs C and is u-hard for some node u thatis not an ancestor of v(C), there exists a chain C1 of color i such that� C lies on the path of color i between C1 and its nearest predecessor, and� C1 ful�lls the conditions of Claim 1, i.e., C 0 needs C1 and u is an ancestor ofv(C1).We show next (2) that there exist at most d chains C1 of color i for which C lies on thepath of color i between C1 and its nearest predecessor. By Claim 1 and Lemma 3.7,for each C1 there exist at most (d+1)d2 log d+1 closures that are hard for an ancestorof v(C1). It follows that there are at most d(d + 1) � d2 log d+1 chains C 0 that need Cand are u-hard for some node u that is not an ancestor of v(C).Consider the point in time when C is taken into progress. Let a(C) be the closestancestor of v(C) such that Ta(C) contains a node of color i that is not equal to v(C).The nearest predecessor of C is the chain C 0 6= C of color i that was taken into progressmost recently in Ta(C).(1) The closure of C 0 introduces an order on the chains belonging to it. Let C1 bethe last chain of Tu before C on closure(C 0) and let C2 be the �rst chain of Tu after Con closure(C 0), i.e. C lies on the path of color-i edges between C1 and C2. We showbelow that the path of color-i edges between C1 and C2 is contained in the path ofcolor-i edges between C1 and its nearest predecessor. This implies that C lies on thepath of color-i edges between C1 and its nearest predecessor and completes the proofof (1).Since Tu is a subtree that contains C1 and C2, i.e. C1 and another chain of color ithat was taken into progress before C1, Tu also must contain the nearest predecessorof C1. Following the path of color-i edges from C1, C2 is the �rst chain of Tu thatis encountered. Thus, the color-i path between C1 and C2 is contained in the color-ipath between C1 and its nearest predecessor.(2) We want to bound the number of color-i chains C1 such that C lies on the pathof color i between C1 and its nearest predecessor. Obviously, C1 was created, afterC was taken in progress (otherwise, C1 would have been appended to C). Considerthe point in time when C is taken into progress. Let C1; : : : ; Cl be the chains thatare parents of fresh chains. All chains created afterwards must belong to Tv(C) or toTv(C1); : : : ; Tv(Cl). Note (a) that for no color-i chain in Tv(C), C can lie on the color-ipath between the chain and its nearest predecessor. Note (b) that for k = 1; : : : ; l,only for the color-i chain C(k) in Tv(Ck) created �rst after C was taken into progress,C can lie between C(k) and its nearest predecessor. The nearest predecessor of everycolor-i chain D created later belongs to Tv(Ck) and was created after C. Thus, C doesnot lie on the color-i path between D and its predecessor. Thus, at most l chainsexists such that C lies on the color-i path between the chain and its predecessor. ByProposition 3.2, l � d.Theorem 3.11. Using the Balance algorithm and assuming that when a new sinkis discovered the subgraph of explored edges is strongly connected, the robot exploresan unknown graph with de�ciency d and traverses each edge at most (d + 1)5d2 log dtimes.Proof. Let e be an arbitrary edge of chain C. Edge e is traversed for the �rsttime when it is explored during an execution of line 5 of the Balance algorithm. ByLemma 3.5, it can be traversed 2d+1 times during executions of lines 17 and 18. ByLemmas 3.7 and 3.8, e belongs to at most d2 log d+1+(d+2)d2 log d+2 paths closure(C 0).We show that each path closure(C 0) is traversed at most d(d + 1) times. The path



