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Abstract. Most previous work on page migration assumes that each pro-
cessor, in the given distributed environment, has infinite local memory
capacity. In this paper we study the migration problem under the realistic
assumption that the local memories have limited capacities. We assume
that the memories are direct-mapped, i.e., the processors use a hash func-
tion in order to locate pages in their memory. We show that, for a number
of important network topologies, on-line algorithms with a constant com-
petitive ratio can be developed in this model. We also study distributed
paging. We examine the migration version of this problem in which there
exists only one copy of each page. We develop efficient deterministic and
randomized on-line algorithms for this problem.

1 Introduction

Many on-line problems of practical significance arise in distributed data man-
agement. As a result, there has recently been a lot of research interests in prob-
lems such as page migration, page replication and distributed paging, see e.g.
[1, 2, 3, b, 6, 8 10, 12]. In page migration and replication problems, a set of
memory pages must be distributed in a network of processors, each of which has
its local memory, so that a sequence of memory accesses can be processed effi-
ciently. Specifically, the goal is to minimize the communication cost. If a processor
p wants to read a memory address from a page b that is not in its local memory,
then p must send a request to a processor ¢ holding b and the desired information
is transmitted from ¢ to p. The communication cost incurred thereby is equal to
the distance between ¢ and p. It is also possible to move or copy a page from one
local memory to another. However, such a transaction incurs a high communica-
tion cost proportional to the page size times the distance between the involved
processors.

In the migration problem it is assumed that there exists only one copy of each
page in the entire distributed system. This model is particularly useful when we
deal with writable pages because we do not have to consider the problem of keeping
multiple copies of a page consistent. The migration problem is to decide which
local memory should contain the single copy of a given page. In the replication
problem, multiple copies of a page may exist. Hence this model is suitable when we
deal with read-only pages. The decision whether a given page should be migrated
or replicated from one local memory to another must typically be made on-line,
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i.e., the memory management algorithm does not know which processors will have
to access a page in the future. Because of this on-line nature, the performance
of migration and replication algorithms is usually evaluated using competitive
analysis.

Page migration and replication are extensively studied problems. However,
almost all of the research results are developed under the assumption that the
capacities of the local memories are infinite: Whenever we want to move or copy
a page into the local memory of a processor p, there is room for it; no other
page needs to be dropped from p’s memory. Assuming infinite local capacity, on-
line migration and replication algorithms with a constant competitive ratio can
be developed [1, 3, 6, 8, 10, 12]. For example, Black and Sleator [6] presented a
deterministic 3-competitive migration algorithm when the network topology is a
tree or a complete uniform network. In practice, however, the local capacities are of
course not unlimited. Basically the only work that considers local memories with
finite capacity is the paper by Bartal et al. [5]. They investigate a combination of
the migration and replication problem and present an O(m)-competitive on-line
algorithm for complete uniform networks. Here m is total number of pages that
can be stored in the entire network. Unfortunately, this competitive ratio is too
high to be meaningful in practice.

In this paper we study the migration problem under the assumption that
every local memory has a fixed finite capacity. More precisely, every local memory
consists of k block [1],[2], ..., [£], each of which can hold one page. We assume that
the local memories are direct-mapped, 1.e., each processor uses a hash function in
order to locate pages in its local memory. Specifically, all processors use the same
hash function A. This implies that whichever local memory a page b belongs to, it
is always stored in block [A(b) med ks + 1]. Direct-mapped memories constitute an
important memory class in practice. From a theoretical point of view they were
studied only once before in [9]. We call the migration problem in direct-mapped
memories of limited capacity the direct-mapped constrained migration problem.
We will show that for this problem, we can develop simple on-line algorithms
with a constant competitive ratio. Hence this is essentially the first work on page
migration that makes realistic assumptions as far as memory is concerned and
develops results that are meaningful in practice.

