
Integrated Prefet
hing and Ca
hingwith Read and Write Requests
Susanne Albers1 and Markus B�uttner1Institute of Computer S
ien
e, Freiburg University,Georges-K�ohler-Allee 79, 79110 Freiburg, Germany.fsalbers,buettnerg�informatik.uni-freiburg.de

Abstra
t. All previous work on integrated prefet
hing/
a
hing assumesthat memory referen
e strings 
onsist of read requests only. In this pa-per we present the �rst study of integrated prefet
hing/
a
hing with bothread and write requests. For single disk systems we analyze popular al-gorithms su
h as Conservative and Aggressive and give tight bounds ontheir approximation ratios. We also develop a new algorithm that per-forms better than Conservative and Aggressive. For parallel disk systemswe present a general te
hnique to 
onstru
t feasible s
hedules. The te
h-nique a
hieves a load balan
ing among the disks. Finally we show thatit is NP-
omplete to de
ide if an input 
an be served with f fet
h and wwrite operations, even in the single disk setting.
1 Introdu
tionPrefet
hing and 
a
hing are powerful and extensively studied te
hniques to im-prove the performan
e of storage hierar
hies. In prefet
hing missing memoryblo
ks are loaded from slow memory, e.g. a disk, into 
a
he before their a
tualreferen
e. Ca
hing strategies try to keep a
tively referen
ed blo
ks in 
a
he. Bothte
hniques aim at redu
ing pro
essor stall times that o

ur when requested datais not available in 
a
he. Most of the previous work investigated prefet
hingand 
a
hing in isolation although they are strongly related: When prefet
hing ablo
k, one has to evi
t a blo
k from 
a
he in order to make room for the in
omingblo
k. Prefet
h operations initiated too early 
an harm the 
a
he 
on�guration.Prefet
h operations started too late diminish the e�e
t of prefet
hing. Therefore,there has re
ently been 
onsiderable resear
h interest in integrated prefet
hingand 
a
hing [1, 2, 4{9℄. The goal is to develop strategies that 
oordinate prefet
h-ing and 
a
hing de
isions.All the previous work on integrated prefet
hing/
a
hing assumes that mem-ory referen
e strings 
onsist of read requests only, i.e. we only wish to read datablo
ks. In other words, memory blo
ks are read-only and do not have to bewritten ba
k to disk when they are evi
ted from 
a
he. However, in pra
ti
ereferen
e strings 
onsist of both read and write requests. In a write request wewish to modify and update a given data blo
k. Of 
ourse, modi�ed blo
ks mustbe written to disk when they are evi
ted from 
a
he.



In this paper we present the �rst study of integrated prefet
hing/
a
hingwith read and write requests. It turns out that integrated prefet
hing/
a
hing is
onsiderably more 
ompli
ated in the presen
e of write requests. The problemis that prefet
h and write operations 
ompete with ea
h other and it is not
lear when to s
hedule whi
h disk operation. Moreover, 
ompared to the read-only 
ase, it is not true anymore that in a prefet
h operation we always evi
tthe blo
k from 
a
he whose next request is furthest in the future. To save awrite-ba
k operation it might be better to evi
t an unmodi�ed blo
k, even if itis requested again soon. Finally, even if it were known when to initiate writeoperations, there is no simple rule that determines whi
h blo
ks to write to disk.Cao et al. [4℄ introdu
ed a formal model for integrated prefet
hing/
a
hing.We also use this model but generalize it to take into a

ount read and writerequests. We are given a request sequen
e � = r1; : : : ; rn 
onsisting of n requests.Ea
h request spe
i�es the blo
k to be a

essed and the type of referen
e. If ri = bi, then ri is a read request to blo
k bi. If ri = b�i , then the referen
e is a writerequest where we want to modify bi. We �rst assume that all blo
ks reside on asingle disk. To serve a request, the requested blo
k must be in 
a
he. The 
a
he
an simultaneously hold k blo
ks. Serving a request to a blo
k in 
a
he takes1 time unit. If a requested blo
k is not in 
a
he, then it must be fet
hed fromdisk, whi
h takes F time units. A fet
h operation may overlap with the servi
eof requests to blo
ks already in 
a
he. If a fet
h, i.e. a prefet
h, of a blo
k isinitiated at least F requests before the referen
e to the blo
k, then the blo
k isin 
a
he at the time of the request and no pro
essor stall time is in
urred. If thefet
h is started only i, i < F , requests before the referen
e, then the pro
essorhas to stall for F�i time units until the fet
h is �nished. When a fet
h operationis initiated, a blo
k must be evi
ted from 
a
he to make room for the in
omingblo
k. A blo
k that was modi�ed sin
e the last time it was brought into 
a
he
an only be evi
ted if it has been written ba
k to disk after its last write request.Su
h a write-ba
k operation takes W time units and 
an be s
heduled any timebefore the evi
tion. If the operation overlaps with the servi
e of i �W requests,then W � i units of pro
essor stall time are in
urred to 
omplete the writeoperation. In this submission, unless otherwise stated we assume for simpli
itythat W = F . The goal is to minimize the total pro
essor stall time in
urredon the entire request sequen
e. This is equivalent to minimizing the elapsedtime, whi
h is the sum of the pro
essor stall time and the length of the requestsequen
e. We emphasize here that the input � is 
ompletely known in advan
e.To illustrate the problem, 
onsider a small example. Let� = b1; b�2; b2; b3; b�4; b3; b4; b3; b5; b1; b4; b2. Assume that we have a 
a
he of sizek = 4 and that initially blo
ks b1; b2; b3 and b4 reside in 
a
he. Let F = W = 3.The �rst missing blo
k is b5. We 
ould initiate the fet
h for b5 when startingthe servi
e of the request b�2. The fet
h would be exe
uted while serving requestsb�2; b2 and b3. When starting this fet
h, we 
an only evi
t b1, whi
h is requestedagain after b5. We 
ould initiate the fet
h for b1 when serving request b5 andevi
t b3. Two units of stall time would be in
urred before request b1, so that thetotal elapsed time is equal to 14 time units. A better option is to write b2 ba
k



