Integrated Prefetching and Caching
with Read and Write Requests

Susanne Albers! and Markus Biittner!

Institute of Computer Science, Freiburg University,
Georges-Kohler-Allee 79, 79110 Freiburg, Germany.
{salbers,buettner}@informatik.uni-freiburg.de

Abstract. All previous work on integrated prefetching/caching assumes
that memory reference strings consist of read requests only. In this pa-
per we present the first study of integrated prefetching/caching with both
read and write requests. For single disk systems we analyze popular al-
gorithms such as Conservative and Aggressive and give tight bounds on
their approximation ratios. We also develop a new algorithm that per-
forms better than Conservative and Aggressive. For parallel disk systems
we present a general technique to construct feasible schedules. The tech-
nique achieves a load balancing among the disks. Finally we show that
it is NP-complete to decide if an input can be served with f fetch and w
write operations, even in the single disk setting.

1 Introduction

Prefetching and caching are powerful and extensively studied techniques to im-
prove the performance of storage hierarchies. In prefetching missing memory
blocks are loaded from slow memory, e.g. a disk, into cache before their actual
reference. Caching strategies try to keep actively referenced blocks in cache. Both
techniques aim at reducing processor stall times that occur when requested data
is not available in cache. Most of the previous work investigated prefetching
and caching in isolation although they are strongly related: When prefetching a
block, one has to evict a block from cache in order to make room for the incoming
block. Prefetch operations initiated too early can harm the cache configuration.
Prefetch operations started too late diminish the effect of prefetching. Therefore,
there has recently been considerable research interest in integrated prefetching
and caching [1,2,4-9]. The goal is to develop strategies that coordinate prefetch-
ing and caching decisions.

All the previous work on integrated prefetching/caching assumes that mem-
ory reference strings consist of read requests only, i.e. we only wish to read data
blocks. In other words, memory blocks are read-only and do not have to be
written back to disk when they are evicted from cache. However, in practice
reference strings consist of both read and write requests. In a write request we
wish to modify and update a given data block. Of course, modified blocks must
be written to disk when they are evicted from cache.

In this paper we present the first study of integrated prefetching/caching
with read and write requests. It turns out that integrated prefetching/caching is
considerably more complicated in the presence of write requests. The problem
is that prefetch and write operations compete with each other and it is not
clear when to schedule which disk operation. Moreover, compared to the read-
only case, it is not true anymore that in a prefetch operation we always evict
the block from cache whose next request is furthest in the future. To save a
write-back operation it might be better to evict an unmodified block, even if it
is requested again soon. Finally, even if it were known when to initiate write
operations, there is no simple rule that determines which blocks to write to disk.

Cao et al. [4] introduced a formal model for integrated prefetching/caching.
We also use this model but generalize it to take into account read and write
requests. We are given a request sequence o = ry, . .., r, consisting of n requests.
Each request specifies the block to be accessed and the type of reference. If r; = b;
, then r; is a read request to block b;. If r; = b}, then the reference is a write
request where we want to modify b;. We first assume that all blocks reside on a
single disk. To serve a request, the requested block must be in cache. The cache
can simultaneously hold k& blocks. Serving a request to a block in cache takes
1 time unit. If a requested block is not in cache, then it must be fetched from
disk, which takes F' time units. A fetch operation may overlap with the service
of requests to blocks already in cache. If a fetch, i.e. a prefetch, of a block is
initiated at least F' requests before the reference to the block, then the block is
in cache at the time of the request and no processor stall time is incurred. If the
fetch is started only i, i < F, requests before the reference, then the processor
has to stall for F'—1 time units until the fetch is finished. When a fetch operation
is initiated, a block must be evicted from cache to make room for the incoming
block. A block that was modified since the last time it was brought into cache
can only be evicted if it has been written back to disk after its last write request.
Such a write-back operation takes W time units and can be scheduled any time
before the eviction. If the operation overlaps with the service of i < W requests,
then W — ¢ units of processor stall time are incurred to complete the write
operation. In this submission, unless otherwise stated we assume for simplicity
that W = F. The goal is to minimize the total processor stall time incurred
on the entire request sequence. This is equivalent to minimizing the elapsed
time, which is the sum of the processor stall time and the length of the request
sequence. We emphasize here that the input ¢ is completely known in advance.

