
Integrated Prefething and Cahingwith Read and Write Requests
Susanne Albers1 and Markus B�uttner1Institute of Computer Siene, Freiburg University,Georges-K�ohler-Allee 79, 79110 Freiburg, Germany.fsalbers,buettnerg�informatik.uni-freiburg.de

Abstrat. All previous work on integrated prefething/ahing assumesthat memory referene strings onsist of read requests only. In this pa-per we present the �rst study of integrated prefething/ahing with bothread and write requests. For single disk systems we analyze popular al-gorithms suh as Conservative and Aggressive and give tight bounds ontheir approximation ratios. We also develop a new algorithm that per-forms better than Conservative and Aggressive. For parallel disk systemswe present a general tehnique to onstrut feasible shedules. The teh-nique ahieves a load balaning among the disks. Finally we show thatit is NP-omplete to deide if an input an be served with f feth and wwrite operations, even in the single disk setting.
1 IntrodutionPrefething and ahing are powerful and extensively studied tehniques to im-prove the performane of storage hierarhies. In prefething missing memorybloks are loaded from slow memory, e.g. a disk, into ahe before their atualreferene. Cahing strategies try to keep atively referened bloks in ahe. Bothtehniques aim at reduing proessor stall times that our when requested datais not available in ahe. Most of the previous work investigated prefethingand ahing in isolation although they are strongly related: When prefething ablok, one has to evit a blok from ahe in order to make room for the inomingblok. Prefeth operations initiated too early an harm the ahe on�guration.Prefeth operations started too late diminish the e�et of prefething. Therefore,there has reently been onsiderable researh interest in integrated prefethingand ahing [1, 2, 4{9℄. The goal is to develop strategies that oordinate prefeth-ing and ahing deisions.All the previous work on integrated prefething/ahing assumes that mem-ory referene strings onsist of read requests only, i.e. we only wish to read databloks. In other words, memory bloks are read-only and do not have to bewritten bak to disk when they are evited from ahe. However, in pratiereferene strings onsist of both read and write requests. In a write request wewish to modify and update a given data blok. Of ourse, modi�ed bloks mustbe written to disk when they are evited from ahe.



In this paper we present the �rst study of integrated prefething/ahingwith read and write requests. It turns out that integrated prefething/ahing isonsiderably more ompliated in the presene of write requests. The problemis that prefeth and write operations ompete with eah other and it is notlear when to shedule whih disk operation. Moreover, ompared to the read-only ase, it is not true anymore that in a prefeth operation we always evitthe blok from ahe whose next request is furthest in the future. To save awrite-bak operation it might be better to evit an unmodi�ed blok, even if itis requested again soon. Finally, even if it were known when to initiate writeoperations, there is no simple rule that determines whih bloks to write to disk.Cao et al. [4℄ introdued a formal model for integrated prefething/ahing.We also use this model but generalize it to take into aount read and writerequests. We are given a request sequene � = r1; : : : ; rn onsisting of n requests.Eah request spei�es the blok to be aessed and the type of referene. If ri = bi, then ri is a read request to blok bi. If ri = b�i , then the referene is a writerequest where we want to modify bi. We �rst assume that all bloks reside on asingle disk. To serve a request, the requested blok must be in ahe. The ahean simultaneously hold k bloks. Serving a request to a blok in ahe takes1 time unit. If a requested blok is not in ahe, then it must be fethed fromdisk, whih takes F time units. A feth operation may overlap with the servieof requests to bloks already in ahe. If a feth, i.e. a prefeth, of a blok isinitiated at least F requests before the referene to the blok, then the blok isin ahe at the time of the request and no proessor stall time is inurred. If thefeth is started only i, i < F , requests before the referene, then the proessorhas to stall for F�i time units until the feth is �nished. When a feth operationis initiated, a blok must be evited from ahe to make room for the inomingblok. A blok that was modi�ed sine the last time it was brought into ahean only be evited if it has been written bak to disk after its last write request.Suh a write-bak operation takes W time units and an be sheduled any timebefore the evition. If the operation overlaps with the servie of i �W requests,then W � i units of proessor stall time are inurred to omplete the writeoperation. In this submission, unless otherwise stated we assume for simpliitythat W = F . The goal is to minimize the total proessor stall time inurredon the entire request sequene. This is equivalent to minimizing the elapsedtime, whih is the sum of the proessor stall time and the length of the requestsequene. We emphasize here that the input � is ompletely known in advane.To illustrate the problem, onsider a small example. Let� = b1; b�2; b2; b3; b�4; b3; b4; b3; b5; b1; b4; b2. Assume that we have a ahe of sizek = 4 and that initially bloks b1; b2; b3 and b4 reside in ahe. Let F = W = 3.The �rst missing blok is b5. We ould initiate the feth for b5 when startingthe servie of the request b�2. The feth would be exeuted while serving requestsb�2; b2 and b3. When starting this feth, we an only evit b1, whih is requestedagain after b5. We ould initiate the feth for b1 when serving request b5 andevit b3. Two units of stall time would be inurred before request b1, so that thetotal elapsed time is equal to 14 time units. A better option is to write b2 bak