to disk after request b�2 and then to initiate a fet
h for b5 by evi
ting b2. Bothdisk operations �nish in time before request b5 be
ause the write operation mayoverlap with the servi
e of the read request to b2. When serving request b5 we
ould start fet
hing b2 by evi
ting b3. Again this operation would be �nished intime so that the elapsed time of this s
hedule is equal to 12 time units.Integrated prefet
hing and 
a
hing is also interesting in parallel disk systems.Suppose that we have D disks and that ea
h memory blo
k always resides onexa
tly one of the disks. Fet
h and write operations on di�erent disks may beexe
uted in parallel. Of 
ourse we 
an take advantage of the parallelism given by amultiple disk system. If the pro
essor in
urs stall time to wait for the 
ompletionof a fet
h or write operation, then fet
h and write operations exe
uted in parallelon other disks also make progress towards 
ompletion during that time. Againwe wish to minimize the total elapsed time.Previous work: As mentioned before, all previous work on integratedprefet
hing/
a
hing [1, 2, 4{9℄ assumes that request sequen
es 
onsist of readrequest only. Cao et al. [4℄, who initiated the resear
h on integrated prefet
h-ing/
a
hing, introdu
ed two popular algorithms 
alled Conservative and Aggres-sive for the single disk problem. Conservative performs exa
tly the same 
a
herepla
ements as the optimum o�ine paging algorithm [3℄ but starts ea
h fet
h atthe earliest possible point in time. Cao et al. showed that Conservative a
hievesan approximation ratio of 2, i.e. for any request sequen
e the elapsed time ofConservative's s
hedule is at most twi
e the elapsed time of an optimal s
hed-ule. This bound is tight. The Aggressive algorithm starts prefet
h operations atthe earliest reasonable point in time. Cao et al. proved that Aggressive has anapproximation ratio of at most minf1 + F=k; 2g and showed that this bound istight for F = k. Kimbrel and Karlin [7℄ analyzed Conservative and Aggressivein parallel disk systems and showed that the approximation guarantees are es-sentially equal to D. They also presented an algorithm 
alled Reserve Aggressiveand proved an approximation guarantee of 1 +DF=k.In [1℄ it was shown, that an optimal prefet
hing/
a
hing s
hedule for a sin-gle disk 
an be 
omputed in polynominal time based on a linear programmingapproa
h. The approa
h was extended to parallel disk systems and gave a D-approximation algorithm for the problem of minimizing the stall time of a s
hed-ule. The algorithm uses D� 1 extra memory lo
ations in 
a
he. The 
omplexityof the parallel disk problem is still unknown.Our 
ontribution: This paper is an in-depth study of integrated prefet
h-ing/
a
hing with read an write requests. We �rst address the single disk problem.In Se
tion 2 we investigate implementations of Conservative and Aggressive andprove that Conservative has an approximation ratio of 3. We show that thisbound is tight. We also show that Aggressive a
hieves an approximation guar-antee of minf2 + 2F=k; 4g and that this bound is tight for F = k. Hen
e, sur-prisingly, for large ratios of F=k Conservative performs better than Aggressive.This is in 
ontrast to the algorithms' relative performan
e in the read-only 
ase.In Se
tion 3 we develop a new prefet
hing/
a
hing algorithm that has anapproximation ratio of 2 and hen
e performs better than Conservative and Ag-