To illustrate the problem, consider a small example. Let
o = by, b5,ba,bs, b}, b3, ba,b3,b5,b1,b4,b2. Assume that we have a cache of size
k = 4 and that initially blocks by, b2, b3 and b4 reside in cache. Let FF =W = 3.
The first missing block is bs. We could initiate the fetch for b5 when starting
the service of the request b3. The fetch would be executed while serving requests
b3, ba and bs. When starting this fetch, we can only evict by, which is requested
again after bs. We could initiate the fetch for b; when serving request b5 and
evict bs3. Two units of stall time would be incurred before request by, so that the
total elapsed time is equal to 14 time units. A better option is to write by back

to disk after request b5 and then to initiate a fetch for b5 by evicting be. Both
disk operations finish in time before request b5 because the write operation may
overlap with the service of the read request to bo. When serving request bs we
could start fetching by by evicting b3. Again this operation would be finished in
time so that the elapsed time of this schedule is equal to 12 time units.

Integrated prefetching and caching is also interesting in parallel disk systems.
Suppose that we have D disks and that each memory block always resides on
exactly one of the disks. Fetch and write operations on different disks may be
executed in parallel. Of course we can take advantage of the parallelism given by a
multiple disk system. If the processor incurs stall time to wait for the completion
of a fetch or write operation, then fetch and write operations executed in parallel
on other disks also make progress towards completion during that time. Again
we wish to minimize the total elapsed time.

Previous work: As mentioned before, all previous work on integrated
prefetching/caching [1,2,4-9] assumes that request sequences consist of read
request only. Cao et al. [4], who initiated the research on integrated prefetch-
ing/caching, introduced two popular algorithms called Conservative and Aggres-
sive for the single disk problem. Conservative performs exactly the same cache
replacements as the optimum offline paging algorithm [3] but starts each fetch at
the earliest possible point in time. Cao et al. showed that Conservative achieves
an approximation ratio of 2, i.e. for any request sequence the elapsed time of
Conservative’s schedule is at most twice the elapsed time of an optimal sched-
ule. This bound is tight. The Aggressive algorithm starts prefetch operations at
the earliest reasonable point in time. Cao et al. proved that Aggressive has an
approximation ratio of at most min{1 + F/k,2} and showed that this bound is
tight for F' = k. Kimbrel and Karlin [7] analyzed Conservative and Aggressive
in parallel disk systems and showed that the approximation guarantees are es-
sentially equal to D. They also presented an algorithm called Reserve Aggressive
and proved an approximation guarantee of 1 + DF/k.

In [1] it was shown, that an optimal prefetching/caching schedule for a sin-
gle disk can be computed in polynominal time based on a linear programming
approach. The approach was extended to parallel disk systems and gave a D-
approximation algorithm for the problem of minimizing the stall time of a sched-
ule. The algorithm uses D — 1 extra memory locations in cache. The complexity
of the parallel disk problem is still unknown.

Our contribution: This paper is an in-depth study of integrated prefetch-
ing/caching with read an write requests. We first address the single disk problem.
In Section 2 we investigate implementations of Conservative and Aggressive and
prove that Conservative has an approximation ratio of 3. We show that this
bound is tight. We also show that Aggressive achieves an approximation guar-
antee of min{2 + 2F/k,4} and that this bound is tight for F = k. Hence, sur-
prisingly, for large ratios of F//k Conservative performs better than Aggressive.
This is in contrast to the algorithms’ relative performance in the read-only case.

In Section 3 we develop a new prefetching/caching algorithm that has an
approximation ratio of 2 and hence performs better than Conservative and Ag-

gressive for all F' and k. The basic idea of the new strategy is to delay cache
replacements for a few time units.

The complexity of integrated prefetching/caching in the presence of write
requests is unknown. However, Section 4 indicates that the problem is probably
NP-hard. More precisely we prove that it is NP-complete to decide if a given
request sequence can be served with at most f fetch and w write operations.

In Section 5 we study systems with D parallel disks. To speed up write
operations, many parallel disk systems have the option of writing memory blocks
back to an arbitrary disk and not necessarily to the disk where the block was
stored previously. Of course, old copies of a block become invalid. Hence the
disk where a given block resides may change over time. We present a general
technique for constructing feasible prefetching/caching schedules in two steps.
In the first step an algorithm determines fetch and write operations without
considering on which disks the involved blocks reside. The second step assigns
disks to all the fetch and write operations so that a load balancing is achieved for
all the disks. Using a parallel, synchronized implementation of the Conservative
algorithm in step 1 we obtain schedules whose elapsed time is at most 5 times the
elapsed time of an optimal schedule plus an additive term that depends on the
initial disk configuration. Replacing Conservative by Aggressive and investing
[D/2] additional memory locations in cache the ratio of 5 drops to 4.