EXPLORING UNKNOWN EMVIRONMENTS 19closure(C 0) is used at most d times during an execution of line 2 of Relocate, sinceeach time a token is removed from the �nished chain C 0. The path closure(C 0) canalso be used at most d2 times in line 4 of Relocate, since each time a token is removedfrom the �nished subtree Tv(C00) of a child C 00 of C 0.Finally, the edge e might be traversed d(d+1) times in line 9 of Relocate. When eis traversed in line 9, then (i) either the robot had moved to C0 after the introductionof a new token (line 16) or (ii) there exists an ancestor u of v(C) with a child xsuch that the robot was stuck at a node in Tx and Tx is �nished. Thus, by going\up" the tree T in lines 3{5, the robot reached u. Case (i) occurs at most d times.When C becomes the current chain for the �rst time, let u1; : : : ; ul be the ancestorsof v(C) such that each uj has a child vj with (a) Tvj contains un�nished chains, and(b) v =2 Tvj . By Proposition 3.2, the nodes u1; : : : ; ul can have a total of d childrensatisfying (a) and (b). Since each subtree rooted at one of these children can containat most d tokens, case (ii) occurs at most d2 times.Thus, edge e is traversed at most1 + 2d+ 1 + d(d+ 1)(d2 log d+1 + (d+ 2)d2 log d+2) + d(d + 1) � (d+ 1)5d2 log d(3.1)times.3.3. The Complete algorithm. In Subsections 3.1 and 3.2 we assumed thatthe subgraph of explored edges is strongly connected. We used this assumption onlyin line 16 of algorithm Balance. However, all that is needed in line 16 is that thealgorithm \knows" a path from y to s, i.e., the robot can reach s from y. To achievethis we de�ne a parametrized algorithm P-Balance(P , s, C0) as follows: Additional tos and C0 it receives as input a set P of paths between various nodes in the graph. Itexecutes algorithm Balance as before except when the robot gets stuck at y in line 16and there is no path of explored edges from y to s. If there exists a path X from yto s consisting of (i) a (possibly empty) subpath of explored edges, followed by (ii) apath in P , followed by (iii) another (possibly empty) subpath of explored edges, thena fake edge from y to s is added to the graph and traversed to reach s. Since the fakeedge does not exist in the orginial graph the robot \simulates" traversing the fakeedge by traversing X . The fake edge continues to exist (and might be traversed) inthe graph until the end of algorithm P-Balance. We show below that at most d � 1fake edges are added during algorithm P-Balance.We execute algorithm P-Balance repeatedly to construct an algorithm Completethat assumes only that the original graph is strongly connected and makes no as-sumption about the subgraph of explored edges. We call the edges traversed duringexecution i � k of algorithm P-Balance(P , s, C0) k-visited.We describe algorithm Complete in detail: Initially P is empty and Phase 1(see Subsection 3.1) is executed to determine s and C0. Algorithm Complete thenrepeatedly executes algorithm P-Balance(P , s, C0) on the graph until P-Balanceterminates or until while traversing path P the robot gets stuck at a node y in line 16and cannot reach s. In the former case algorithm Complete terminates, in the lattercase it adds to P a path of k-visited edges to y from each node in the subgraphtraversed during the current or an earlier execution of algorithm P-Balance. Next allfake edges are discarded, all edges are marked as unvisited and unexplored, and allnodes are marked as unexplored and un�nished. Then s is set to y, the cycle C0 isset to be the path between the �rst and the last occurrence of y on P , and algorithmP-Balance(P , s, C0) is called.