to disk after request b�2 and then to initiate a feth for b5 by eviting b2. Bothdisk operations �nish in time before request b5 beause the write operation mayoverlap with the servie of the read request to b2. When serving request b5 weould start fething b2 by eviting b3. Again this operation would be �nished intime so that the elapsed time of this shedule is equal to 12 time units.Integrated prefething and ahing is also interesting in parallel disk systems.Suppose that we have D disks and that eah memory blok always resides onexatly one of the disks. Feth and write operations on di�erent disks may beexeuted in parallel. Of ourse we an take advantage of the parallelism given by amultiple disk system. If the proessor inurs stall time to wait for the ompletionof a feth or write operation, then feth and write operations exeuted in parallelon other disks also make progress towards ompletion during that time. Againwe wish to minimize the total elapsed time.Previous work: As mentioned before, all previous work on integratedprefething/ahing [1, 2, 4{9℄ assumes that request sequenes onsist of readrequest only. Cao et al. [4℄, who initiated the researh on integrated prefeth-ing/ahing, introdued two popular algorithms alled Conservative and Aggres-sive for the single disk problem. Conservative performs exatly the same ahereplaements as the optimum o�ine paging algorithm [3℄ but starts eah feth atthe earliest possible point in time. Cao et al. showed that Conservative ahievesan approximation ratio of 2, i.e. for any request sequene the elapsed time ofConservative's shedule is at most twie the elapsed time of an optimal shed-ule. This bound is tight. The Aggressive algorithm starts prefeth operations atthe earliest reasonable point in time. Cao et al. proved that Aggressive has anapproximation ratio of at most minf1 + F=k; 2g and showed that this bound istight for F = k. Kimbrel and Karlin [7℄ analyzed Conservative and Aggressivein parallel disk systems and showed that the approximation guarantees are es-sentially equal to D. They also presented an algorithm alled Reserve Aggressiveand proved an approximation guarantee of 1 +DF=k.In [1℄ it was shown, that an optimal prefething/ahing shedule for a sin-gle disk an be omputed in polynominal time based on a linear programmingapproah. The approah was extended to parallel disk systems and gave a D-approximation algorithm for the problem of minimizing the stall time of a shed-ule. The algorithm uses D� 1 extra memory loations in ahe. The omplexityof the parallel disk problem is still unknown.Our ontribution: This paper is an in-depth study of integrated prefeth-ing/ahing with read an write requests. We �rst address the single disk problem.In Setion 2 we investigate implementations of Conservative and Aggressive andprove that Conservative has an approximation ratio of 3. We show that thisbound is tight. We also show that Aggressive ahieves an approximation guar-antee of minf2 + 2F=k; 4g and that this bound is tight for F = k. Hene, sur-prisingly, for large ratios of F=k Conservative performs better than Aggressive.This is in ontrast to the algorithms' relative performane in the read-only ase.In Setion 3 we develop a new prefething/ahing algorithm that has anapproximation ratio of 2 and hene performs better than Conservative and Ag-



gressive for all F and k. The basi idea of the new strategy is to delay ahereplaements for a few time units.The omplexity of integrated prefething/ahing in the presene of writerequests is unknown. However, Setion 4 indiates that the problem is probablyNP-hard. More preisely we prove that it is NP-omplete to deide if a givenrequest sequene an be served with at most f feth and w write operations.In Setion 5 we study systems with D parallel disks. To speed up writeoperations, many parallel disk systems have the option of writing memory bloksbak to an arbitrary disk and not neessarily to the disk where the blok wasstored previously. Of ourse, old opies of a blok beome invalid. Hene thedisk where a given blok resides may hange over time. We present a generaltehnique for onstruting feasible prefething/ahing shedules in two steps.In the �rst step an algorithm determines feth and write operations withoutonsidering on whih disks the involved bloks reside. The seond step assignsdisks to all the feth and write operations so that a load balaning is ahieved forall the disks. Using a parallel, synhronized implementation of the Conservativealgorithm in step 1 we obtain shedules whose elapsed time is at most 5 times theelapsed time of an optimal shedule plus an additive term that depends on theinitial disk on�guration. Replaing Conservative by Aggressive and investingdD=2e additional memory loations in ahe the ratio of 5 drops to 4.