2 Analysis of Conservative and Aggressive

In this section we study the single disk setting. We extend the algorithms Con-
servative and Aggressive to request sequences consisting of both read and write
requests and analyze their performance. Conservative executes exactly the same
cache replacements as the optimum offline paging algorithm MIN [3] while initi-
ating a fetch at the earliest reasonable point in time, i.e. the block to be evicted
should not be requested before the block to be fetched. Modified blocks to be
evicted may be written back to disk anytime before their eviction.

Theorem 1. For any request sequence o, the elapsed time of Conservative’s
schedule is at most 3 times the elapsed time of an optimal schedule. This bound is
nearly tight, i.e. there are request sequences for which the ratio of Conservative’s
elapsed time to OPT’s elapsed time is at least (3F + 2)/(F + 2).

Proof. The upper bound of 3 is easy to see. Consider an arbitrary request se-
quence o and suppose that Conservative performs m cache replacements. In
the worst case each replacements takes 2F' time units: The algorithm may need
W = F time units to write the block to be evicted to disk; F' time units are in-
curred to fetch the new block. Let Cons(c) be the total elapsed time of Conserva-
tive’s schedule. Then Cons(o) < |o| + 2Fm. Conservative’s cache replacements
are determined by the MIN algorithm, which incurs the minimum number of
cache replacements for any request sequence. Thus the optimum algorithm per-
forms at least m cache replacements on o, each of which takes at least F' time
units. We have OPT (o) > max{|o|, Fm} and hence Cons(c) < 3-OPT (o).

For the construction of the lower bound we assume k& > 3 and use k —2 blocks
Aq,..., Ay _o as well as k — 2 block By, ..., Br_2 and three auxiliary blocks X,
Y and Z. The requests to blocks Ay,..., Ax_2, X, Y and Z will always be read
requests whereas the requests to By, ..., By_o will always be write requests. We
use the asterisk to denote write requests, i.e. B} is a write request modifying
block B;, 1 < i < k — 2. The request sequence is composed of subsequences o 4
and o, where 04 = Z¥', A, Z¥ As,..., Z¥ A}, 5 and op = Bj, ... ,Bj_,. Let
o' =0a,08,7Z,X,04,085,7Z,Y. The request sequence ¢ is an arbitrary number of
repetitions of o/, i.e. ¢ = (¢')?, for some positive integer i. To establish the lower
bound we compare Conservative’s elapsed time on ¢’ to OPT’s elapsed time on
o'. In the analysis the two algorithms start with different cache configurations
but at the end of ¢’ the algorithms are again in their initial configuration.

We assume that initially Conservative has blocks Aq,..., Ax_2, Y and Z in
cache. During the service of the first 04 in ¢’ Conservative first evicts Y to
load Bj. This fetch overlaps with the service of requests. While serving the first
op, Conservative evicts B; to load B;;1, for i = 1,...,k — 3. Each operation
generates 2F units of stall time because the evicted block has to be written to
disk and the fetch cannot overlap with the service of requests. Then Conservative
evicts Bi_s to fetch X. Again the operation takes 2F time units but can overlap
with the service of the request to Z. The algorithm now has Ay,..., Ax_2, X and
Z in cache. It serves the second part of ¢’ in the same way as the first part except
that in the beginning X is evicted to load B; and in the end Bj_5 is evicted to
load Y so that the final cache configuration is again Ay,..., Ay 2, Y and Z. To
serve o', Conservative needs Cons(c') = 2((k—2)(F+1)+1+(k—2)(2F +1)) =
2((k —2)(3F +2) + 1) time units.

For the analysis of OPT on ¢’ we assume that OPT has initially By, ..., Bx_o,
Y and Z in cache. Blocks By, ..., By _o and Z are never evicted. In the first part
of o/ OPT evicts Y to load A; and then evicts A; toload A;,1,fori=1,...,k—3.
These fetches are executed during the sevice of the requests to Z. While serving
op OPT evicts Ai_» to load X and the cache then contains By, ..., Bx_2, X and
Z. In the second part of o’ the operations are the same except the roles of X and
Y interchange. OPT’s cache configuration at the end of ¢’ is again B, ..., Bgx_a2,
Y and Z. The elapsed time is OPT(¢’) = 2((k —2)(F +1) + max{F, k—1} +1).

