
Online Algorithms:A Study of Graph-Theoretic ConceptsSusanne AlbersMax-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany.albers@mpi-sb.mpg.de, http://www.mpi-sb.mpg.de/~albers/Abstract. In this paper we survey results on the design and analy-sis of online algorithms, focusing on problems where graphs and graph-theoretic concepts have proven particularly useful in the formulation orin the solution of the problem. For each of the problems addressed, wealso present important open questions.1 IntroductionThe traditional design and analysis of algorithms assumes that an algorithm,which generates output, has complete knowledge of the entire input. However,this assumption is often unrealistic in practical applications. Many of the algo-rithmic problems that arise in practice are online. In these problems the inputis only partially available because some relevant input arrives only in the fu-ture and is not accessible at present. An online algorithm must generate outputwithout knowledge of the entire input. Online problems arise in areas such asresource allocation in operating systems, data structuring, robotics, distributedcomputing and scheduling. We give some illustrative examples.Caching: In a two-level memory system, consisting of a small fast memory anda large slow memory, a caching algorithm has to keep actively referenced pagesin fast memory not knowing which pages will be requested next.Data structures: In a given data structure, we wish to access elements at lowcost. The goal is to keep the data structure in a good state, not knowing whichelements will have to be accessed in the future.Robot exploration: A robot is placed in an unknown environment and has toconstruct a complete map of the environment using a path that is as short aspossible. The environment is explored only as the robot travels around.Distributed data management: In a network of processors we wish to dy-namically re-allocate �les so that accesses can be served with low communicationcost. Future accesses are unknown.We will address these problems in more detail in the following sections.During the last ten years competitive analysis has proven to be a powerful toolfor analyzing the performance of online algorithms. In a competitive analysis,introduced by Sleator and Tarjan [50], an online algorithm A is compared to anoptimal o�ine algorithm OPT. An optimal o�ine algorithm knows the entireinput in advance and can process it optimally. Given an input I , let CA(I) and



COPT (I) denote the costs incurred by A and OPT in processing I . Algorithm Ais called c-competitive if there exists a constant a such thatCA(I) � c � COPT (I) + a;for all inputs I . Note that a competitive algorithm must perform well on allinput sequences.2 CachingIn this section, we �rst investigate uniform caching, also known as paging. Forthis problem, access graphs are very useful in the modeling of realistic requestsequences. In the second part of this section we discuss caching problems thatarise in large networks such a the world-wide web.2.1 PagingWe �rst de�ne the paging problem formally. In the two-level memory system, allmemory pages have the same size. We assume that the fast memory can storek pages at any time. A paging algorithm is presented with a request sequence� = �(1); : : : ; �(m), where each request �(t), 1 � t � m, speci�es a page in thememory system. A request can be served immediately, if the requested page isin fast memory. If a requested page is not in fast memory, a page fault occurs.Then the missing page has to be copied from slow memory to fast memory sothat the request can be served. At the same time the paging algorithm has toevict a page from fast memory in order to make room for the incoming page.Typically, a paging algorithm has to work online, i.e. the decision which page toevict on a fault must be made without knowledge of any future requests. Thegoal is to minimize the number of page faults.We note that an online paging algorithm A is called c-competitive if, for allrequest sequences �, the number of faults incurred by A is at most c times thenumber of faults incurred by an optimal o�ine algorithm OPT.There are two very well-known online algorithms for the paging problem.Least-Recently-Used (LRU): On a fault evict the page that has been re-quested least recently.First-In First-Out (FIFO): On a fault evict the page that has been in fastmemory longest.An optimal o�ine algorithm was presented by Belady [16]. The algorithm iscalled MIN and has a polynomial running time.MIN: On a fault evict the page whose next request is farthest in the future.Sleator and Tarjan [50] analyzed the performance of LRU and FIFO andshowed that on any request sequence the number of page faults incurred by thealgorithms is bounded by k times the number of faults made by OPT. They alsoshowed that this is optimal.