gressive for all F and k. The basi
 idea of the new strategy is to delay 
a
herepla
ements for a few time units.The 
omplexity of integrated prefet
hing/
a
hing in the presen
e of writerequests is unknown. However, Se
tion 4 indi
ates that the problem is probablyNP-hard. More pre
isely we prove that it is NP-
omplete to de
ide if a givenrequest sequen
e 
an be served with at most f fet
h and w write operations.In Se
tion 5 we study systems with D parallel disks. To speed up writeoperations, many parallel disk systems have the option of writing memory blo
ksba
k to an arbitrary disk and not ne
essarily to the disk where the blo
k wasstored previously. Of 
ourse, old 
opies of a blo
k be
ome invalid. Hen
e thedisk where a given blo
k resides may 
hange over time. We present a generalte
hnique for 
onstru
ting feasible prefet
hing/
a
hing s
hedules in two steps.In the �rst step an algorithm determines fet
h and write operations without
onsidering on whi
h disks the involved blo
ks reside. The se
ond step assignsdisks to all the fet
h and write operations so that a load balan
ing is a
hieved forall the disks. Using a parallel, syn
hronized implementation of the Conservativealgorithm in step 1 we obtain s
hedules whose elapsed time is at most 5 times theelapsed time of an optimal s
hedule plus an additive term that depends on theinitial disk 
on�guration. Repla
ing Conservative by Aggressive and investingdD=2e additional memory lo
ations in 
a
he the ratio of 5 drops to 4.
2 Analysis of Conservative and AggressiveIn this se
tion we study the single disk setting. We extend the algorithms Con-servative and Aggressive to request sequen
es 
onsisting of both read and writerequests and analyze their performan
e. Conservative exe
utes exa
tly the same
a
he repla
ements as the optimum o�ine paging algorithm MIN [3℄ while initi-ating a fet
h at the earliest reasonable point in time, i.e. the blo
k to be evi
tedshould not be requested before the blo
k to be fet
hed. Modi�ed blo
ks to beevi
ted may be written ba
k to disk anytime before their evi
tion.Theorem 1. For any request sequen
e �, the elapsed time of Conservative'ss
hedule is at most 3 times the elapsed time of an optimal s
hedule. This bound isnearly tight, i.e. there are request sequen
es for whi
h the ratio of Conservative'selapsed time to OPT's elapsed time is at least (3F + 2)=(F + 2).Proof. The upper bound of 3 is easy to see. Consider an arbitrary request se-quen
e � and suppose that Conservative performs m 
a
he repla
ements. Inthe worst 
ase ea
h repla
ements takes 2F time units: The algorithm may needW = F time units to write the blo
k to be evi
ted to disk; F time units are in-
urred to fet
h the new blo
k. Let Cons(�) be the total elapsed time of Conserva-tive's s
hedule. Then Cons(�) � j�j+ 2Fm. Conservative's 
a
he repla
ementsare determined by the MIN algorithm, whi
h in
urs the minimum number of
a
he repla
ements for any request sequen
e. Thus the optimum algorithm per-forms at least m 
a
he repla
ements on �, ea
h of whi
h takes at least F timeunits. We have OPT (�) � maxfj�j; Fmg and hen
e Cons(�) � 3 �OPT (�).



For the 
onstru
tion of the lower bound we assume k � 3 and use k�2 blo
ksA1; : : : ; Ak�2 as well as k � 2 blo
k B1; : : : ; Bk�2 and three auxiliary blo
ks X,Y and Z. The requests to blo
ks A1; : : : ; Ak�2, X, Y and Z will always be readrequests whereas the requests to B1; : : : ; Bk�2 will always be write requests. Weuse the asterisk to denote write requests, i.e. B�i is a write request modifyingblo
k Bi, 1 � i � k � 2. The request sequen
e is 
omposed of subsequen
es �Aand �B , where �A = ZF ; A1; ZF ; A2; : : : ; ZF ; Ak�2 and �B = B�1 ; : : : ; B�k�2. Let�0 = �A; �B ; Z;X; �A; �B ; Z; Y . The request sequen
e � is an arbitrary number ofrepetitions of �0, i.e. � = (�0)i, for some positive integer i. To establish the lowerbound we 
ompare Conservative's elapsed time on �0 to OPT's elapsed time on�0. In the analysis the two algorithms start with di�erent 
a
he 
on�gurationsbut at the end of �0 the algorithms are again in their initial 
on�guration.We assume that initially Conservative has blo
ks A1; : : : ; Ak�2, Y and Z in
a
he. During the servi
e of the �rst �A in �0 Conservative �rst evi
ts Y toload B1. This fet
h overlaps with the servi
e of requests. While serving the �rst�B , Conservative evi
ts Bi to load Bi+1, for i = 1; : : : ; k � 3. Ea
h operationgenerates 2F units of stall time be
ause the evi
ted blo
k has to be written todisk and the fet
h 
annot overlap with the servi
e of requests. Then Conservativeevi
ts Bk�2 to fet
h X. Again the operation takes 2F time units but 
an overlapwith the servi
e of the request to Z. The algorithm now has A1; : : : ; Ak�2, X andZ in 
a
he. It serves the se
ond part of �0 in the same way as the �rst part ex
eptthat in the beginning X is evi
ted to load B1 and in the end Bk�2 is evi
ted toload Y so that the �nal 
a
he 
on�guration is again A1; : : : ; Ak�2, Y and Z. Toserve �0, Conservative needs Cons(�0) = 2((k�2)(F+1)+1+(k�2)(2F+1)) =2((k � 2)(3F + 2) + 1) time units.For the analysis of OPT on �0 we assume that OPT has initially B1; : : : ; Bk�2,Y and Z in 
a
he. Blo
ks B1; : : : ; Bk�2 and Z are never evi
ted. In the �rst partof �0 OPT evi
ts Y to load A1 and then evi
ts Ai to load Ai+1, for i = 1; : : : ; k�3.These fet
hes are exe
uted during the sevi
e of the requests to Z. While serving�B OPT evi
ts Ak�2 to load X and the 
a
he then 
ontains B1; : : : ; Bk�2, X andZ. In the se
ond part of �0 the operations are the same ex
ept the roles of X andY inter
hange. OPT's 
a
he 
on�guration at the end of �0 is again B1; : : : ; Bk�2,Y and Z. The elapsed time is OPT (�0) = 2((k� 2)(F +1)+maxfF; k� 1g+1).Hen
e, for F < k, the ratio of Conservative's elapsed time to OPT's elapsedtime on �0 is Cons(�0)OPT (�0) = (k � 2)(3F + 2) + 1(k � 2)(F + 1) + k � 3F + 2F + 2and the desired bound follows by repeating �0 often enough. utThe Aggressive algorithm proposed by Cao et al. [4℄ works as follows. When-ever the algorithm is not in the middle of a fet
h, it determines the next blo
k bin the request sequen
e missing in 
a
he as well as the blo
k b0 in 
a
he whosenext request is furthest in the future. If the next request to b is before the nextrequest to b0, then Aggressive initiates a fet
h for b evi
ting b0 from 
a
he. We
onsider two extension of this algorithm to request sequen
es with read andwrite requests. If b0 has to be written ba
k to disk, then Aggressive1 exe
utes