Hence, for F' < k, the ratio of Conservative’s elapsed time to OPT’s elapsed
time on ¢’ is

Cons(o’) (k—2)(3F+2)+1 S 3F+2

OPT(0') (k=2)(F+1)+k = F+2
and the desired bound follows by repeating ¢’ often enough. O

The Aggressive algorithm proposed by Cao et al. [4] works as follows. When-
ever the algorithm is not in the middle of a fetch, it determines the next block b
in the request sequence missing in cache as well as the block b’ in cache whose
next request is furthest in the future. If the next request to b is before the next
request to b', then Aggressive initiates a fetch for b evicting b’ from cache. We
consider two extension of this algorithm to request sequences with read and
write requests. If b’ has to be written back to disk, then Aggressivel executes

the write operation immediately before initiating the fetch for b and incurs F
units of stall time before that fetch operation. Aggressive2 on the the other hand
overlaps the write-back operation as much as possible with the service of past
and future requests at the expense of delaying the fetch for b. More formally,
assume that Aggressive2 finished the last fetch operation immediately before
reqeust r; and that r;, j > 7 is the first request such that the next request to b is
before the next request to b’. If b’ has to be written back to disk, start the wirte
operation at the earliest r;/, i’ > 4, such that b’ is not requested between r;; and
rj. Overlap the operation as much as possible with the service of request.

While Aggressivel is very easy to analyze, Aggressive2 is a more intuitive im-
plementation of an aggressive strategy. We show that the approximation ratios
of Aggressivel and Aggressive?2 increase by a factor of 2 relative to the approx-
imation ratio of the standard Aggressive strategy. For Aggressivel this is easy
to see. The algorithm performs exactly the same fetches and evictions as the
Aggressive algorithm if all references were read requests. In the worst case each
cache replacement takes 2F instead of F' time units as the evicted block has to
be written to disk. For Aggressive2 the bound is not obvious. The problem is
that Aggressive2 finishes fetch operations on read/write request sequences later
than Aggressive if all requests were read references. This affects the blocks to
be evicted in future fetches and hence the cache replacements are different. The
proof of the following theorem is omitted due to space limitations.

Theorem 2. For any request sequence o, the elapsed time of Aggressivel and
Aggressive2 on o is at most 2min{l + F/k,2} times the elapsed time of OPT
on o.

Cao et al. [4] showed that for F' = k — 2, the approximation ratio of Aggressive
on request sequences consisting of read requests is not smaller than 2. We prove
a corresponding bound for Aggressivel and Aggressive2.

Theorem 3. For F = k, the approximation ratios of Aggressivel and Aggres-
sive2 are not smaller than 4.

Proof. Let k > 4. For the construction of the lower bound we use k — 3 blocks
Aq,..., A, 3, two blocks B; and By as well as two blocks C; and Cs. Hence we
work with a universe of size k + 1 so that there is always one block missing in
cache. The reference to Aq,...,Ar_3,C; and Cy will always be write requests.
The references to B; and Bs will always be read requests.

Let ¢/ = 01,02, where o = 1, B1, A%, ... A} 5,Cf,B,C5 and
oy = A},B2, A5, ..., A 4,C5,B1,Cf. The sequence o and o are identical
except that the positions of B; and By as well as C; and Cs are interchanged.
Let 0 = (0')?, for some i > 1, i.e. o’ is repeated an arbitrary number of times. We
compare the elapsed time of Aggressivel and Aggressive2 on ¢’ to the elapsed
time of OPT on ¢’ and assume that our approximation algorithms initially have
Ay, ..., A;_3,B1, By and C; in cache. We first consider Aggressivel. At the be-
ginning of o all blocks in cache are requested before the missing block C5. Hence
Aggressivel can start the fetch for Co only after the service of the request to A

in oy. It incurs F units of stall time before the request to By in order to write
A; to disk and then evicts A; to load Cy. The fetch is completed immediately
before the request to Cy, where 1 unit of stall time must be incurred. To load the
missing block A;, which is first requested in o9, Aggressivel writes Cy to disk
immediately before the request to Cs, generating F' additional units of stall time
before that request. Then C] is evicted to load A; and F — 1 units of stall time
must be incurred before the request to A;. At that point Aggressivel has blocks
Ai,...,A;_3,B1,Bs and Cs in cache. The cache replacements in o2 are the as
as in o1, except that the roles of C; and C» change. At the end of o’ Aggressivel
has again blocks Ay,..., Ax_3, By, B2 and C] in cache, which is identical to the
initial configuration.