Theorem 1. [50] LRU and FIFO are k-competitive.Theorem 2. [50] No deterministic online algorithm for the paging problem canachieve a competitive ratio smaller than k.While Theorem 1 gives a strong worst-case analysis of LRU and FIFO, the com-petitive ratio of k is not very meaningful from a practical point of view. A fastmemory can often hold several hundreds or thousands of pages. In fact, the com-petitive ratio of k is much higher than observed in practice. In an experimentalstudy presented by Young [53], LRU achieves a competitive ratio between 1 and2. Also, in practice, the performance of LRU is much better than that of FIFO.This does not show in the competitive analysis.The high competitive ratio is due to the fact that a competitive analysisallows arbitrary request sequences whereas in practice only restricted classes ofrequest sequences occur. Request sequences generated by real programs typicallyexhibit locality of reference: Whenever a page is requested, the next request isusually to a page that comes from a very small set of associated pages. Localityof reference can be modeled by access graphs, introduced by Borodin et al. [27].In an access graph, the nodes represent the memory pages. Whenever a page pis requested, the next request can only be to a page that is adjacent to p in theaccess graph.Formally, let G = (V;E) be an unweighted graph. As mentioned above, Vrepresents the set of memory pages. E is a set of edges. A request sequence� = �(1); : : : ; �(m), is consistent with G if (�(t); �(t + 1)) 2 E for all t =1; : : : ;m� 1. We say that an online algorithm A is c-competitive on G if thereexists a constant a such that CA(�) � c � COPT (�) + a for all � consistent withG. The competitive ratio of A on G, denoted by R(A;G), is the in�mum of allc such that A is c-competitive on G. LetR(G) = minA R(A;G)be the best competitive ratio achievable on G. Borodin et al. [27] showed thatLRU achieves the best possible competitive ratio on access graphs that are trees.Trees represent the access graphs for many data structures. For any tree T , letl(T ) denote the number of leaves of T . LetTn(G) = fT j T is an n-node subtree of Gg:Theorem 3. [27] For any graph G consisting of at least k + 1 nodes,R(G) � maxT2Tk+1fl(T )� 1g:Theorem 4. [27] Let G be a tree. Then R(LRU;G) = maxT2Tk+1fl(T )� 1g:Borodin et al. [27] also analyzed R(LRU;G) on arbitrary graphs. They showedthat the ratio depends on the number of articulation nodes of G. An articulationnode is a node whose removal disconnects the graph. Another important result,



due to Chrobak and Noga [26], is that LRU is never worse than FIFO on accessgraphs. Moreover, Borodin et al. [27] showed that there exist graphs for whichthe competitive ratio of FIFO is much higher than that of LRU.Theorem 5. [26] For any graph G, R(LRU;G) � R(FIFO;G).Theorem 6. [27] For any connected graph consisting of at least k + 1 nodes,R(FIFO;G) � (k + 1)=2.Borodin et al. [27] also presented an optimal online algorithm for any accessgraph.FAR: The algorithm is a marking strategy working in phases. Whenever a pageis requested, it is marked. If there is a fault at a request to a page p, then FARevicts an unmarked page from fast memory that has the largest distance to amarked page in the access graph. A phase ends when all pages in fast memoryare marked and a fault occurs. At this point all marks are erased and a newphase is started.Irani et al. [39] showed that this algorithm achieves the best possible com-petitive ratio, up to a constant factor, for all access graphs.Theorem 7. [39] For any graph G, R(FAR; G) = O(R(G)).Fiat and Karlin [30] presented randomized online paging algorithms for accessgraphs that achieve an optimal competitive ratio.A disadvantage of the algorithm FAR is that the access graph has to beknown in advance. Fiat and Rosen [31] proposed a scheme that grows a dynamicweighted access graph over time. Whenever two pages p and q are requestedsuccessively for the �rst time, an edge (p; q) of weight 1 is inserted into thegraph. Every time p and q are requested successively again, the weight w ofthe edge is decreased to minf�w; 1g for some � < 1. After each round of 
krequests, all weights are increased by �, where �; 
 > 1 are some �xed chosenconstants. Fiat and Rosen [31] proposed the following variant of the algorithmFAR, called FARL: If there is a fault, the algorithm evicts the page that has thelargest distance from the page requested just before the fault. Fiat and Rosenpresented an experimental study in which FARL incurs fewer page faults thaneven LRU.So far we have addressed undirected access graphs. An initial investigationof directed access graph was presented by Irani et al. [39], who considered struc-tured program graphs.Open Problem: Develop online paging algorithms for general directed accessgraphs.2.2 Generalized CachingCaching problems that arise in large networks such as the world-wide web di�erfrom ordinary caching in two aspects. Pages may have di�erent sizes and may