the write operation immediately before initiating the fet
h for b and in
urs Funits of stall time before that fet
h operation. Aggressive2 on the the other handoverlaps the write-ba
k operation as mu
h as possible with the servi
e of pastand future requests at the expense of delaying the fet
h for b. More formally,assume that Aggressive2 �nished the last fet
h operation immediately beforereqeust ri and that rj , j � i is the �rst request su
h that the next request to b isbefore the next request to b0. If b0 has to be written ba
k to disk, start the wirteoperation at the earliest ri0 , i0 � i, su
h that b0 is not requested between ri0 andrj . Overlap the operation as mu
h as possible with the servi
e of request.While Aggressive1 is very easy to analyze, Aggressive2 is a more intuitive im-plementation of an aggressive strategy. We show that the approximation ratiosof Aggressive1 and Aggressive2 in
rease by a fa
tor of 2 relative to the approx-imation ratio of the standard Aggressive strategy. For Aggressive1 this is easyto see. The algorithm performs exa
tly the same fet
hes and evi
tions as theAggressive algorithm if all referen
es were read requests. In the worst 
ase ea
h
a
he repla
ement takes 2F instead of F time units as the evi
ted blo
k has tobe written to disk. For Aggressive2 the bound is not obvious. The problem isthat Aggressive2 �nishes fet
h operations on read/write request sequen
es laterthan Aggressive if all requests were read referen
es. This a�e
ts the blo
ks tobe evi
ted in future fet
hes and hen
e the 
a
he repla
ements are di�erent. Theproof of the following theorem is omitted due to spa
e limitations.Theorem 2. For any request sequen
e �, the elapsed time of Aggressive1 andAggressive2 on � is at most 2minf1 + F=k; 2g times the elapsed time of OPTon �.Cao et al. [4℄ showed that for F = k � 2, the approximation ratio of Aggressiveon request sequen
es 
onsisting of read requests is not smaller than 2. We provea 
orresponding bound for Aggressive1 and Aggressive2 .Theorem 3. For F = k, the approximation ratios of Aggressive1 and Aggres-sive2 are not smaller than 4.Proof. Let k � 4. For the 
onstru
tion of the lower bound we use k � 3 blo
ksA1; : : : ; Ak�3, two blo
ks B1 and B2 as well as two blo
ks C1 and C2. Hen
e wework with a universe of size k + 1 so that there is always one blo
k missing in
a
he. The referen
e to A1; : : : ; Ak�3; C1 and C2 will always be write requests.The referen
es to B1 and B2 will always be read requests.Let �0 = �1; �2, where �1 = A�1; B1; A�2; : : : ; A�k�3; C�1 ; B2; C�2 and�2 = A�1; B2; A�2; : : : ; A�k�3; C�2 ; B1; C�1 . The sequen
e �1 and �2 are identi
alex
ept that the positions of B1 and B2 as well as C1 and C2 are inter
hanged.Let � = (�0)i, for some i � 1, i.e. �0 is repeated an arbitrary number of times. We
ompare the elapsed time of Aggressive1 and Aggressive2 on �0 to the elapsedtime of OPT on �0 and assume that our approximation algorithms initially haveA1; : : : ; Ak�3; B1; B2 and C1 in 
a
he. We �rst 
onsider Aggressive1 . At the be-ginning of �1 all blo
ks in 
a
he are requested before the missing blo
k C2. Hen
eAggressive1 
an start the fet
h for C2 only after the servi
e of the request to A1