Aggressive2’s schedule on ¢’ is the same except that (a) F' + 1 units of stall
time are incurred before the last request in o7 and o5 and (b) 2F —1 units of stall
time are generated before the first requests in o7 and o3. Hence both algorithms
need 2(4F + 1) time units to serve a subsequence o’. The optimal algorithm
always keeps Aj,...,Ax_3,C1 and C3 in cache and only swaps B; and Bs. It
needs 2(F + 4) time units to serve o’. Since F' = k, we obtain a performance
ratio of (4k + 1)/(k + 4), which can be arbitrarily close to 4. O

3 New algorithms

We present an algorithm that achieves an approximation ratio of 2 and hence per-
forms better than Conservative and Aggressive. Intuitively, the following strat-
egy delays the next fetch operation for F' time units and then determines the
best block to be evicted.

Algorithm Wait: Whenever the algorithm is not in the middle of a fetch or
write operation, it works as follows. Let r; be the next request to be served and
rj, j > i, be the next request where the referenced block is not in cache at the
moment. If all the k blocks currently in cache are requested before r;, then the
algorithm serves r; without initiating a write or fetch operation. Otherwise let
d = min{F,j — i} and let S be the set of blocks referenced by write requests
inr;,...,r;44-1. Immediately before serving ;4 the algorithm initiates a fetch
for the block requested by r;. It evicts the block b whose next request is furthest
in the future among blocks in cache that are not contained in S. If b has been
modified since the last time it was brought into cache, the algorithm writes b to
disk while serving r;,...,7;14_1, incurring F' — d units of stall time. Otherwise
Tiy.--,Titd—1 are served without executing a write or fetch operation.

Theorem 4. The Wait algorithm achieves an approzimation ratio of 2.

For the analysis of Wait (and Aggressive2) we need a dominance concept
introduced by Cao et al. [4]. Given a request sequence o, let c4(t) be the index
of the next request at time ¢t when A processes 0. Suppose that c4(t) = 4. For any
jwithl <j<n—k,let ha(t,j) be the smallest index such that the subsequence
o(i),...,0(ha(t,j)) contains j distinct block not in cache at time ¢. We also refer
to ha(t,j) as A’s jth hole. Given two prefetching/caching algorithms A and B,

A’s cursor at time t dominates B’s cursor at time t' if ¢,(t) > cp(t'). Moreover,
A’s holes at time t dominate B’s holes at time t' if ha(t,j) > hp(t',j), for all
1< j <n-—k. Finally A’s state at time t dominates B’s state at time t' if A’s
cursor at time ¢ dominates B’s cursor at time ¢’ and A’s holes at time ¢ dominate
B’s holes at time t'. Cao et al. proved the following lemma.

Lemma 1. [4] Suppose that A (resp. B) initiates a fetch at time t (resp. t')
and that both algorithms fetch the next missing block. Suppose that A replaces
the block whose next request is furthest in the future. If A’s state at time t
dominates B’s state at time t', then A’s state at time t + F dominates B’s state
at time t' + F.

Proof (of Theorem 4). We construct time sequences tg, t1,to, ... and t5,], 5, . ..
such that (a) Wait’s state at time ¢t; dominates OPT’s state at time ¢}, (b) Wait
is not in the middle of a fetch or write operation at time t; and (c) t;41 — t; <
2(t; ., —t7), for all [> 0. Condition (c) then implies the theorem.

Setting to = t;, = 0, conditions (a—c) hold initially. Suppose that they hold
at times ¢; and ¢; and let r; the next request to be served by Wait. If at time
t; all blocks in Wait’s cache are requested before the next missing block, then
Wait serves r; without initiating a write or fetch operation. We set ;.1 = ¢, + 1
and tj ., = t;11 + 1. Conditions (b) and (c) hold. Since at time #;; Wait’s holes
occur at the latest possible positions, Wait’s state at time ¢;11 dominates OPT’s
state at time ¢ +1- In the remainder of this proof we assume that at time ¢; there
is a block in Wait’s cache whose next request is after r;, where r; is the reference
of the next missing block.