20 S. ALBERS AND M. R. HENZINGERConsider execution k of algorithmP-Balance. A k-path is a concatenation of threepaths A1, A2, and A3 such that A1 and A3 are possibly empty subpaths of edgesexplored during execution k and A2 is a path of P . Note that the concatenation ofa k-path with edges explored during execution k (either at the beginning or at theend of the k-path) results again in a k-path. Note further that each k-path consistsof k-visited edges.Lemma 3.12 shows that if P-Balance gets stuck at a node y in line 16 and cannotreach s, then there exists a path of k-visited edges to y from each node in the subgraphtraversed during the current or an earlier execution of algorithm P-Balance and thaty appears at least twice on P . This proves that algorithm Complete is well-de�ned.Lemma 3.12. If while traversing path P during an execution of P-Balance(P, s,C0) the robot gets stuck in line 16 at a node y and cannot reach s then1. each node in the subgraph traversed during an earlier execution of algorithmP-Balance(P, s, C0) can reach y on a path of k-visited edges;2. each node in the subgraph traversed during the current execution of algorithmP-Balance(P, s, C0) can reach y on a k-path;3. y is a newly discovered sink;4. y appears at least twice on P .Proof. Part 1, 2, and 3: We use induction on the number k of calls to algorithmP-Balance to show the claim. Obviously the claim holds for k = 0. Consider nextk > 0. Let sk be the sink newly discovered by execution k of algorithm P-Balance.We show �rst that each node in the subgraph traversed during an earlier executionof algorithm P-Balance can reach y on a path of k-visited edges. There exists a pathof k-visited edges from sk�1 to y, since execution k started at sk�1. Inductively eachnode in the subgraph traversed during an earlier execution can reach sk�1 on a pathof (k�1)-visited edges. Thus, by transitivity of the reachability relation and since all(k � 1)-visited edges are also k-visited, each node in the subgraph traversed duringan earlier execution of algorithm P-Balance can reach y on a path of k-visited edges.We show next that each node in the subgraph traversed during the current exe-cution of algorithm P-Balance(P , s, C0) can reach y on a k-path. Since y is the lastnode on chain P every node on P can reach y following P . Each other node in thesubgraph explored during algorithm P-Balance(P , s, C0) belongs to a chain Q 6= P .We show by induction on the number of such chains Q created during the currentexecution that all nodes on such a chain Q can reach s by a k-path. Since executionk started at s, s can reach y on edges explored during execution k. It follows thateach node in the subgraph traversed during algorithm P-Balance(P , s, C0) can reachy on a k-path.It remains to be shown that all nodes on a chain Q 6= P created during the currentexecution can reach s by a k-path. This holds trivially before any chain is created.Consider a path P 0 that is part of Q. Then the endpoint y0 of P 0 either belongs to analready existing chain or not. If y0 belongs to a chain created earlier then inductivelyy0 and, thus, all nodes on P 0 can reach s by a k-path. If y0 does not belong to a chaincreated earlier, then there exists a path in P from y0 to s since P 0 6= P . Thus thereis a k-path from y0 to s. It follows that every node on P 0 can reach s by a k-path.We are left with showing that y = sk, i.e., that y is a newly discovered sink. Bythe above proof, (a) if y was visited by an earlier execution of algorithm P-Balancethen there would exist a path from y to s in P , and (b) if y belonged to a chain Q 6= Pin the current execution of algorithm P-Balance then there would exist a k-path fromy to s. Thus, algorithm P-Balance(P , s, C0) would have been able to reach s from y.



EXPLORING UNKNOWN EMVIRONMENTS 21It follows that y was not visited before, i.e., that y is a newly discovered sink.Part 4: Each node has outdegree at least 1. By the proof of part 1, y does notbelong to a chain Q 6= P . Thus all of y's outedges must belong to P , i.e. y appearedat least twice on P .Since there are only d sinks in the graph, part 3 of the above lemma shows thatat most d executions of P-Balance(P , s, C0) are made. Thus it follows that algorithmComplete terminates.Now let us analyze the number of edge traversals. Algorithm P-Balance traversesthe same path that algorithm Balance would have traversed on the graph consistingof the original graph and all fake edges. Since each fake edge connects two sinks, itdoes not change the de�ciency of the graph. Thus, the previous analysis shows thateach edge, including each fake edge, is traversed at most (d + 1)5d2 log d times. Thetraversal of a fake edge corresponds to at most one traversal of every non-fake edge.We show below that there are at most d � 1 fake edges. Thus the total number oftraversals per edge is at most (d � 1)(d + 1)5d2 log d for each execution of algorithmP-Balance. Since there are at most d such executions, each edge is traversed at most(d� 1)d(d+ 1)5d2 log d times during algorithm Complete.It remains to show that there are at most d � 1 fake edges. Each fake edge inexecution k increases the number inv(si) of visited incoming edges for a sink si withi < k without increasing the number outv(si) of visited outgoing edges. Since over allsinks si, i < k, there are at most d� 1 more incoming than outgoing edges into thesesinks, there are at most d� 1 fake edges created during execution k.We summarize our main result.Theorem 3.13. Using the Complete algorithm, the robot explores an unknowngraph with de�ciency d and traverses each edge at most (d+ 1)7d2 log d times.The total number of edge traversals used by our algorithm is alsoO(minfmn; dn2+mg), where n is the number of nodes in the graph. It is not hard to show that anupper bound of O(minfmn; dn2 +mg) is achieved by any exploration algorithm sat-isfying the following two properties: (1) When the robot gets stuck, it moves on acycle-free path to some, i.e. arbitrary, node with new outgoing edges. (2) When therobot is not relocating, it always traverses new edges whenever possible.We show that any exploration algorithm satisfying (1) and (2) gets stuck atmost minfm; dng times. The bound follows because, by Property (1), at most nedges are traversed during each relocation. Obviously, a robot gets stuck at mostm times. For the proof of the second bound, let inu(v) and outu(v) be the numberof unvisited incoming and unvisited outgoing edges of v, respectively. Let def(v) =maxf0; inu(v) � outu(v)g. We show inductively that Pv2G def(v) � d. This impliesthat, for every node v, whenever the robot explores the last unvisited edge out of v,there are at most d unvisited incoming edges at v. Thus the robot gets stuck at mostd times at any node v. Summing over all nodes in G gives the desired bound of dn.The inequality Pv2G def(v) � d holds intitially. The invariant is maintainedwhenever the robot relocates from a node y, where it got stuck, to some node z withnew outgoing edges because only visited edges are traversed. Whenever the robotstarts a new exploration at a node z, visits a sequence of new edges and gets stuckat a node x, def(z) increases by at most 1, def(x) decreases by 1 while at no othernode, the def-value changes.4. A tight lower bound for the Balance algorithm and modi�cations. Inthis section we give �rst a lower bound for the Balance algorithm and afterwards wegive lower bounds for modi�cations of Balance.