2 Analysis of Conservative and AggressiveIn this setion we study the single disk setting. We extend the algorithms Con-servative and Aggressive to request sequenes onsisting of both read and writerequests and analyze their performane. Conservative exeutes exatly the sameahe replaements as the optimum o�ine paging algorithm MIN [3℄ while initi-ating a feth at the earliest reasonable point in time, i.e. the blok to be evitedshould not be requested before the blok to be fethed. Modi�ed bloks to beevited may be written bak to disk anytime before their evition.Theorem 1. For any request sequene �, the elapsed time of Conservative'sshedule is at most 3 times the elapsed time of an optimal shedule. This bound isnearly tight, i.e. there are request sequenes for whih the ratio of Conservative'selapsed time to OPT's elapsed time is at least (3F + 2)=(F + 2).Proof. The upper bound of 3 is easy to see. Consider an arbitrary request se-quene � and suppose that Conservative performs m ahe replaements. Inthe worst ase eah replaements takes 2F time units: The algorithm may needW = F time units to write the blok to be evited to disk; F time units are in-urred to feth the new blok. Let Cons(�) be the total elapsed time of Conserva-tive's shedule. Then Cons(�) � j�j+ 2Fm. Conservative's ahe replaementsare determined by the MIN algorithm, whih inurs the minimum number ofahe replaements for any request sequene. Thus the optimum algorithm per-forms at least m ahe replaements on �, eah of whih takes at least F timeunits. We have OPT (�) � maxfj�j; Fmg and hene Cons(�) � 3 �OPT (�).



For the onstrution of the lower bound we assume k � 3 and use k�2 bloksA1; : : : ; Ak�2 as well as k � 2 blok B1; : : : ; Bk�2 and three auxiliary bloks X,Y and Z. The requests to bloks A1; : : : ; Ak�2, X, Y and Z will always be readrequests whereas the requests to B1; : : : ; Bk�2 will always be write requests. Weuse the asterisk to denote write requests, i.e. B�i is a write request modifyingblok Bi, 1 � i � k � 2. The request sequene is omposed of subsequenes �Aand �B , where �A = ZF ; A1; ZF ; A2; : : : ; ZF ; Ak�2 and �B = B�1 ; : : : ; B�k�2. Let�0 = �A; �B ; Z;X; �A; �B ; Z; Y . The request sequene � is an arbitrary number ofrepetitions of �0, i.e. � = (�0)i, for some positive integer i. To establish the lowerbound we ompare Conservative's elapsed time on �0 to OPT's elapsed time on�0. In the analysis the two algorithms start with di�erent ahe on�gurationsbut at the end of �0 the algorithms are again in their initial on�guration.We assume that initially Conservative has bloks A1; : : : ; Ak�2, Y and Z inahe. During the servie of the �rst �A in �0 Conservative �rst evits Y toload B1. This feth overlaps with the servie of requests. While serving the �rst�B , Conservative evits Bi to load Bi+1, for i = 1; : : : ; k � 3. Eah operationgenerates 2F units of stall time beause the evited blok has to be written todisk and the feth annot overlap with the servie of requests. Then Conservativeevits Bk�2 to feth X. Again the operation takes 2F time units but an overlapwith the servie of the request to Z. The algorithm now has A1; : : : ; Ak�2, X andZ in ahe. It serves the seond part of �0 in the same way as the �rst part exeptthat in the beginning X is evited to load B1 and in the end Bk�2 is evited toload Y so that the �nal ahe on�guration is again A1; : : : ; Ak�2, Y and Z. Toserve �0, Conservative needs Cons(�0) = 2((k�2)(F+1)+1+(k�2)(2F+1)) =2((k � 2)(3F + 2) + 1) time units.For the analysis of OPT on �0 we assume that OPT has initially B1; : : : ; Bk�2,Y and Z in ahe. Bloks B1; : : : ; Bk�2 and Z are never evited. In the �rst partof �0 OPT evits Y to load A1 and then evits Ai to load Ai+1, for i = 1; : : : ; k�3.These fethes are exeuted during the sevie of the requests to Z. While serving�B OPT evits Ak�2 to load X and the ahe then ontains B1; : : : ; Bk�2, X andZ. In the seond part of �0 the operations are the same exept the roles of X andY interhange. OPT's ahe on�guration at the end of �0 is again B1; : : : ; Bk�2,Y and Z. The elapsed time is OPT (�0) = 2((k� 2)(F +1)+maxfF; k� 1g+1).Hene, for F < k, the ratio of Conservative's elapsed time to OPT's elapsedtime on �0 is Cons(�0)OPT (�0) = (k � 2)(3F + 2) + 1(k � 2)(F + 1) + k � 3F + 2F + 2and the desired bound follows by repeating �0 often enough. utThe Aggressive algorithm proposed by Cao et al. [4℄ works as follows. When-ever the algorithm is not in the middle of a feth, it determines the next blok bin the request sequene missing in ahe as well as the blok b0 in ahe whosenext request is furthest in the future. If the next request to b is before the nextrequest to b0, then Aggressive initiates a feth for b eviting b0 from ahe. Weonsider two extension of this algorithm to request sequenes with read andwrite requests. If b0 has to be written bak to disk, then Aggressive1 exeutes