Let t;11 be the time when Wait completes the next fetch and let ¢j ; = t;+F.
We have ;1 — t; < 2F and hence condition (c) holds. Also, Wait is not in the
middle of a fetch or write operation at time ¢; 1. We have to argue that Wait’s
state at time ¢;; dominates OPT’s state at time t;+1' First, Wait’s cursor at
time ¢;11 dominates OPT’s cursor at time t;+1' This is obvious if Wait does not
incur stall time to complete the fetch. If Wait does incur stall time, then OPT’s
cursor cannot pass Wait’s cursor because the index of Wait’s next hole at time
t; is at least as large as the index of OPT’s next hole at time ¢; and OPT needs
at least F' time units to complete the next fetch.

If OPT does not initiate a fetch before t;, ,, we are easily done. The indices
of Wait’s n — k holes increase when moving from ¢; to ;4.1 while OPT’s holes do
not change between ¢; and ¢]_ ;. Hence Wait’s holes at time ¢; 1 dominate OPT’s
holes at time ¢; ; and we have the desired domination for the states. If OPT does
initiate a fetch before #;_ ,, then the analysis is more involved. Let a be the block
evicted by OPT during the fetch and let b be the block evicted by Wait during
the first fetch after ¢;. If the next request to b is not earlier than the next request
to a, then Wait’s holes at time ¢;,; dominate OPT’s holes at time ¢}, and we
have again domination for the states. Otherwise, let d = min{F,j — i}. Wait
initiates the next fetch after ¢; immediately before serving r;;4. OPT cannot
initiate the first fetch after ¢; after r;; 4. If d = F, this follows from the fact that
Wait’s cursor at time ¢; dominates OPT’s cursor at time t; and OPT initiates

the fetch before t; + F. If d < F, then the statement holds because the index of
Wait’s next hole at time ¢; is at least as large as the index of OPT’s next hole
at time ¢; and 7;44 is the next missing block for Wait.

Recall that we study the case that the next request to block b is before the
next request to a. Block a is not in the set S of blocks referenced by write requests
in 7;,...,7i+4—1 because a would have to be written back to disk after its last
write reference in r;,...,%+4—1. This write opertion would take F' time units
after ¢; and could not be completed before ¢; 1. As argued at the end of the last
paragraph, Wait’s cursor at the time when Wait initiates the fetch dominates
OPT’s cursor when OPT initiates the fetch. By the definition of the algorithm,
Wait evicts the block whose next request is furthest in the future among blocks
not in S. We have a ¢ S. Since Wait does not evict block a but the next request
to a is after the next request to b it must be the case that a is not in Wait’s
cache at the time when the algorithm initiated the first fetch after ¢;. Hence a is
not in Wait’s cache at time ¢; and corresponds to one of Wait’s holes at time ¢;.

Consider OPT’s holes at time ¢; that are after Wait’s first hole hyw (¢;,1) at
time ¢;. If these holes are a subset of Wait’s holes at time ¢;, then OPT’s holes
at time ¢;,, with index larger than hy (t;,1) are a subset of Wait’s holes at
time ¢;41. The reason is that, as argued above, Wait also has a hole at the next
request to a, the block evicted by OPT during the fetch. Note that all of Wait’s
holes at time ¢; have index larger than hw (t;,1). Hence Wait’s holes at time
ti+1 dominate OPT’s holes at time ¢ ;.

If OPT’s holes at time ¢; with index larger than hw (t;,1) are not a subset
of Wait’s holes at time ¢;, then let hopr(t},s’) be the largest index such that
hopr(t],s") > hw(t;,1) and Wait does not have a hole at the request indexed
hopr(t],s"). The block referenced by that request cannot be in S because OPT
would not be able to write the block back to disk before ¢; + F. Hence the next
request to the block b evicted by Wait cannot be before hopr(t],s’). At time t,
let s be the number of Wait’s holes with index smaller than hopr (], s'). At time
ti11, the first hole is filled. Hence Wait’s first s — 1 holes at time ¢; 1 dominate
OPT’s first holes at time ¢;,,. Wait’s remaining holes at time #;,, have an
index of at least hopr(t},s') and OPT’s holes at time ¢;,; with an index larger
than hopr(t],s') are a subset of Wait’s holes because, as mentioned before, the
next request to block a evicted by OPT is a hole for Wait. Hence Wait’s last
n—k—(s—1) holes at time ¢;1 dominate OPT’s last n —k — (s—1) holes at time
t1.1- Thus Wait’s state at time ¢;,; dominates OPT’s state at time ¢, . O

4 Complexity

Theorem 5. Given a request sequence o, it is NP-complete to decide if there
exists a prefetching/caching schedule for o that initiates at most f fetch and at
most w write operations.