In Section 3 we investigate lower bounds on the competitiveness that can be
achieved by deterministic on-line algorithms for the direct-mapped constrained
migration problem. We show that, given any network topology, no deterministic
on-line algorithm can be better than 3-competitive. We also prove that there are
specific network topologies for which no deterministic on-line algorithm can be
better than £2(n)-competitive; n denotes the number of processors in the network.
In Section 4 we develop upper bounds. First, we present an optimal 3-competitive
deterministic algorithm for networks consisting of two nodes. Next we develop
an 8-competitive deterministic algorithm for complete uniform networks. This
algorithm achieves a competitiveness of 16 on uniform stars. Finally, we give a 5-
competitive randomized and memoryless on-line algorithm for complete uniform
networks against adaptive on-line adversaries.

We also study the distributed paging problem. In distributed paging, each time



a processor p wants to access a page, this page must be brought into p’s local
memory, provided the page is not yet present at p. Loosely speaking, the goal is
to minimize the number of times at which the requested page is not present in
the corresponding local memory. For the allocation version of this problem, when
multiple copies of a page may exist, Bartal et al. [5] presented a deterministic
O(m)-competitive on-line algorithm; Awerbuch et al. [2] developed a randomized
O(max{log(m — 1), log k})-competitive algorithm against the oblivious adversary.
Again, m is the total number of pages that can be stored in the system, and
l is the number of different pages in the system. In this paper we examine the
migration version of the distributed paging problem; i.e.; only one copy of each
page may exist. In Section 5 we present an O(k)-competitive deterministic and
an O(log k)-competitive randomized on-line algorithm (& is the number of pages
that each processor can hold). Our randomized algorithm is simpler than that of
Awerbuch et al. for [ > m — k.

2 Problem definition

We define the direct-mapped constrained migration problem and the distributed
paging problem. We also review the notion of competitiveness.

In the direct-mapped constrained migration problem we are given an undirected
graph G = (V| E). Each node in G corresponds to a processor, and the edges
represent the interconnection network. Let |V| = n. Associated with each edge
is a length that is equal to the distance between the connected nodes. Let &y,
denote the length of the shortest path between node u and node v. Each node has
its own local memory. Every local memory is divided into k blocks [1],[2],- -, [k],
each of which can hold exactly one page. All nodes use the same hash function
h(b) to determine the unique block in which page b will reside. At any time, a node
cannot simultaneously hold pages b and ¢ with h(b) mea s = A(€) mod k. On the
other hand, there is never a conflict between two pages e and f with h(e) mod & #
h(f) mod k- Thus we can divide the direct-mapped constrained migration problem
into k separate subproblems according to the block number. In the following, we
concentrate on one particular block number ¢ (1 < ¢ < k). Let B be the number
of pages b such that A(b) mear + 1 = ¢, and let by, bs,- -+, bp be the pages whose
hash value is equal to ¢. We always assume B < n, which is easily realized by a
proper choice of h.

We say that a node v has a page b if b is contained in block [7] of v’s memory.
A node v is said to be empty if v does not hold a page in block [i]. 4 request
to page b at a node v occurs if v wants to read or write b. The request can be
satisfied at zero cost if v has b. Otherwise the request incurs a cost equal to the
distance from v to the node u holding b (i.e. the cost is dyy). After a request to
page b at a node v, b may be migrated into v’s local memory. If v is empty, the
cost incurred by this migration is d - d,,. Here d denotes the page size factor. In
case v has another page ¢, we may swap b and ¢, incurring a cost of 2d - &y, . (Of
course, 1t is also possible to move ¢ to another node, but we will never make use
of this possibility.) A direct-mapped constrained migration algorithm is usually
presented with an entire sequence of requests that must be served with low total



cost. The algorithm is on-line if it serves every request without knowledge of any
future requests.

Next we define the distributed paging problem. Again, we consider a network
consisting of n nodes; each of which can store up to k pages. We only distinguish
between local and remote data accesses: A request to page b at node v can be
satisfied at zero cost if v has b. Otherwise the request is satisfied by fetching b
into v’s local memory, which may accompany other page configuration changes.
The cost incurred 1s equal to the number of transferred pages because each page
transfer requires exactly one remote access. The goal is to reduce the total number
of page transfers. The distributed paging problem is named the migration version
if the number of copies for any page is restricted to 1.