the write operation immediately before initiating the feth for b and inurs Funits of stall time before that feth operation. Aggressive2 on the the other handoverlaps the write-bak operation as muh as possible with the servie of pastand future requests at the expense of delaying the feth for b. More formally,assume that Aggressive2 �nished the last feth operation immediately beforereqeust ri and that rj , j � i is the �rst request suh that the next request to b isbefore the next request to b0. If b0 has to be written bak to disk, start the wirteoperation at the earliest ri0 , i0 � i, suh that b0 is not requested between ri0 andrj . Overlap the operation as muh as possible with the servie of request.While Aggressive1 is very easy to analyze, Aggressive2 is a more intuitive im-plementation of an aggressive strategy. We show that the approximation ratiosof Aggressive1 and Aggressive2 inrease by a fator of 2 relative to the approx-imation ratio of the standard Aggressive strategy. For Aggressive1 this is easyto see. The algorithm performs exatly the same fethes and evitions as theAggressive algorithm if all referenes were read requests. In the worst ase eahahe replaement takes 2F instead of F time units as the evited blok has tobe written to disk. For Aggressive2 the bound is not obvious. The problem isthat Aggressive2 �nishes feth operations on read/write request sequenes laterthan Aggressive if all requests were read referenes. This a�ets the bloks tobe evited in future fethes and hene the ahe replaements are di�erent. Theproof of the following theorem is omitted due to spae limitations.Theorem 2. For any request sequene �, the elapsed time of Aggressive1 andAggressive2 on � is at most 2minf1 + F=k; 2g times the elapsed time of OPTon �.Cao et al. [4℄ showed that for F = k � 2, the approximation ratio of Aggressiveon request sequenes onsisting of read requests is not smaller than 2. We provea orresponding bound for Aggressive1 and Aggressive2 .Theorem 3. For F = k, the approximation ratios of Aggressive1 and Aggres-sive2 are not smaller than 4.Proof. Let k � 4. For the onstrution of the lower bound we use k � 3 bloksA1; : : : ; Ak�3, two bloks B1 and B2 as well as two bloks C1 and C2. Hene wework with a universe of size k + 1 so that there is always one blok missing inahe. The referene to A1; : : : ; Ak�3; C1 and C2 will always be write requests.The referenes to B1 and B2 will always be read requests.Let �0 = �1; �2, where �1 = A�1; B1; A�2; : : : ; A�k�3; C�1 ; B2; C�2 and�2 = A�1; B2; A�2; : : : ; A�k�3; C�2 ; B1; C�1 . The sequene �1 and �2 are identialexept that the positions of B1 and B2 as well as C1 and C2 are interhanged.Let � = (�0)i, for some i � 1, i.e. �0 is repeated an arbitrary number of times. Weompare the elapsed time of Aggressive1 and Aggressive2 on �0 to the elapsedtime of OPT on �0 and assume that our approximation algorithms initially haveA1; : : : ; Ak�3; B1; B2 and C1 in ahe. We �rst onsider Aggressive1 . At the be-ginning of �1 all bloks in ahe are requested before the missing blok C2. HeneAggressive1 an start the feth for C2 only after the servie of the request to A1



in �1. It inurs F units of stall time before the request to B1 in order to writeA1 to disk and then evits A1 to load C2. The feth is ompleted immediatelybefore the request to C2, where 1 unit of stall time must be inurred. To load themissing blok A1, whih is �rst requested in �2, Aggressive1 writes C1 to diskimmediately before the request to C2, generating F additional units of stall timebefore that request. Then C1 is evited to load A1 and F � 1 units of stall timemust be inurred before the request to A1. At that point Aggressive1 has bloksA1; : : : ; Ak�3; B1; B2 and C2 in ahe. The ahe replaements in �2 are the asas in �1, exept that the roles of C1 and