The proof is omitted due to space limitations.

5 Algorithms for parallel disk systems

In this we study integrated prefetching and caching in systems with D parallel
disks. To speed up write operations, many parallel disk systems have the option
of writing a memory block to an arbitrary location in the disk systems and not
necessarily to the location where the block was stored previously. In particular,
blocks may be written to arbitrary disks. As an example, suppose that block
b has to be written to disk and that only disk d is idle at the moment. Now
disk d can simply write b to the available location closest to the current head
position. Of course, if a block is written to a location different from the one
where the block was stored previously, the old copy of the block becomes invalid
and cannot be used in future fetch operations. We assume that at any time, for
any block there exists exactly one valid copy in the parallel disk system.

Given the ability to write blocks to arbitrary disks, we are able to design
prefetching/caching algorithms that achieve a constant performance ratio inde-
pendent of D. In particular we are able to construct efficient prefetching/caching
schedules in two steps. Given a request sequence o, we first build up a schedule
S without considering from which disks blocks have to be fetched and to which
disks they have to be written back. The algorithm Loadbalance described below
then assigns fetch and write operations to the different disks. The algorithm
works as long as S is synchronized and executes at most [D/2] parallel disk op-
erations at any time. Moreover blocks evicted from cache must be written back
to disk every time, even if they have not been modified since the last time they
were brought into cache.

A schedule is synchronized if any two disk operations either are executed in

exactly the same time interval or do not overlap at all. Formally, for any two
disk operations executed from time t; to ¢} and from time t5 to t,, with t; <t
we require (1) t; = to and t} =t} or (2) t] < to.
Algorithm Loadbalance: The algorithm takes as input a synchronized prefetch-
ing/caching schedule S in which at most [D/2] disk operations are performed at
any time. Blocks are written back to disk each time they are evicted from cache.
The schedule is feasible except that disk operations have not yet been assigned
to disks. The assignment is now done as follows. The initial disk configuration
specifies from which disk to load a block when it is fetched for the first time in
S. As for the other assignments, the algorithm considers the write operations in
S in order of increasing time when they are initiated; ties are broken arbitrarily.
Let w be the write operation just considered and b be the block written back.
Let f be the operation in S that fetches b back the next time. Assign w and
f to a disk that is not yet used by operations executed in parallel with w and
f. Such a disk must exist because a total of 2([D/2] — 1) disk operations are
performed in parallel with w and f.

We next present algorithms for computing schedules S that have the proper-
ties required by Loadbalance. We first develop a parallel implementation of the
Conservative algorithm.

Algorithm Conservative: Consider the requests in the given sequence o one
by one. Let r; be the next request for which the referenced block is not in cache.

The algorithm schedules up to [D/2] cache replacements immediately before r;
as follows. In each step let a be the next block missing in cache and b be the
block in cache whose next request is further in the future. If the next request
to a is before the next request is to b, then evict b in order to load a. Suppose
that d < [D/2] cache replacements are determined in this way. Let aq,...,a,
be the blocks loaded and by,...,b, be the blocks evicted. Schedule a set of d
synchronized write operations in which by, ..., bg are written, followed by a set
of d synchronized fetch operations in which aq,...,a, are loaded immediately
before r;. These disk operations do not overlap with the service of requests. In
the following we refer to such a combination of write and fetch operations as an
access interval.

Applying Loadbalance to a schedule constructed by Conservative, we obtain
a feasible prefetching/caching schedule for a given o, provided that we modify
the schedule as follows. If an access interval fetches two blocks that are loaded
for the first time in the schedule and reside on the same disk in the initial
disk configuration, then schedule an additional fetch operation before the given
request 7;.

Theorem 6. For any o, the elapsed time of the schedule constructed by Conser-
vative and Loadbalance is at most 5 times the elapsed time of an optimal schedule
plus FB. Here B is the number of distinct blocks requested in o.