in �1. It in
urs F units of stall time before the request to B1 in order to writeA1 to disk and then evi
ts A1 to load C2. The fet
h is 
ompleted immediatelybefore the request to C2, where 1 unit of stall time must be in
urred. To load themissing blo
k A1, whi
h is �rst requested in �2, Aggressive1 writes C1 to diskimmediately before the request to C2, generating F additional units of stall timebefore that request. Then C1 is evi
ted to load A1 and F � 1 units of stall timemust be in
urred before the request to A1. At that point Aggressive1 has blo
ksA1; : : : ; Ak�3; B1; B2 and C2 in 
a
he. The 
a
he repla
ements in �2 are the asas in �1, ex
ept that the roles of C1 and C2 
hange. At the end of �0 Aggressive1has again blo
ks A1; : : : ; Ak�3; B1; B2 and C1 in 
a
he, whi
h is identi
al to theinitial 
on�guration.Aggressive2 's s
hedule on �0 is the same ex
ept that (a) F + 1 units of stalltime are in
urred before the last request in �1 and �2 and (b) 2F�1 units of stalltime are generated before the �rst requests in �1 and �2. Hen
e both algorithmsneed 2(4F + 1) time units to serve a subsequen
e �0. The optimal algorithmalways keeps A1; : : : ; Ak�3; C1 and C2 in 
a
he and only swaps B1 and B2. Itneeds 2(F + 4) time units to serve �0. Sin
e F = k, we obtain a performan
eratio of (4k + 1)=(k + 4), whi
h 
an be arbitrarily 
lose to 4. ut
3 New algorithmsWe present an algorithm that a
hieves an approximation ratio of 2 and hen
e per-forms better than Conservative and Aggressive. Intuitively, the following strat-egy delays the next fet
h operation for F time units and then determines thebest blo
k to be evi
ted.Algorithm Wait: Whenever the algorithm is not in the middle of a fet
h orwrite operation, it works as follows. Let ri be the next request to be served andrj , j � i, be the next request where the referen
ed blo
k is not in 
a
he at themoment. If all the k blo
ks 
urrently in 
a
he are requested before rj , then thealgorithm serves ri without initiating a write or fet
h operation. Otherwise letd = minfF; j � ig and let S be the set of blo
ks referen
ed by write requestsin ri; : : : ; ri+d�1. Immediately before serving ri+d the algorithm initiates a fet
hfor the blo
k requested by rj . It evi
ts the blo
k b whose next request is furthestin the future among blo
ks in 
a
he that are not 
ontained in S. If b has beenmodi�ed sin
e the last time it was brought into 
a
he, the algorithm writes b todisk while serving ri; : : : ; ri+d�1, in
urring F � d units of stall time. Otherwiseri; : : : ; ri+d�1 are served without exe
uting a write or fet
h operation.Theorem 4. The Wait algorithm a
hieves an approximation ratio of 2.For the analysis of Wait (and Aggressive2 ) we need a dominan
e 
on
eptintrodu
ed by Cao et al. [4℄. Given a request sequen
e �, let 
A(t) be the indexof the next request at time t when A pro
esses �. Suppose that 
A(t) = i. For anyj with 1 � j � n�k, let hA(t; j) be the smallest index su
h that the subsequen
e�(i); : : : ; �(hA(t; j)) 
ontains j distin
t blo
k not in 
a
he at time t. We also referto hA(t; j) as A's jth hole. Given two prefet
hing/
a
hing algorithms A and B,



A's 
ursor at time t dominates B's 
ursor at time t0 if 
a(t) � 
B(t0). Moreover,A's holes at time t dominate B's holes at time t0 if hA(t; j) � hB(t0; j), for all1 � j � n � k. Finally A's state at time t dominates B's state at time t0 if A's
ursor at time t dominates B's 
ursor at time t0 and A's holes at time t dominateB's holes at time t0. Cao et al. proved the following lemma.Lemma 1. [4℄ Suppose that A (resp. B) initiates a fet
h at time t (resp. t0)and that both algorithms fet
h the next missing blo
k. Suppose that A repla
esthe blo
k whose next request is furthest in the future. If A's state at time tdominates B's state at time t0, then A's state at time t+F dominates B's stateat time t0 + F .Proof (of Theorem 4). We 
onstru
t time sequen
es t0; t1; t2; : : : and t00; t01; t02; : : :su
h that (a) Wait 's state at time tl dominates OPT's state at time t0l, (b) Waitis not in the middle of a fet
h or write operation at time tl and (
) tl+1 � tl �2(t0l+1 � t0l), for all l � 0. Condition (
) then implies the theorem.Setting t0 = t00 = 0, 
onditions (a{
) hold initially. Suppose that they holdat times tl and t0l and let ri the next request to be served by Wait . If at timetl all blo
ks in Wait 's 
a
he are requested before the next missing blo
k, thenWait serves ri without initiating a write or fet
h operation. We set tl+1 = tl+1and t0l+1 = tl+1+1. Conditions (b) and (
) hold. Sin
e at time tl+1 Wait 's holeso