We analyze the performance of on-line algorithms using competitive analysis
[11]. That is, the cost incurred by an on-line algorithm is compared to the cost
of an optimal off-line algorithm. An optimal off-line algorithm knows the entire
request sequence in advance and can serve it with minimum cost. Given a request
sequence o, let C'4(c) and Copr (o) denote the cost of the on-line algorithm A and
the optimal off-line algorithm OPT in serving o. A deterministic on-line algorithm
A is c-competitive if there exists a constant a such that for every request sequence
Ca(o) < c-Copr(o)+a. In case A is a randomized algorithm, the on-line setting
i1s viewed as a request-answer game in which an adversary generates a request
sequence o, see [4]. The expected cost incurred by A is then compared to the cost
paid by the adversary. The oblivious adversary constructs o in advance before any
actions of A are made; the adversary may serve o off-line. The adaptive on-line
adversary constructs ¢ on-line, knowing the responses of A to previous requests;
the adversary also has to serve ¢ on-line.

3 Lower bounds

Theorem 1 shows that the power of on-line algorithms is limited, no matter how
simple the underlying graph structure may be.

Theorem 1. Let A be a deterministic on-line algorithm for the direct-mapped
constrained migration problem. Then A cannot be better than 3-competitive, even
on a graph consisting of only two nodes.

Proof. Consider a 2-node network and let b; and bs be two pages whose location
needs to be managed. Consider request sequences consisting of requests to b, only.
To process such sequences, A can concentrate on the location of ;. However, to
change the location of b1, b5 must also be moved as the result of a swap. Thus,
this situation can be regarded as a migration problem with page size factor 2d.
Therefore, the lower bound of 3-competitiveness presented by Black and Sleator [6]
for the migration problem also holds for the direct-mapped constrained migration
problem. O

Next we prove the existence of specific topologies for which no deterministic
on-line algorithm is better than (n — 2)-competitive. The following star I is an
example. Let vy, va, -+, v, be the nodes in H, with v; being the center node. The
edge lengths are defined as d,,,, = 1 for i =2,... n—1 and d,,,, =n — 2.



Theorem 2. Let A be a deterministic on-line algorithm for the direct-mapped
constrained muigration problem working on the star H. Then A cannot be better
than (n — 2)-competitive.

This theorem certifies that there is a difference between the migration prob-

lem (when the local memories are infinite) and the direct-mapped constrained
migration problem. Recall that, for the migration problem, Black and Sleator [6]
developed a deterministic on-line algorithm that is 3-competitive for trees includ-
ing all stars.
Proof of Theorem 2: We will construct a request sequence o so that C'4 (o) is at
least (n — 2) times the cost incurred by some off-line algorithm OFF. We assume
that initially, both A and OFF have the same page at v,. The request sequence
o 1s constructed as follows. An adversary always generates a request at vy; 1t asks
for the page that A stores in v,. Therefore, A incurs a cost of d,,,, = n — 2
at each request. We partition ¢ into phases. The first phase starts with the first
request. It ends after n — 1 distinct pages were requested during the phase and
Jjust before the remaining nth page b, is requested. The second phase begins with
the request to b, and ends in the same way as the end of the first phase. The
subsequent phases are determined similarly.