22 S. ALBERS AND M. R. HENZINGERTheorem 4.1. For every d � 1, there exists a graph G of de�ciency d that isexplored by Balance using d
(log d)m edge traversals.Proof. We show that there exists a graph G = (V;E) and an edge e 2 E that istraversed d
(log n) times while Balance explores G. The theorem follows by replacinge by a path of �(m) edges. We show the bound for d being a power of 5. The boundfor all values of d follows by \rounding" down to the largest power of 5 smaller thand. The graph is a union of chainsC, each of which consists of three edges, a startnode,an endnode and two interior nodes v1(C) and v2(C). The interior nodes belong toexactly one chain and have up to one additional outgoing edge. We describe G, seealso Figure 4.1. Graph G contains (a) a cycle C0 that starts and ends in a node v(Balance is started at v and �nds C0 during Phase 1) and (b) a recursively de�nedproblem P d attached to C0. C0 D
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Fig. 4.1. The graph GIn the following let �, 1 � � � d, be a power of 5. A problem P �, for any integer� � 5, is a subgraph that has two incoming edges whose startnodes do not belong toP � but whose endnodes do, and � + 1 outgoing edges whose startnodes belong to P �but whose endnodes do not. A problem P 1 has one incoming and one outgoing edge.In the case of P d, the two incoming edges start at v1(C0) and v2(C0), respectively; doutgoing edges point to v and one outgoing edge points to v1(C0).For the de�nition of P � we also need problems Q�. These problems are identicalto P � except that, for � > 1, Q� has exactly � + 1 incoming edges.A problem P 1 consists of a single chain; the �rst edge of the chain represents anincoming edge and the last edge represents an outgoing edge. The interior nodes haveno additional outgoing edges. A problem Q1 is identical to P 1.For � � 5, let 
 = �=5. Problem P � consists of 3
2 chains C
i;k, 1 � i � 
,
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, as well as 
 chains D
i and 
 recursive subproblems Q
i , 1 � i � 
 � 1,and P 

 .These components are assembled as follows. One of the incoming edges of P � isthe �rst edge of C
1;1. We assume that v1(C0) is the startnode of Cd=51;1 . Node v1(C
i;k)is the startnode of C
i;k+1, 1 � i � 
, 1 � k � 3
� 1. Node v1(C
i;3
) is the startnodeof C
i+1;1, 1 � i � 
� 1. The last edge of C
1;k, 1 � k � 3
, is an outgoing edge of P �.The endnode of C
i;k is equal to the startnode of C
i�1;k, 2 � i � 
 and 1 � k � 3
.Note that the last edge of C
2;1 hence is an outgoing edge of P �. Nodes v2(C
i;k),1 � i � 
, 1 � k � 3
 � 1, have no additional outgoing edge but nodes v2(C
i;3
),1 � i � 
 � 1, do. Chain C