C2 hange. At the end of �0 Aggressive1has again bloks A1; : : : ; Ak�3; B1; B2 and C1 in ahe, whih is idential to theinitial on�guration.Aggressive2 's shedule on �0 is the same exept that (a) F + 1 units of stalltime are inurred before the last request in �1 and �2 and (b) 2F�1 units of stalltime are generated before the �rst requests in �1 and �2. Hene both algorithmsneed 2(4F + 1) time units to serve a subsequene �0. The optimal algorithmalways keeps A1; : : : ; Ak�3; C1 and C2 in ahe and only swaps B1 and B2. Itneeds 2(F + 4) time units to serve �0. Sine F = k, we obtain a performaneratio of (4k + 1)=(k + 4), whih an be arbitrarily lose to 4. ut
3 New algorithmsWe present an algorithm that ahieves an approximation ratio of 2 and hene per-forms better than Conservative and Aggressive. Intuitively, the following strat-egy delays the next feth operation for F time units and then determines thebest blok to be evited.Algorithm Wait: Whenever the algorithm is not in the middle of a feth orwrite operation, it works as follows. Let ri be the next request to be served andrj , j � i, be the next request where the referened blok is not in ahe at themoment. If all the k bloks urrently in ahe are requested before rj , then thealgorithm serves ri without initiating a write or feth operation. Otherwise letd = minfF; j � ig and let S be the set of bloks referened by write requestsin ri; : : : ; ri+d�1. Immediately before serving ri+d the algorithm initiates a fethfor the blok requested by rj . It evits the blok b whose next request is furthestin the future among bloks in ahe that are not ontained in S. If b has beenmodi�ed sine the last time it was brought into ahe, the algorithm writes b todisk while serving ri; : : : ; ri+d�1, inurring F � d units of stall time. Otherwiseri; : : : ; ri+d�1 are served without exeuting a write or feth operation.Theorem 4. The Wait algorithm ahieves an approximation ratio of 2.For the analysis of Wait (and Aggressive2 ) we need a dominane oneptintrodued by Cao et al. [4℄. Given a request sequene �, let A(t) be the indexof the next request at time t when A proesses �. Suppose that A(t) = i. For anyj with 1 � j � n�k, let hA(t; j) be the smallest index suh that the subsequene�(i); : : : ; �(hA(t; j)) ontains j distint blok not in ahe at time t. We also referto hA(t; j) as A's jth hole. Given two prefething/ahing algorithms A and B,



A's ursor at time t dominates B's ursor at time t0 if a(t) � B(t0). Moreover,A's holes at time t dominate B's holes at time t0 if hA(t; j) � hB(t0; j), for all1 � j � n � k. Finally A's state at time t dominates B's state at time t0 if A'sursor at time t dominates B's ursor at time t0 and A's holes at time t dominateB's holes at time t0. Cao et al. proved the following lemma.Lemma 1. [4℄ Suppose that A (resp. B) initiates a feth at time t (resp. t0)and that both algorithms feth the next missing blok. Suppose that A replaesthe blok whose next request is furthest in the future. If A's state at time tdominates B's state at time t0, then A's state at time t+F dominates B's stateat time t0 + F .Proof (of Theorem 4). We onstrut time sequenes t0; t1; t2; : : : and t00; t01; t02; : : :suh that (a) Wait 's state at time tl dominates OPT's state at time t0l, (b) Waitis not in the middle of a feth or write operation at time tl and () tl+1 � tl �2(t0l+1 � t0l), for all l � 0. Condition () then implies the theorem.Setting t0 = t00 = 0, onditions (a{) hold initially. Suppose that they holdat times tl and t0l and let ri the next request to be served by Wait . If at timetl all bloks in Wait 's ahe are requested before the next missing blok, thenWait serves ri without initiating a write or feth operation. We set tl+1 = tl+1and t0l+1 = tl+1+1. Conditions (b) and () hold. Sine at time tl+1 Wait 's holesour at the latest possible positions, Wait 's state at time tl+1 dominates OPT'sstate at time t0l+1. In the remainder of this proof we assume that at time tl thereis a blok in Wait 's ahe whose next request is after rj , where rj is the refereneof the next missing blok.Let tl+1 be the time whenWait ompletes the next feth and let t0l+1 = t0l+F .We have tl+1 � tl � 2F and hene ondition () holds. Also, Wait is not in themiddle of a feth or write operation at time tl+1. We have to argue that Wait 'sstate at time tl+1 dominates OPT's state at