We show that in any phase, the cost incurred by A is at least (n — 2) times
the cost incurred by OFF. Let ¢’ be a subsequence of ¢ that corresponds to a
phase, and let [ be the length of ¢’. A incurs n— 1 swaps in ¢’, each of which costs
2(n—2)d. Thus the total cost for swaps is 2(n—1)(n—2)d. In addition, A pays a cost
of (n—2)! to satisfy the requests. Therefore, C4(¢') > 2(n—1)(n —2)d+ (n — 2)L.
The following off-line algorithm OFF can serve ¢’ at a cost of 2(n—1)d+!. At the
beginning of ¢, before the first request, OFF swaps the page located at v, and
the page b, which is requested at the beginning of the next phase. After this swap,
OFF does not change the locations of pages throughout the phase. Note that b,
is never requested in o’. OFF incurs a cost of at most 2(n — 1)d for the swap, and
a cost of at most [ to satisfy the requests in ¢’ because every page requested in
o' is located at one of the nodes v1,...,v,-1. Thus Copp(c’) < 2(n — 1)d + 1.
By comparing Cy(¢') and Copp(o') we conclude Cy(c’) > (n — 2)Corr (o).
At the beginning of each phase, node v, has the same page both in A’s and
OFF’s configuration. This implies that we can extend o arbitrarily by repeating
the above construction. O

4 Upper bounds

We develop on-line algorithms for the direct-mapped constrained migration prob-
lem. First we present a 3-competitive deterministic algorithm for the case that
the network consists of only two nodes. This topology is of course very special,
but we have an optimal algorithm for this case. Most of this section deals with
important network topologies such as complete uniform graphs and uniform stars.
We give O(1)-competitive algorithms for these networks.

First consider a 2-node network consisting of nodes u and v. A direct-mapped
constrained migration algorithm has to manage the location of two pages b; and



b>. Note that there are only two possible page configurations: u has b; and v has
bs; or u has by and v has b;. Our algorithm TN for 2-node networks is given below.
The proof of Theorem 3 is omitted in this extended abstract.

Algorithm TN: The algorithm maintains one global counter that is initialized to
0. Whenever a node requests a page that 1s not in its local memory, the counter is
incremented by 1. When the counter reaches 4d, the page configuration changes,
i.e. the pages are swapped, and the counter is reset to 0.

Theorem 3. TN s 3-competitive for graphs consisting of two nodes.

In the remainder of this section we study on-line algorithms for uniform graphs.
First we present a deterministic algorithm for complete uniform graphs. We as-
sume w.l.o.g. that all edges in the network have length 1. As the name suggests,
our algorithm is thought of as a concurrent version of algorithm M presented by
Black and Sleator [6] for the migration problem.

Algorithm Concurrent-M: Each node v has B counters 2 (1 < i < B). All
counters are initialized to 0. Concurrent-M processes a request at node v to page
b; as follows. If v has b; already, then the request is free and nothing happens.
If v does not have b;, then the algorithm increments ¢’, and chooses some other
non-zero counter among {c2|w € V}, if there is one, and decrements it. When
b reaches 2d, one of the following two steps is executed. If v is empty, then b; is
migrated to v and ¢% is reset to 0. Otherwise b; is swapped with the page bi(i # j)

that v currently holds, and ¢ and czj are reset to 0. Here u denotes the node
that stored b; before the swap.

In the above swap, we say that b; is swapped actively and that b; is swapped
passively.

Theorem4. Concurrent-M is 8-competitive for complete uniform graphs.

The next lemma is crucial for the analysis of Concurrent-M. A similar lemma was
shown in [6].

Lemma5. For every page b, >~ oy ¢ < 2d.

Proof. We prove the lemma by induction. Initially ZUEV ¢ = 0. The sum ZUEV b
only increases when one counter is incremented and all other counter values are 0.
Since the description of the algorithm implies that a counter value cannot exceed
2d, the sum ) v ¢? cannot be larger than 2d. O

This lemmaleads to an important fact: Just before a page b is swapped actively
to node v, ¢® = 2d and all other counters associated with b are 0. After the swap,
all counters associated with b are 0.
Proof of Theorem 4: We analyze the algorithm for the case B = n. The anal-
ysis is easily extended to B < n. Let Ccpr(o) be the cost paid by Concurrent-M.
We shall show that, for any (on-line and off-line) algorithm A and any request
sequence o, Copr(o) < 8C4(a). Our proof uses the standard technique of com-
paring simultaneous runs of Concurrent-M and A4 on ¢ by merging the actions
generated by Concurrent-M and A into a single sequence of events. This sequence
contains three types of events: (Type I) Concurrent-M swaps pages, (Type II)



A swaps pages, and (Type III) both A and Concurrent-M satisfy a request. We
shall give a non-negative potential function @ (initially 0) such that the following
inequality holds for all kinds of events.