incur di�erent costs when loaded into fast memory. The pages or documents tobe cached may be text �les, pictures or web pages; the cost of loading a missingpage into fast memory may depend on the size of the page and on the distanceto the nearest node in the network holding the page. In generalized caching wehave again a two-level memory system consisting of a fast and a slow memory.(In the network setting, the fast memory is the memory of a given node. Theslow memory is the memory of the remaining network.) We assume that the fastmemory has a capacity of K. For any page p, let size(p) be the size and cost(p)be the cost of p. The total size of the pages in fast memory may never exceedK. The goal is to serve a sequence of requests so that the total loading cost isas small as possible. Various cost models have been proposed in the literature.1. The Bit Model [38]: For each page p, we have cost(p) = size(p). (Thedelay in bringing the page into fast memory depends only upon its size.)2. The Fault Model [38]: For each page p, we have cost(p) = 1 while thesizes can be arbitrary.3. The Cost Model: For each page p, we have size(p) = 1 while the costscan be arbitrary.4. The General Model: For each page p, both the cost and size can bearbitrary.In the Bit Model, and hence in the General Model, computing an optimalo�ine service schedule for a given request sequence is NP-hard. The problem ispolynomially solvable in the Cost Model [25]. In fact, caching in the Cost Modelis also known as weighted caching, a special instance of the k-server problem. Inthe Fault Model the complexity is unknown.Open Problem: Determine the complexity of caching in the Fault Model.Young [54] gave a k-competitive online algorithm for the General Model.Landlord: For each p in fast memory, the algorithm maintains a variablecredit(p) that takes values between 0 and cost(p). If a requested page pis already in fast memory, then credit(p) is reset to any value between itscurrent value and cost(p). If the requested page is not in fast memory, thenthe following two steps are executed until there is enough room to load p.(1) For each page q in fast memory, decrease credit(q) by � � size(q), where� = minq2F credit(q)=size(q) and F is the set of pages in fast memory.(2) Evict any page q from fast memory with credit(q) = 0. When there isenough room, load p and set credit(p) to cost(p).Theorem 8. [54] Landlord is k-competitive in the General Model.For the Bit and the Fault Model, Irani presented O(log2 k)-competitive onlinealgorithms and O(log k)-approximation o�ine algorithms. Here k is the ratio ofK to the size of the smallest page requested. For the o�ine problem, Albers etal. [2] gave constant factor approximation algorithms using only a small amountof additional space in fast memory, say O(1) times the largest page size. Notethat the largest page size is typically a very small fraction of the total size of



the fast memory, say 1%. The approach is to formulate the caching problemsas integer linear programs and then solve a relaxation to obtain a fractionaloptimal solution. The integrality gap of the linear programs is unbounded, butnevertheless one can show the following.Theorem 9. [2] There is a polynomial-time algorithm that, given any requestsequence, �nds a solution of cost c1 � OPTLP, where OPTLP is the cost of thefractional solution (with fast memory K). The solution uses K+ c2 �S memory,where S is the size of the largest page in the sequence. The values of c1 and c2are as follows for the various models. Let � and � be real numbers with � > 0 and0 < � � 1.1. c1 = 1=� and c2 = � for the Bit Model,2. c1 = (1 + �)=� and c2 = �(1 + 1=(p1 + �� 1)) for the Fault Model,3. c1 = 4 + � and c2 = 6=� for the General Model.The c1; c2 values in the above theorem express trade-o�s between the approx-imation ratio and the additional memory needed. For example, in the Bit Model,we can get a solution with cost OPTLP using at most S additional memory. Inthe Fault model, we can get a solution with cost 4OPTLP using at most 2Sadditional memory. The approximation ratio can be made arbitrarily close to 1by using c2S additional memory for a large enough c2. In the General Model weobtain a solution of 5OPTLP using 6S additional memory, but we can achieveapproximation ratios arbitrarily close to 4.Open Problem: Are there constant factor approximation algorithms that donot require extra space in fast memory?3 Data structuresMany online problems arise in the area of data structures. We consider the listupdate problem which is among the most extensively studied online problems.The list update problem is to maintain a dictionary as an unsorted linear list.Consider a set of items that is represented as a linear linked list. We receive arequest sequence �, where each request is one of the following operations. (1) Itcan be an access to an item in the list, (2) it can be an insertion of a new iteminto the list, or (3) it can be a deletion of an item. To access an item, a listupdate algorithm starts at the front of the list and searches linearly throughthe items until the desired item is found. To insert a new item, the algorithm�rst scans the entire list to verify that the item is not already present and theninserts the item at the end of the list. To delete an item, the algorithm scans thelist to search for the item and then deletes it.In serving requests a list update algorithm incurs cost. If a request is anaccess or a delete operation, then the incurred cost is i, where i is the position ofthe requested item in the list. If the request is an insertion, then the cost is n+1,where n is the number of items in the list before the insertion. While processinga request sequence, a list update algorithm may rearrange the list. Immediately