time t0l+1. First, Wait 's ursor attime tl+1 dominates OPT's ursor at time t0l+1. This is obvious if Wait does notinur stall time to omplete the feth. If Wait does inur stall time, then OPT'sursor annot pass Wait 's ursor beause the index of Wait 's next hole at timetl is at least as large as the index of OPT's next hole at time t0l and OPT needsat least F time units to omplete the next feth.If OPT does not initiate a feth before t0l+1, we are easily done. The indiesof Wait 's n�k holes inrease when moving from tl to tl+1 while OPT's holes donot hange between t0l and t0l+1. HeneWait 's holes at time tl+1 dominate OPT'sholes at time t0l+1 and we have the desired domination for the states. If OPT doesinitiate a feth before t0l+1, then the analysis is more involved. Let a be the blokevited by OPT during the feth and let b be the blok evited by Wait duringthe �rst feth after tl. If the next request to b is not earlier than the next requestto a, then Wait 's holes at time tl+1 dominate OPT's holes at time t0l+1 and wehave again domination for the states. Otherwise, let d = minfF; j � ig. Waitinitiates the next feth after tl immediately before serving ri+d. OPT annotinitiate the �rst feth after t0l after ri+d. If d = F , this follows from the fat thatWait 's ursor at time tl dominates OPT's ursor at time t0l and OPT initiates



the feth before t0l + F . If d < F , then the statement holds beause the index ofWait 's next hole at time tl is at least as large as the index of OPT's next holeat time t0l and ri+d is the next missing blok for Wait .Reall that we study the ase that the next request to blok b is before thenext request to a. Blok a is not in the set S of bloks referened by write requestsin ri; : : : ; ri+d�1 beause a would have to be written bak to disk after its lastwrite referene in ri; : : : ; ii+d�1. This write opertion would take F time unitsafter tl and ould not be ompleted before tl+1. As argued at the end of the lastparagraph, Wait 's ursor at the time when Wait initiates the feth dominatesOPT's ursor when OPT initiates the feth. By the de�nition of the algorithm,Wait evits the blok whose next request is furthest in the future among bloksnot in S. We have a =2 S. Sine Wait does not evit blok a but the next requestto a is after the next request to b it must be the ase that a is not in Wait 'sahe at the time when the algorithm initiated the �rst feth after tl. Hene a isnot in Wait 's ahe at time tl and orresponds to one of Wait 's holes at time tl.Consider OPT's holes at time t0l that are after Wait 's �rst hole hW (tl; 1) attime tl. If these holes are a subset of Wait 's holes at time tl, then OPT's holesat time t0l+1 with index larger than hW (tl; 1) are a subset of Wait 's holes attime tl+1. The reason is that, as argued above, Wait also has a hole at the nextrequest to a, the blok evited by OPT during the feth. Note that all of Wait 'sholes at time t0l have index larger than hW (tl; 1). Hene Wait 's holes at timetl+1 dominate OPT's holes at time t0l+1.If OPT's holes at time t0l with index larger than hW (tl; 1) are not a subsetof Wait 's holes at time tl, then let hOPT (t0l; s0) be the largest index suh thathOPT (t0l; s0) > hW (tl; 1) and Wait does not have a hole at the request indexedhOPT (t0l; s0). The blok referened by that request annot be in S beause OPTwould not be able to write the blok bak to disk before tl + F . Hene the nextrequest to the blok b evited by Wait annot be before hOPT (t0l; s0). At time tllet s be the number ofWait 's holes with index smaller than hOPT (t0l; s0). At timetl+1, the �rst hole is �lled. Hene Wait 's �rst s� 1 holes at time tl+1 dominateOPT's �rst holes at time t0l+1. Wait 's remaining holes at time t0l+1 have anindex of at least hOPT (t0l; s0) and OPT's holes at time t0l+1 with an index largerthan hOPT (t0l; s0) are a subset of Wait 's holes beause, as mentioned before, thenext request to blok a evited by OPT is a hole for Wait . Hene Wait 's lastn�k�(s�1) holes at time tl+1 dominate OPT's last n�k�(s�1) holes at timet0l+1. Thus Wait 's state at time tl+1 dominates OPT's state at time t0l+1. ut
4 ComplexityTheorem 5. Given a request sequene �, it is NP-omplete to deide if thereexists a prefething/ahing shedule for � that initiates at most f feth and atmost w write operations.The proof is omitted due to spae limitations.