ur at the latest possible positions, Wait 's state at time tl+1 dominates OPT'sstate at time t0l+1. In the remainder of this proof we assume that at time tl thereis a blo
k in Wait 's 
a
he whose next request is after rj , where rj is the referen
eof the next missing blo
k.Let tl+1 be the time whenWait 
ompletes the next fet
h and let t0l+1 = t0l+F .We have tl+1 � tl � 2F and hen
e 
ondition (
) holds. Also, Wait is not in themiddle of a fet
h or write operation at time tl+1. We have to argue that Wait 'sstate at time tl+1 dominates OPT's state at time t0l+1. First, Wait 's 
ursor attime tl+1 dominates OPT's 
ursor at time t0l+1. This is obvious if Wait does notin
ur stall time to 
omplete the fet
h. If Wait does in
ur stall time, then OPT's
ursor 
annot pass Wait 's 
ursor be
ause the index of Wait 's next hole at timetl is at least as large as the index of OPT's next hole at time t0l and OPT needsat least F time units to 
omplete the next fet
h.If OPT does not initiate a fet
h before t0l+1, we are easily done. The indi
esof Wait 's n�k holes in
rease when moving from tl to tl+1 while OPT's holes donot 
hange between t0l and t0l+1. Hen
eWait 's holes at time tl+1 dominate OPT'sholes at time t0l+1 and we have the desired domination for the states. If OPT doesinitiate a fet
h before t0l+1, then the analysis is more involved. Let a be the blo
kevi
ted by OPT during the fet
h and let b be the blo
k evi
ted by Wait duringthe �rst fet
h after tl. If the next request to b is not earlier than the next requestto a, then Wait 's holes at time tl+1 dominate OPT's holes at time t0l+1 and wehave again domination for the states. Otherwise, let d = minfF; j � ig. Waitinitiates the next fet
h after tl immediately before serving ri+d. OPT 
annotinitiate the �rst fet
h after t0l after ri+d. If d = F , this follows from the fa
t thatWait 's 
ursor at time tl dominates OPT's 
ursor at time t0l and OPT initiates



the fet
h before t0l + F . If d < F , then the statement holds be
ause the index ofWait 's next hole at time tl is at least as large as the index of OPT's next holeat time t0l and ri+d is the next missing blo
k for Wait .Re
all that we study the 
ase that the next request to blo
k b is before thenext request to a. Blo
k a is not in the set S of blo
ks referen
ed by write requestsin ri; : : : ; ri+d�1 be
ause a would have to be written ba
k to disk after its lastwrite referen
e in ri; : : : ; ii+d�1. This write opertion would take F time unitsafter tl and 
ould not be 
ompleted before tl+1. As argued at the end of the lastparagraph, Wait 's 
ursor at the time when Wait initiates the fet
h dominatesOPT's 
ursor when OPT initiates the fet
h. By the de�nition of the algorithm,Wait evi
ts the blo
k whose next request is furthest in the future among blo
ksnot in S. We have a =2 S. Sin
e Wait does not evi
t blo
k a but the next requestto a is after the next request to b it must be the 
ase that a is not in Wait 's
a
he at the time when the algorithm initiated the �rst fet
h after tl. Hen
e a isnot in Wait 's 
a
he at time tl and 
orresponds to one of Wait 's holes at time tl.Consider OPT's holes at time t0l that are after Wait 's �rst hole hW (tl; 1) attime tl. If these holes are a subset of Wait 's holes at time tl, then OPT's holesat time t0l+1 with index larger than hW (tl; 1) are a subset of Wait 's holes attime tl+1. The reason is that, as argued above, Wait also has a hole at the nextrequest to a, the blo
k evi
ted by OPT during the fet
h. Note that all of Wait 'sholes at time t0l have index larger than hW (tl; 1). Hen
e Wait 's holes at timetl+1 dominate OPT's holes at time t0l+1.If OPT's holes at time t0l with index larger than hW (tl; 1) are not a subsetof Wait 's holes at time tl, then let hOPT (t0l; s0) be the largest index su
h thathOPT (t0l; s0) > hW (tl; 1) and Wait does not have a hole at the request indexedhOPT (t0l; s0). The blo
k referen
ed by that request 
annot be in S be
ause OPTwould not be able to write the blo
k ba
k to disk before tl + F . Hen
e the nextrequest to the blo
k b evi
ted by Wait 
annot be before hOPT (t0l; s0). At time tllet s be the number ofWait 's holes with index smaller than hOPT (t0l; s0). At timetl+1, the �rst hole is �lled. Hen
e Wait 's �rst s� 1 holes at time tl+1 dominateOPT's �rst holes at time t0l+1. Wait 's remaining holes at time t0l+1 have anindex of at least hOPT (t0l; s0) and OPT's holes at time t0l+1 with an index largerthan hOPT (t0l; s0) are a subset of Wait 's holes be
ause, as mentioned before, thenext request to blo
k a evi
ted by OPT is a hole for Wait . Hen
e Wait 's lastn�k�(s�1) holes at time tl+1 dominate OPT's last n�k�(s�1) holes at timet0l+1. Thus Wait 's state at time tl+1 dominates OPT's state at time t0l+1. ut
4 ComplexityTheorem 5. Given a request sequen
e �, it is NP-
omplete to de
ide if thereexists a prefet
hing/
a
hing s
hedule for � that initiates at most f fet
h and atmost w write operations.The proof is omitted due to spa
e limitations.