after an access or insertion, the requested item may be moved at no extra costto any position closer to the front of the list. These exchanges are called freeexchanges. Using free exchanges, the algorithm can lower the cost on subsequentrequests. At any time two adjacent items in the list may be exchanged at a costof 1. These exchanges are called paid exchanges.With respect to the list update problem, we require that a c-competitiveonline algorithm has a performance ratio of c for all size lists. More precisely,a deterministic online algorithm for list update is called c-competitive if thereis a constant a such that for all size lists and all request sequences �, CA(�) �c � COPT (�) + a:Linear lists are one possibility to represent a dictionary. Certainly, thereare other data structures such as balanced search trees or hash tables that,depending on the given application, can maintain a dictionary in a more e�cientway. In general, linear lists are useful when the dictionary is small and consistsof only a few dozen items [19]. Furthermore, list update algorithms have beenused as subroutines in algorithms for computing point maxima and convex hulls[18,32]. Recently, list update techniques have been very successfully applied inthe development of data compression algorithms [6,20,24].There are three well-known deterministic online algorithms for the list updateproblem.Move-To-Front: Move the requested item to the front of the list.Transpose: Exchange the requested item with the immediately preceding itemin the list.Frequency-Count: Maintain a frequency count for each item in the list. When-ever an item is requested, increase its count by 1. Maintain the list so that theitems always occur in nonincreasing order of frequency count.The formulations of list update algorithms generally assume that a requestsequence consists of accesses only. It is obvious how to extend the algorithms sothat they can also handle insertions and deletions. On an insertion, the algorithm�rst appends the new item at the end of the list and then executes the samesteps as if the item was requested for the �rst time. On a deletion, the algorithm�rst searches for the item and then just removes it.In the following, we discuss the algorithms Move-To-Front, Transpose andFrequency-Count. We note that Move-To-Front and Transpose are memorylessstrategies, i.e., they do not need any extra memory to decide where a requesteditem should be moved. Thus, from a practical point of view, they are more at-tractive than Frequency-Count. Sleator and Tarjan [50] analyzed the competitiveratios of the three algorithms.Theorem 10. [50] The Move-To-Front algorithm is 2-competitive.Proposition 11. The algorithms Transpose and Frequency-Count are not c-competitive, for any constant c.Albers [1] presented another deterministic online algorithm for the list updateproblem. The algorithm belongs to the Timestamp(p) family of algorithms that



were introduced in the context of randomized online algorithms and are de�nedfor any real number p 2 [0; 1], see [1]. For p = 0, the algorithm is deterministicand can be formulated as follows.Timestamp(0): Move the requested item, say x, in front of the �rst item inthe list that precedes x and that has been requested at most once since the lastrequest to x. If there is no such item or if x has not been requested so far, thenleave the position of x unchanged.Theorem 12. [1] The Timestamp(0) algorithm is 2-competitive.Note that Timestamp(0) is not memoryless. We need information on pastrequests in order to determine where a requested item should be moved. Time-stamp(0) is interesting because it has a better overall performance than Move-To-Front. The algorithm achieves a competitive ratio of 2, as does Move-To-Front.However, Timestamp(0) is considerably better than Move-To-Front on requestsequences that are generated by probability distributions [6]. For any probabilitydistribution, the asymptotic expected cost incurred by TS(0) is at most 1.5times the asymptotic expected cost incurred by an optimal o�ine algorithm.The corresponding bound for Move-To-Front is not better than �=2.Karp and Raghavan [42] developed a lower bound on the competitiveness thatcan be achieved by deterministic online algorithms. This lower bound impliesthat Move-To-Front and Timestamp(0) have an optimal competitive ratio.Theorem 13. [42] Let A be a deterministic online algorithm for the list updatealgorithm. If A is c-competitive, then c � 2.An important question is whether the competitive ratio of 2 can be improvedusing randomization. We analyze randomized online algorithms problem againstoblivious adversaries [17]. An oblivious adversary has to construct the entirerequest sequence in advance and is not allowed to see the random choices madeby an online algorithm.Many randomized online algorithms for list update have been proposed[1,7,35,36,49].We present the two most important algorithms. Reingold et al. [49]gave a very simple algorithm, called Bit.Bit: Each item in the list maintains a bit that is complemented whenever theitem is accessed. If an access causes a bit to change to 1, then the requested itemis moved to the front of the list. Otherwise the list remains unchanged. The bitsof the items are initialized independently and uniformly at random.Theorem 14. [49] The Bit algorithm is 1.75-competitive against any obliviousadversary.Interestingly, it is possible to combine the algorithms Bit and Timestamp(0), seeAlbers et al. [7]. This combined algorithm achieves the best competitive ratiothat is currently known for the list update problem.Combination: With probability 4/5 the algorithm serves a request sequenceusing Bit, and with probability 1/5 it serves a request sequence using Time-stamp(0).