Proof. Given an arbitrary request sequence o, let I be the number of access
intervals generated by Conservative. The total elapsed time of the schedule con-
structed by Conservative and Loadbalance is bounded by |o| + (W + F)I + FB.
The additive F'B is necessary to bound the fetch time for blocks loaded for the
first time in the schedule. Because of initial disk configuration, it might not be
possible to execute these fetch operations in parallel with other fetches. We will
show that the elapsed time of an optimal schedule is at least max{|c|, F'[I/2]}.
Since W < F, the theorem then follows.

It suffices to show that F[I/2] is a lower bound on the elapsed time of an
optimal schedule because the lower bound of |o| is obvious. Let S be an optimal
schedule for |o|. We partition the fetch operations in o into sets of fetches. For
this purpose we sort the fetch operations in S by increasing starting times; ties
are broken arbitrarily. The first set of fetches contains the first fetch operation
f and all the fetches that are initiated before f is finished. In general, suppose
that ¢ — 1 sets of fetches have been constructed so far. The ith set of fetches
contains fetch operations that are not yet contained in the 7 — 1 first sets. It
contains the first such fetch f as well as all fetch operations that are initiated
before f terminates. Let J be the number of sets thus created. The first fetches
in these J sets are non-overlapping and hence the optimum algorithm spends at
least F'J time units fetching blocks.

Lemma 2. It is possible to modify the schedule S such that it is identical to
Conservative’s schedule and the total fetch time is at most 2FJ.

The proof is omitted. Since the total fetch time of Conservative’s schedule is I'F,
the desired bound then follows. O

We next give an implementation of the Aggressive algorithm. It uses [D /2]
extra memory locations in cache.
Algorithm Aggressive-: Let r; be the next request to be served and r; be the
next request where the referenced block is not in cache. Let d = min{j — ¢, F'}.
Determine the largest number d, d < [D/2], such that there exist d blocks in
cache whose next requests after ;14 1 are later than the first references of the
next d blocks missing in cache. If d = 0, then serve r; without initiating a fetch.
Otherwise, when serving 7;, initiate d synchronized fetch operations in which
the next d missing blocks are loaded into [D/2] extra cache locations. When
these fetches are complete, evict the d blocks from cache whose next requests
are furthest in the future and write them back to disk in a synchronized write
operation. The [D/2] extra cache locations are available again. Note that the
write operations start with the service of r; 4.

Again we apply Loadbalance to a schedule constructed by Aggressive+. The
proof of the next theorem is omitted.

Theorem 7. Given a request sequence o, the elapsed time of the schedule con-
structed by Aggressive+ and Loadbalance is at most j time the elapsed time of
an optimal schedule plus F'B, where B is the number of distinct blocks requested
mo.

References

1. S. Albers, N. Garg and S. Leonardi. Minimizing stall time in single and parallel disk
systems. Journal of the ACM, 47:969-986, 2000. Preliminary version STOC98.

2. S. Albers and C. Witt. Minimizing stall time in single and parallel disk systems using
multicommodity network flows. Proc. 4th International Workshop on Approzimation
Algorithms for Combinatorial Optimization Problems (APPROX), Springer LNCS
2129, 12-23, 2001.

3. L.A. Belady. A study of replacement algorithms for virtual storage computers. IBM
Systems Journal, 5:78-101, 1966.

4. P. Cao, E.W. Felten, A.R. Karlin and K. Li. A study of integrated prefetching
and caching strategies. Proc. ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 188-196, 1995.

5. P. Cao, E.W. Felten, A.R. Karlin and K. Li. Implementation and performance of
integrated application-controlled caching, prefetching and disk scheduling. ACM
Transaction on Computer Systems (TOCS), 14:311-343, 1996.

6. A. Gaysinsky, A. Itai, and H. Shachnai. Strongly competitive algorithms for caching
with pipelined prefetching. Proc. of the 9th Annual European Symposium on Algo-
rithms (ESA01), Springer LNCS 2161, 49-61, 2001.

7. T. Kimbrel and A.R. Karlin. Near-optimal parallel prefetching and caching. STAM
Journal on Computing, 29:1051 — 1082, 2000. Preliminary version in FOCS96.

8. T. Kimbrel, P. Cao, E.W. Felten, A.R. Karlin and K. Li. Integrated parallel prefetch-
ing and caching. Proc. ACM International Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS), 1996.

9. T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad, P. Cao, E.W. Felten,
G.A. Gibson, A.R. Karlin and K. Li. A trace-driven comparison of algorithms for
parallel prefetching and caching. Proc. of the ACM SIGOPS/USENIX Association
Symposium on Operating System Design and Implementation, 1996.