5 Algorithms for parallel disk systemsIn this we study integrated prefething and ahing in systems with D paralleldisks. To speed up write operations, many parallel disk systems have the optionof writing a memory blok to an arbitrary loation in the disk systems and notneessarily to the loation where the blok was stored previously. In partiular,bloks may be written to arbitrary disks. As an example, suppose that blokb has to be written to disk and that only disk d is idle at the moment. Nowdisk d an simply write b to the available loation losest to the urrent headposition. Of ourse, if a blok is written to a loation di�erent from the onewhere the blok was stored previously, the old opy of the blok beomes invalidand annot be used in future feth operations. We assume that at any time, forany blok there exists exatly one valid opy in the parallel disk system.Given the ability to write bloks to arbitrary disks, we are able to designprefething/ahing algorithms that ahieve a onstant performane ratio inde-pendent of D. In partiular we are able to onstrut eÆient prefething/ahingshedules in two steps. Given a request sequene �, we �rst build up a sheduleS without onsidering from whih disks bloks have to be fethed and to whihdisks they have to be written bak. The algorithm Loadbalane desribed belowthen assigns feth and write operations to the di�erent disks. The algorithmworks as long as S is synhronized and exeutes at most dD=2e parallel disk op-erations at any time. Moreover bloks evited from ahe must be written bakto disk every time, even if they have not been modi�ed sine the last time theywere brought into ahe.A shedule is synhronized if any two disk operations either are exeuted inexatly the same time interval or do not overlap at all. Formally, for any twodisk operations exeuted from time t1 to t01 and from time t2 to t02, with t1 � t2we require (1) t1 = t2 and t01 = t02 or (2) t01 < t2.Algorithm Loadbalane:The algorithm takes as input a synhronized prefeth-ing/ahing shedule S in whih at most dD=2e disk operations are performed atany time. Bloks are written bak to disk eah time they are evited from ahe.The shedule is feasible exept that disk operations have not yet been assignedto disks. The assignment is now done as follows. The initial disk on�gurationspei�es from whih disk to load a blok when it is fethed for the �rst time inS. As for the other assignments, the algorithm onsiders the write operations inS in order of inreasing time when they are initiated; ties are broken arbitrarily.Let w be the write operation just onsidered and b be the blok written bak.Let f be the operation in S that fethes b bak the next time. Assign w andf to a disk that is not yet used by operations exeuted in parallel with w andf . Suh a disk must exist beause a total of 2(dD=2e � 1) disk operations areperformed in parallel with w and f .We next present algorithms for omputing shedules S that have the proper-ties required by Loadbalane. We �rst develop a parallel implementation of theConservative algorithm.Algorithm Conservative: Consider the requests in the given sequene � oneby one. Let ri be the next request for whih the referened blok is not in ahe.



The algorithm shedules up to dD=2e ahe replaements immediately before rias follows. In eah step let a be the next blok missing in ahe and b be theblok in ahe whose next request is further in the future. If the next requestto a is before the next request is to b, then evit b in order to load a. Supposethat d � dD=2e ahe replaements are determined in this way. Let a1; : : : ; anbe the bloks loaded and b1; : : : ; bn be the bloks evited. Shedule a set of dsynhronized write operations in whih b1; : : : ; bd are written, followed by a setof d synhronized feth operations in whih a1; : : : ; an are loaded immediatelybefore ri. These disk operations do not overlap with the servie of requests. Inthe following we refer to suh a ombination of write and feth operations as anaess interval.Applying Loadbalane to a shedule onstruted by Conservative, we obtaina feasible prefething/ahing shedule for a given �, provided that we modifythe shedule as follows. If an aess interval fethes two bloks that are loadedfor the �rst time in the shedule and reside on the same disk in the initialdisk on�guration, then shedule an additional feth operation before the givenrequest ri.Theorem 6. For any �, the elapsed time of the shedule onstruted by Conser-vative and Loadbalane is at most 5 times the elapsed time of an optimal sheduleplus FB. Here B is the number of distint bloks requested in �.Proof. Given an arbitrary request sequene �, let I be the number of aessintervals generated