ACcpy + AP < 8ACY,, (1)

where A indicates the change of the values as the result of the event. If the
potential function satisfies the above property for all events, summing up (1) for
all events results in Coar(0) + P — Pstart < 8Ca(0), where @gpq1¢ denotes the
initial value of @ and @, 1 denotes the value of @ after Concurrent-M and A finish
processing 0. Since @gtart = 0 and @, 4 > 0 from the definition of the potential
function, we have Ceopr(o) < 8C4(0), and the proof is complete. It remains to
specify the potential function and verify (1) for all events.

The potential function @ is defined as follows. Let s® be the node that has
page b in Concurrent-M and #* be the node that has b in A.

5y b if sb =0,
veEV
b= B, &=
b 4d—c§—|—3262 if s £1¢°
Ve

In the following we prove (1) for all kinds of events. In the subsequent proof we
omit the specification of the page in the counter variables when it is obvious.
(Type I): Concurrent-M swaps pages.
Suppose that page b is swapped actively from s to s/ and page by is swapped
passively from s’ to s. As the result of this swap, cg} is reset from 2d to 0 and
c?2 is reset from some non-negative value [ to 0. Let ¢ be the location of b; and
let u be the location of b5 in A. Then ACcpy = 2d and AC4 = 0. So we must
show that AQ < —2d. Trivially, A® = APy, + AP,,. First consider Ad;,. There
are three cases depending on whether s, s’ coincide with ¢. Lemma 5 and the fact
obtained from the lemma make the calculation of A@y, very simple.

S/ZtA@61:5ZO_(4d_2d+Zo):_2d
s=1: A0, =(4d—0-3> 0)—5-2d=—6d
5,8/ £1: ADy, = (4d—0-3>_0) = (4d - 0 -3 -2d) = —6d

Next we calculate A®,,. For clearness, we express the counter value of ¢; before
the swap simply by ¢;(=[) and that after the swap by ¢/ (=0).

5:u:A@b2:5ch—(4d—cu—|—3ch):226U+5c/s+cs—4d

veEV vEV vev
vEu vEs
=2 cyte,—4d <2 e, —4d <0
vEV veEV
vEs
slzu:A@bQ:(4d—cu+3ch)—5ch §(4d—|—3ch)—5ch
viV veV UEVI UEVI



<4d+3c, —be,—2 Y e, <Ad

veEV
v#s,s!
s,slgéu:A@bQ:(4d—cu—|—3ch)—(4d—cu—|—3ch)
veEV veEV
vEu vEu

=3(c, —¢s) = =31 <0.

Adding APy, and Ay, we can calculate AP. For example, if s = ¢ and ¢ = u,
then AP = APy, + ADy, < —6d + 4d = —2d. The sum APy, + APy, can only be
greater than —2d if ' = ¢ and s’ = u. However, this case is impossible because a
node cannot have both b; and b5 at the same time, and hence ¢ and u cannot be
identical. Thus, in all cases A® < —2d and (1) holds for (Type I).

(Type II): A swaps pages.