;3
 has no additional outgoing edges.The second incoming edge of P � is the �rst edge of a chain D
1 and, for 2 � i � 
,the edge leaving v2(C
i�1;3
) is the �rst edge of D
i . For 1 � i � 
, the last edgeof D
i is an outgoing edge of P �. If � = 5, then the �rst interior node of the chainD
i = D
1 has an additional outgoing edge pointing into a problem P 1. If � > 5, thenthe two interior nodes of D
i , 1 � i � 
, each have an additional outgoing edge. For1 � i � 
 � 1, these two edges point into Q
i and, for i = 
, they point into P 

 .If � = 5, then the outgoing edge of the only subproblem P 1 is an outgoing edge ofP � = P 5. If � > 5, the problems Q
i , 1 � i � 
 � 1, and P 

 each have 
 +1 outgoingedges. For Q
1 , 
 of these edges are also outgoing edges of P � and one edge points tothe interior node of D
1 that is the startnode of C
1;1. For 2 � i � 
� 1, exactly 
� 1edges leaving Q
i point into Q
i�1 such that every node that has l more outgoing thanincoming edges, for l > 0, receives l edges. One outgoing edge points to the interiornodes of D�i�1 that does not get an edge from Q
i�1 and the remaining edge pointsto the interior node of D
i that is the startnode of C
1;1. In the same way the edgesleaving P 

 are connected with Q

�1, D

�1 and D

 .We identify the sources of P �, i.e. the nodes having higher outdegree than inde-gree. At each source, outdegree and indegree di�er by 1. The startnodes of the chainsD
i , 2 � i � 
, and C

;k, 1 � k � 3
, represent a total of 4
� 1 sources. One interiornode of D

 represents a source. Finally, the subproblem P 

 contains 
 � 1 sources.A problem Q�, � � 5, is the same as P �, except that the subproblem P 

 isreplaced by a problemQ

 . As mentioned before, a problemQ� receives ��1 additionalincoming edges. These edges point to the nodes that represent sources in P � .We analyze the number of edge traversals used by Balance on G. Consider aproblem P �, � � 5, and let 
 = �=5. When Balance generates the strand of chainsC
i;1; : : : ; C
i;3
 , for some 1 � i � 
, this strand contains 3
 > 
 + 1 tokens. SinceD
i and the subproblem attached to it contain 
 tokens Balance does not explore theunvisited edges out of C
i;3
 before the subproblem attached to D
i is �nished. In thesame way we can argue for a problem Q�.Let N(�) be the number of times the following event happens while Balance workson a problem P � or Q�: Balance generates a new chain, gets stuck and cannot reacha node with new outgoing edges by using only edges in P � resp. Q�. Problem P �contains 
 subproblems Q
1 ; : : : ; Q

�1 and P 

 . Every time Balance gets stuck in oneof these subproblems and has to leave it in order to resume exploration, it also hasto leave P �. This is because of the following facts: (1) When Balance explores Q
i ,1 � i � 
 � 1, or P 

 , the subproblems Q
1 ; : : : ; Q
i�1 resp. Q
1 ; : : : ; Q

�1 are already�nished. (2) The chains D
1 ; : : : ; D

 ensure that Balance cannot reach any chain C
i;k,1 � i � 
, 1 � k � 3
, from where the un�nished chains in P � can be reached. Again



24 S. ALBERS AND M. R. HENZINGERthe same holds for a problem Q�. Thus, for � � 5, N(�) � 
N(
) = (�=5)N(�=5):Since N(�) = 1, for � = 1, we obtain N(d) = d
(log d). Finally, consider the edge e onC0 that leaves v. Balance must traverse e at least N(d) = d
(log d) times.We also modi�ed the Balance algorithm by relocating to other nodes with newoutgoing edges. Replace the choice of Ck in line 7 of by one of the following rules.Round Robin: Let Ck be the chain among C1; : : : ; Cl that was selected least oftenin any execution of line 7.Cheapest Subtree: Let Ck be the chain amongC1; : : : ; Cl, such that Tv(Ck) containsthe fewest number of dependent chains with respect to the current chain.Theorem 4.2. For Round Robin and for Cheapest Subtree and for all d � 1,there exist graphs of de�ciency d that require d
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