by Conservative. The total elapsed time of the shedule on-struted by Conservative and Loadbalane is bounded by j�j+(W +F )I +FB.The additive FB is neessary to bound the feth time for bloks loaded for the�rst time in the shedule. Beause of initial disk on�guration, it might not bepossible to exeute these feth operations in parallel with other fethes. We willshow that the elapsed time of an optimal shedule is at least maxfj�j; F dI=2eg.Sine W � F , the theorem then follows.It suÆes to show that F dI=2e is a lower bound on the elapsed time of anoptimal shedule beause the lower bound of j�j is obvious. Let S be an optimalshedule for j�j. We partition the feth operations in � into sets of fethes . Forthis purpose we sort the feth operations in S by inreasing starting times; tiesare broken arbitrarily. The �rst set of fethes ontains the �rst feth operationf and all the fethes that are initiated before f is �nished. In general, supposethat i � 1 sets of fethes have been onstruted so far. The ith set of fethesontains feth operations that are not yet ontained in the i � 1 �rst sets. Itontains the �rst suh feth f as well as all feth operations that are initiatedbefore f terminates. Let J be the number of sets thus reated. The �rst fethesin these J sets are non-overlapping and hene the optimum algorithm spends atleast FJ time units fething bloks.Lemma 2. It is possible to modify the shedule S suh that it is idential toConservative's shedule and the total feth time is at most 2FJ .The proof is omitted. Sine the total feth time of Conservative's shedule is IF ,the desired bound then follows. ut



We next give an implementation of the Aggressive algorithm. It uses dD=2eextra memory loations in ahe.Algorithm Aggressive+: Let ri be the next request to be served and rj be thenext request where the referened blok is not in ahe. Let d = minfj � i; Fg.Determine the largest number d, d � dD=2e, suh that there exist d bloks inahe whose next requests after ri+d�1 are later than the �rst referenes of thenext d bloks missing in ahe. If d = 0, then serve ri without initiating a feth.Otherwise, when serving ri, initiate d synhronized feth operations in whihthe next d missing bloks are loaded into dD=2e extra ahe loations. Whenthese fethes are omplete, evit the d bloks from ahe whose next requestsare furthest in the future and write them bak to disk in a synhronized writeoperation. The dD=2e extra ahe loations are available again. Note that thewrite operations start with the servie of ri+d.Again we apply Loadbalane to a shedule onstruted by Aggressive+. Theproof of the next theorem is omitted.Theorem 7. Given a request sequene �, the elapsed time of the shedule on-struted by Aggressive+ and Loadbalane is at most 4 time the elapsed time ofan optimal shedule plus FB, where B is the number of distint bloks requestedin �.Referenes1. S. Albers, N. Garg and S. Leonardi. Minimizing stall time in single and parallel disksystems. Journal of the ACM, 47:969{986, 2000. Preliminary version STOC98.2. S. Albers and C. Witt. Minimizing stall time in single and parallel disk systems usingmultiommodity network ows. Pro. 4th International Workshop on ApproximationAlgorithms for Combinatorial Optimization Problems (APPROX), Springer LNCS2129, 12{23, 2001.3. L.A. Belady. A study of replaement algorithms for virtual storage omputers. IBMSystems Journal , 5:78{101, 1966.4. P. Cao, E.W. Felten, A.R. Karlin and K. Li. A study of integrated prefethingand ahing strategies. Pro. ACM International Conferene on Measurement andModeling of Computer Systems (SIGMETRICS), 188{196, 1995.5. P. Cao, E.W. Felten, A.R. Karlin and K. Li. Implementation and performane ofintegrated appliation-ontrolled ahing, prefething and disk sheduling. ACMTransation on Computer Systems (TOCS), 14:311{343, 1996.6. A. Gaysinsky, A. Itai, and H. Shahnai. Strongly ompetitive algorithms for ahingwith pipelined prefething. Pro. of the 9th Annual European Symposium on Algo-rithms (ESA01), Springer LNCS 2161, 49{61, 2001.7. T. Kimbrel and A.R. Karlin. Near-optimal parallel prefething and ahing. SIAMJournal on Computing , 29:1051 { 1082, 2000. Preliminary version in FOCS96.8. T. Kimbrel, P. Cao, E.W. Felten, A.R. Karlin and K. Li. Integrated parallel prefeth-ing and ahing. Pro. ACM International Conferene on Measurement and Model-ing of Computer Systems (SIGMETRICS), 1996.9. T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad, P. Cao, E.W. Felten,G.A. Gibson, A.R. Karlin and K. Li. A trae-driven omparison of algorithms forparallel prefething and ahing. Pro. of the ACM SIGOPS/USENIX AssoiationSymposium on Operating System Design and Implementation, 1996.