Suppose that page by is swapped from t to ¢ and that page b, is swapped from ¢t/
to t. Then ACcy =0 and AC = 2d. We must show that A@ < 16d. Again we
calculate A®,, and AP, separately and then compute AP. Let s be the location

of by and w be the location of b2 in Concurrent-M. First consider A®y, .

t'=5:Ad, =53 ¢, —(4d—c;+3Y ¢,) <6 ¢, —4d < 12d—4d =8d

veV vvi‘t/ veV
t=s:AD,, = (Ad—cy+3> ) =5 e, =4d—6cy —2 Y ¢, <4d
vev veV vev
v#EL! v#EL!
Lt £ 5 ADy, = (4d—ct/—|—3ch)— (4d—ct—|—3ch) =4(ct —ep) < 8d
veEV vEV
v#EL! vEL

We conclude A®y,, < 8d. Next consider APy, . Since there is no distinction between
b1 and b2, the same analysis as above gives A@,, < 8d. Thus, the total change in
potential is AP = APy, + APy, < 16d, and (1) holds for (Type II).
(Type TIT) A request is satisfied by both A and Concurrent-M.
Suppose there is a request at node v to page b. Let s be the node at which
Concurrent-M stores b, and let ¢ be the node at which A holds &.
Case 1:v=s. ACcy =0. AC4 > 0. AP = 0. Thus (1) is satisfied.
Case 2: v £ s. In this case ACcp = 1 because v does not have b in Concurrent-
M. The counter ¢ is incremented by 1. We need to consider three cases.
Case (a): Suppose that v = t. AC4 = 0. So we have to show that A¢ < —1.
Note that s # t. The increment of ¢! decreases @ by 1. In case another counter is
decremented, then @ decreases further by 3. Thus AP € {—4, -1} < —1.
Case (b): Suppose that v # ¢t = s. AC4 = 1. So we must show that A® < 7.
The increment of ¢? increases @ by 5. If another counter is decremented, then @
decreases by 5. Thus A¢ € {0,5} < 7.
Case (¢) Suppose that v #t # s. ACy = 1 and we must show that A® < 7. The
increment of ¥ increases @ by 3. If no decrement takes place, A® = 3. Else if
another counter except ¢! is decremented, & decreases by 3 and totally A® = 0.
If ¢} is decremented, @ increases by 1, and in total A® = 4. O

We can treat Concurrent-M as an on-line algorithm for uniform stars (stars in

which all edges have length 1).



Theorem 6. Concurrent-M is 16-competitive for uniform stars.

Proof. Let US be the uniform star consisting of n nodes vy, vs, -+, v,, with vy
being the center node. All edges have length 1. Let K; and K be two complete
uniform graphs consisting of n nodes each; in K; all edges have length 1 and in
Ky all edges have length 2. Let wuy, us, -+, u, and wy,ws, -+, w, be the nodes
in K1 and K, respectively. Our analysis maps an arbitrary request sequence o
on US onto two request sequences ¢’ on K; and ¢” on K5, and then compares
simultaneous runs of Concurrent-M on &, ¢/ and ¢”’. Assume that initially, nodes
vi, u; and w; have the same page in their memory, for all i (1 < i <n).

We construct ¢’ from o by replacing each request to a page b at node v; in o by
a request to b at node u; in o’. ¢’ is derived from o similarly. If we simultaneously
run Concurrent-M on o, ¢’ and ¢, the (fixed) counter decrement strategy implies
that whenever Concurrent-M moves a page from v; to v; in US, the same page
is moved from w; to u; in K; and from w; to w; in K. Hence, at any time,
the page stored at v; 1s identical to the page stored at u; and w;. Since for any
pair of indexes i and j, dy,u; < 6u0; < dwyw;, We have Cepr(o’) < Cepr(o) <
Cem(a”). Similarly, Copr(c’) < Copr(c) < Copr(c”). We have Cepr(0”) <
8Copr(c’) because, by Theorem 4, Concurrent-M is 8-competitive for complete
uniform graphs. Also, Copr(c”) = 2Copr(c’) because of the relation between
Ky and Ks. The above formulae give Cop(0) < Ceopr(0”) < 8Copr(c’) =
IGCOPT(O'/) < IGCOPT(O') O

Next we present a randomized on-line algorithm for complete uniform graphs.
The algorithm is memoryless, i.e. it does not need any memory (e.g. for counters)
in order to determine when a migration or a swap should take place.
Algorithm COINFLIP: Suppose that there is a request at node v to page b. If
v has b, COINFLIP performs no action. If v does not have b, the algorithm serves
the request by accessing to the node u that has b. Then with probability ?}—d, the
algorithm migrates b from w to v if v is empty, and moves b from u to v by a
swapping operation if v is not empty.