5 Algorithms for parallel disk systemsIn this we study integrated prefet
hing and 
a
hing in systems with D paralleldisks. To speed up write operations, many parallel disk systems have the optionof writing a memory blo
k to an arbitrary lo
ation in the disk systems and notne
essarily to the lo
ation where the blo
k was stored previously. In parti
ular,blo
ks may be written to arbitrary disks. As an example, suppose that blo
kb has to be written to disk and that only disk d is idle at the moment. Nowdisk d 
an simply write b to the available lo
ation 
losest to the 
urrent headposition. Of 
ourse, if a blo
k is written to a lo
ation di�erent from the onewhere the blo
k was stored previously, the old 
opy of the blo
k be
omes invalidand 
annot be used in future fet
h operations. We assume that at any time, forany blo
k there exists exa
tly one valid 
opy in the parallel disk system.Given the ability to write blo
ks to arbitrary disks, we are able to designprefet
hing/
a
hing algorithms that a
hieve a 
onstant performan
e ratio inde-pendent of D. In parti
ular we are able to 
onstru
t eÆ
ient prefet
hing/
a
hings
hedules in two steps. Given a request sequen
e �, we �rst build up a s
heduleS without 
onsidering from whi
h disks blo
ks have to be fet
hed and to whi
hdisks they have to be written ba
k. The algorithm Loadbalan
e des
ribed belowthen assigns fet
h and write operations to the di�erent disks. The algorithmworks as long as S is syn
hronized and exe
utes at most dD=2e parallel disk op-erations at any time. Moreover blo
ks evi
ted from 
a
he must be written ba
kto disk every time, even if they have not been modi�ed sin
e the last time theywere brought into 
a
he.A s
hedule is syn
hronized if any two disk operations either are exe
uted inexa
tly the same time interval or do not overlap at all. Formally, for any twodisk operations exe
uted from time t1 to t01 and from time t2 to t02, with t1 � t2we require (1) t1 = t2 and t01 = t02 or (2) t01 < t2.Algorithm Loadbalan
e:The algorithm takes as input a syn
hronized prefet
h-ing/
a
hing s
hedule S in whi
h at most dD=2e disk operations are performed atany time. Blo
ks are written ba
k to disk ea
h time they are evi
ted from 
a
he.The s
hedule is feasible ex
ept that disk operations have not yet been assignedto disks. The assignment is now done as follows. The initial disk 
on�gurationspe
i�es from whi
h disk to load a blo
k when it is fet
hed for the �rst time inS. As for the other assignments, the algorithm 
onsiders the write operations inS in order of in
reasing time when they are initiated; ties are broken arbitrarily.Let w be the write operation just 
onsidered and b be the blo
k written ba
k.Let f be the operation in S that fet
hes b ba
k the next time. Assign w andf to a disk that is not yet used by operations exe
uted in parallel with w andf . Su
h a disk must exist be
ause a total of 2(dD=2e � 1) disk operations areperformed in parallel with w and f .We next present algorithms for 
omputing s
hedules S that have the proper-ties required by Loadbalan
e. We �rst develop a parallel implementation of theConservative algorithm.Algorithm Conservative: Consider the requests in the given sequen
e � oneby one. Let ri be the next request for whi
h the referen
ed blo
k is not in 
a
he.



The algorithm s
hedules up to dD=2e 
a
he repla
ements immediately before rias follows. In ea
h step let a be the next blo
k missing in 
a
he and b be theblo
k in 
a
he whose next request is further in the future. If the next requestto a is before the next request is to b, then evi
t b in order to load a. Supposethat d � dD=2e 
a
he repla
ements are determined in this way. Let a1; : : : ; anbe the blo
ks loaded and b1; : : : ; bn be the blo
ks evi
ted. S
hedule a set of dsyn
hronized write operations in whi
h b1; : : : ; bd are written, followed by a setof d syn
hronized fet
h operations in whi
h a1; : : : ; an are loaded immediatelybefore ri. These disk operations do not overlap with the servi
e of requests. Inthe following we refer to su
h a 
ombination of write and fet
h operations as ana

ess interval.Applying Loadbalan
e to a s
hedule 
onstru
ted by Conservative, we obtaina feasible prefet
hing/
a
hing s
hedule for a given �, provided that we modifythe s
hedule as follows. If an a

ess interval fet
hes two blo
ks that are loadedfor the �rst time in the s
hedule and reside on the same disk in the initialdisk 
on�guration, then s
hedule an additional fet
h operation before the givenrequest ri.Theorem 6. For any �, the elapsed time of the s
hedule 
onstru
ted by Conser-vative and Loadbalan
e is at most 5 times the elapsed time of an optimal s
heduleplus FB. Here B is the number of distin
t blo
ks requested in �.Proof. Given an arbitrary request sequen
e �, let I be the number of a