Theorem 7. COINFLIP s 5-competitive against adaptive on-line adversaries.

Proof. A detailed proof is omitted; we just give the main idea. Let & = 5d - |5],
where S is the set of nodes at which COINFLIP and the adversary A have different
pages. Using this potential function we can show E[Ccrp(co)] < bCyu(0). O

5 On-line algorithms for distributed paging

We present a deterministic on-line algorithm for the migration version of the
distributed paging problem. Let B be the number of different pages in the system.
Algorithm DLRU: Each processor v has B counters ¢,[b;] (1 < ¢ < B). All
counters are initialized to 0. The algorithm maintains the invariant that ¢, [b;] = 0
if (but not only if) b; does not belong to v’s memory. DLRU serves a request at
node v to page b; as follows. If v has b;, then the request is free and the algorithm
sets ¢, [b;] to k, while all counters whose values were strictly larger than ¢, [b;]



before the request are decremented by 1. If v does not have b;, then b; is fetched
into v from the node u holding b;, and a number of counters are changed. In node
v, ¢y[b;] is set to k and all positive counters are decremented by 1. In node wu,
cy[bi] is reset to 0 and all positive counters whose values were smaller than ¢, [b;]
before the request are incremented by 1. In particular, when v is full, a page b;
such that b; € v and ¢,[b;] = 0 is chosen arbitrarily and is swapped out to w.
Such a page b; can always be found after the counter manipulation.

We mention a simple fact that we will use in the proof of Theorem 8. When a
node v has [ positive counters, these counters take distinct values in [k —{+ 1, k].

Theorem 8. DLRU s 2k-competitive.

Proof. We assume B = kn. The analysis can be extended to B < kn with only
small changes. Let SY . be the set of pages stored at v in OPT. We define

opt
D= " 2k —cy[b])
vEV bESY,
as our non-negative potential function. It suffices to prove that, for an arbitrary
request sequence ¢, ACpp + AP < 2kACopr, for all events contained in the
simultaneous run of DLRU and OPT on . Here ACp 1, denotes the cost incurred
by DLRU during the event. We assume w.l.o.g. that when there is a request, first
OPT transfers pages to serve the request and then DLRU starts satisfying it. So
when DLRU is serving, the requested page belongs to .Sj,,. We have to consider
two types of events: (Type I) OPT swaps two pages; (Type II) DLRU satisfies
the request. Due to space limitations we prove ACpp + AP < 2k ACopr only for
(Type II). Suppose that there is a request to page b; at node v.
Case 1: DLRU already has b; at node v.
In this case ACpr, = ACopr = 0 and ¢,[b;] is augmented from some non-negative
integer {(< k) to k. In addition, at most k — [ counters in v decrease their values
by 1. Since b; € S,;, the change of @ is smaller than —2(k — ) + (k —1) -2 = 0.
Thus we obtain ACpr 4+ AP <04+ 0=0=2kACopr.
Case 2: DLRU does not have b; at node v yet.
Again ACopr = 0. ACpr = 2 because DLRU loads b; into v’s local memory,
which requires one swap. Let u be the node that stored b; before the request and
let b; be the page brought from v to u to make room at v for b;. In v, ¢, [b;] is
set from 0 to &, and in the worst case & positive counters are decremented. Since
bi € 55,4, at least one of the decreased k counters is not in .57, , and the change of
@ with respect to v is less than —2k+ (k—1)-2 = —2. In node w, ¢, [b;] is reset to 0
and several counters may be incremented. The change of @ corresponding to u is
less than or equal to 0, because the counter increments lower & and b; ¢ Sj,,. The
total change of @ is the sum of the change at v and v. Hence A¢ < -2 +0= -2
and ACpp + AP < 2+ (—2) =0=2kACopyr. O
Finally, we investigate randomized distributed paging. For uni-processor pag-
ing, a well-known randomized on-line algorithm called Marking attains (2 log k)-
competitiveness against the oblivious adversary [7]. We can generalize Marking
to the migration version of the distributed paging problem.
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Algorithm VMARK: The algorithm is defined for each node v separately. Each
of the k£ blocks in node v has a marker bit and a page field associated with it. The
marker bit and the page field are
called the attribute of a block. The
page field is used to specify the
name of a page; the page stored
in a block can be different from
that specified in the page field, though. Roughly speaking, a page field memorizes
the page which would occupy the corresponding block if there were no requests at
any nodes except v. The algorithm works in a series of phases. Like Marking, at
the beginning of every phase, all marker bits are reset to 0. As the phase proceeds,
the number of marker bits that take the value 1 monotonically increases. After