essintervals generated by Conservative. The total elapsed time of the s
hedule 
on-stru
ted by Conservative and Loadbalan
e is bounded by j�j+(W +F )I +FB.The additive FB is ne
essary to bound the fet
h time for blo
ks loaded for the�rst time in the s
hedule. Be
ause of initial disk 
on�guration, it might not bepossible to exe
ute these fet
h operations in parallel with other fet
hes. We willshow that the elapsed time of an optimal s
hedule is at least maxfj�j; F dI=2eg.Sin
e W � F , the theorem then follows.It suÆ
es to show that F dI=2e is a lower bound on the elapsed time of anoptimal s
hedule be
ause the lower bound of j�j is obvious. Let S be an optimals
hedule for j�j. We partition the fet
h operations in � into sets of fet
hes . Forthis purpose we sort the fet
h operations in S by in
reasing starting times; tiesare broken arbitrarily. The �rst set of fet
hes 
ontains the �rst fet
h operationf and all the fet
hes that are initiated before f is �nished. In general, supposethat i � 1 sets of fet
hes have been 
onstru
ted so far. The ith set of fet
hes
ontains fet
h operations that are not yet 
ontained in the i � 1 �rst sets. It
ontains the �rst su
h fet
h f as well as all fet
h operations that are initiatedbefore f terminates. Let J be the number of sets thus 
reated. The �rst fet
hesin these J sets are non-overlapping and hen
e the optimum algorithm spends atleast FJ time units fet
hing blo
ks.Lemma 2. It is possible to modify the s
hedule S su
h that it is identi
al toConservative's s
hedule and the total fet
h time is at most 2FJ .The proof is omitted. Sin
e the total fet
h time of Conservative's s
hedule is IF ,the desired bound then follows. ut



We next give an implementation of the Aggressive algorithm. It uses dD=2eextra memory lo
ations in 
a
he.Algorithm Aggressive+: Let ri be the next request to be served and rj be thenext request where the referen
ed blo
k is not in 
a
he. Let d = minfj � i; Fg.Determine the largest number d, d � dD=2e, su
h that there exist d blo
ks in
a
he whose next requests after ri+d�1 are later than the �rst referen
es of thenext d blo
ks missing in 
a
he. If d = 0, then serve ri without initiating a fet
h.Otherwise, when serving ri, initiate d syn
hronized fet
h operations in whi
hthe next d missing blo
ks are loaded into dD=2e extra 
a
he lo
ations. Whenthese fet
hes are 
omplete, evi
t the d blo
ks from 
a
he whose next requestsare furthest in the future and write them ba
k to disk in a syn
hronized writeoperation. The dD=2e extra 
a
he lo
ations are available again. Note that thewrite operations start with the servi
e of ri+d.Again we apply Loadbalan
e to a s
hedule 
onstru
ted by Aggressive+. Theproof of the next theorem is omitted.Theorem 7. Given a request sequen
e �, the elapsed time of the s
hedule 
on-stru
ted by Aggressive+ and Loadbalan
e is at most 4 time the elapsed time ofan optimal s
hedule plus FB, where B is the number of distin
t blo
ks requestedin �.Referen
es1. S. Albers, N. Garg and S. Leonardi. Minimizing stall time in single and parallel disksystems. Journal of the ACM, 47:969{986, 2000. Preliminary version STOC98.2. S. Albers and C. Witt. Minimizing stall time in single and parallel disk systems usingmulti
ommodity network 
ows. Pro
. 4th International Workshop on ApproximationAlgorithms for Combinatorial Optimization Problems (APPROX), Springer LNCS2129, 12{23, 2001.3. L.A. Belady. A study of repla
ement algorithms for virtual storage 
omputers. IBMSystems Journal , 5:78{101, 1966.4. P. Cao, E.W. Felten, A.R. Karlin and K. Li. A study of integrated prefet
hingand 
a
hing strategies. Pro
. ACM International Conferen
e on Measurement andModeling of Computer Systems (SIGMETRICS), 188{196, 1995.5. P. Cao, E.W. Felten, A.R. Karlin and K. Li. Implementation and performan
e ofintegrated appli
ation-
ontrolled 
a
hing, prefet
hing and disk s
heduling. ACMTransa
tion on Computer Systems (TOCS), 14:311{343, 1996.6. A. Gaysinsky, A. Itai, and H. Sha
hnai. Strongly 
ompetitive algorithms for 
a
hingwith pipelined prefet
hing. Pro
. of the 9th Annual European Symposium on Algo-rithms (ESA01), Springer LNCS 2161, 49{61, 2001.7. T. Kimbrel and A.R. Karlin. Near-optimal parallel prefet
hing and 
a
hing. SIAMJournal on Computing , 29:1051 { 1082, 2000. Preliminary version in FOCS96.8. T. Kimbrel, P. Cao, E.W. Felten, A.R. Karlin and K. Li. Integrated parallel prefet
h-ing and 
a
hing. Pro
. ACM International Conferen
e on Measurement and Model-ing of Computer Systems (SIGMETRICS), 1996.9. T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad, P. Cao, E.W. Felten,G.A. Gibson, A.R. Karlin and K. Li. A tra
e-driven 
omparison of algorithms forparallel prefet
hing and 
a
hing. Pro
. of the ACM SIGOPS/USENIX Asso
iationSymposium on Operating System Design and Implementation, 1996.