type block = record
mark : 0 or 1
page : name of the page
end

all bits have been marked, the phase is over at the next request to an item not
contained in the set of pages written on the k page fields in v. Marker bits and
page fields can be modified only if there is a request at v or a page is swapped
out to v from other nodes. The details of the algorithm are given in the program
style. At a page collision, VMARK moves the evicted page to the block that the
incoming page occupied before.

Procedure Fetchblock /* there is a request at v to b; */
if b; belongs to v’s local memory then
let BL; be the block holding &;.
if BL;.page = b; then set BL;.mark to 1 and exit.
else choose randomly one block BL; s.t. BL; . mark = 0.
copy BL;’s attribute to BL;’s attribute.
BL; mark < 1. BL; .page < b;.
else /* b; does not belong to v’s local memory */
if there is a block BL s.t. BL.page = b; then
swap out a page from BL if BL is not empty. /* page collision */
fetch b; to BL. BL.mark < 1.
else choose randomly one block BL’ s.t. BL .mark = 0.
swap out a page from BL' if BL' is not empty. /* page collision */
fetch b; to BL'. BL'.mark + 1. BL .page < b;.

Procedure Dropped /* page b; stored at v is fetched by node u
and b; is brought into v instead because of a page collision at u */
let BL be the block that b; occupied before leaving v.
bring b; to BL.
if there is a block BL' s.t. BL'.page = b; then
exchange the attributes of BL and BL'.

The program is composed of two procedures, Fetchpage and Dropped. Fetch-
page explains the action when there is a request at v. Dropped is called when a
page is discarded into v because of a page collision in another node u. Note that
if requests are generated at only one node v, the algorithm performs in exactly
the same way as Marking. VMARK preserves the following crucial properties. (1)
During a phase, exactly k different pages are requested at v. (2) There never exist
two blocks BL1 and BL; in a node v so that BL; stores a page b and at the same
time b is specified in the page field of BLg. (3) If the page stored in block BL
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at v 1s different from the page b memorized in the page field of BL, then b left v
because some other node generated a request to b.

Theorem 9. VMARK is (8log k)-competitive against the oblivious adversary.

Proof (Sketch). Let Cyar(o) be the cost incurred by VMARK. We analyze the
cost by dividing Cy (o) and Copr(o) among all nodes. Then, for each node v,
we compare VMARK’s and OPT’s cost. The cost Cy (o) is divided as follows.
Suppose that there is a request at node v to page b and that VMARK does not
have b in v’s local memory. Then we charge a cost of 2 to v, even if v is empty
and the actual cost would only be 1. This can only overestimate Cypr(o). As for
OPT, whenever OPT moves a page from u to v, we assign a cost of % to both v
and wu. Using this cost-assignment, when we pay attention to a particular node v,
the influence from other nodes (e.g. other nodes generate requests to pages stored
in v or drop pages to v as the result of a page collision) does not increase the cost
ratio of VMARK to OPT on v. Thus we can assume that requests only occur at
node v and can apply the analysis for Marking [7] to v. O
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