Theorem 15. [7] The algorithm Combination is 1.6-competitive against anyoblivious adversary.Teia [51] presented a lower bound for randomized list update algorithms.Theorem 16. [51] Let A be a randomized online algorithm for the list updateproblem. If A is c-competitive against any oblivious adversary, then c � 1:5.A slightly better lower bound of 1.50084 was presented recently by Amb�uhl etal. [8]. However, the lower bound only holds in the partial cost model where thecost of serving a request to the i-th item in the list incurs a cost of i� 1 ratherthen i.Open Problem: Give tight bounds on the competitive ratio achieved by ran-domized online algorithms against any oblivious adversary.4 Robot explorationIn robot exploration problems, a robot has to construct a complete map of an un-known environment using a path that is as short as possible. Many geometric andgraph-theoretic problems have been studied in the past [3,13,22,28,29,33,34,46].A general problem setting was introduced by Deng et al. [28]. The robot is placedin a room with obstacles. The exterior wall of the room as well as the obstaclesare modeled by simple polygons. Figure 1 shows an example in which the roomis a rectangle and all obstacles are rectilinear. The robot has 360� vision. Its taskis to move through the scene so that it sees all parts of the room. More precisely,every point in the room must be visible from some point on the path traversed.Given a scene S, let LA(S) be the length of the path traversed by algorithmAto explore S. Since A does not know S in advance it is also referred to as an onlinealgorithm. Let LOPT (S) be the length of the path of an optimum algorithmthat knows the scene in advance. We call an online exploration algorithm Ac-competitive if for all scenes S, LA(S) � c � LOPT (S).Exploration algorithms achieving a constant competitive ratio were givenfor rooms without obstacles [28,33,34,46]. Note that the exploration problem isnon-trivial even in rooms without obstacles because the room might be a gen-eral polygon. Deng et al. [28] gave an O(n)-competitive algorithm for exploringrectilinear rooms with n rectilinear obstacles. Albers and Kursawe [5] showedthat no exploration algorithm in rooms with n obstacles can be better than
(pn)-competitive. This lower bound holds even if the obstacles are rectangles.4.1 Exploration of grid graphsIn the scenario described above it is assumed that the robot can see an in�niterange as long as no obstacle or exterior wall blocks the view. However, in practice,a robot's sensors can often scan only a distance of a few meters. This situationcan be modeled by adding a grid to the scene, as shown in Figure 2, and requiringthat the robot moves on the nodes and edges of the grid. A node in the grid



Fig. 1. A sample scene Fig. 2. A sample scene with a gridmodels the vicinity that the robot can see at a given point. Now the robot has toexplore all nodes and edges of the grid using as few edge traversals as possible. Anode is explored when it is visited for the �rst time and an edge is explored whenit is traversed for the �rst time. At any node the robot knows its global positionand the directions of the incident edges. Note that using a depth-�rst strategy,the graph can be explored using O(m) edge traversals, which is optimal. Herem denotes the total number of edges of the graph.Betke et al. [22] introduced an interesting, more complicated variant of thisproblem where an additional piecemeal constraint has to be satis�ed, i.e, therobot has to return to a start node s every so often. These returns might benecessary because the robot has to refuel or drop samples collected on a trip.Betke et al. developed two algorithms for piecemeal exploration of grids withrectangular obstacles. The algorithms, called Wavefront and Ray , need O(m)edge traversals. The Wavefront algorithm implements a breadth-�rst strategywhile the Ray algorithm implements a simple and elegant depth-�rst strategy.Theorem 17. [22] A grid with rectangular obstacles can be explored in a piece-meal fashion using O(m) edge traversals.Albers and Kursawe [5] present an algorithm that explores a grid with arbitrary(rectilinear) obstacles using O(m) edge traversals, which is optimal. The algo-rithm is a generalization of the Ray algorithm by Betke, Rivest and Singh. In theoriginal Ray algorithm it is required that the robot always knows a path backto the start node whose length is most the radius of the graph. When exploringgrids with arbitrary obstacles, this constraint cannot be satis�ed. Albers andKursawe [5] solve this problem by presenting an e�cient strategy for exploringthe boundary of arbitrary obstacles.Theorem 18. [5] A grid with arbitrary rectilinear obstacles can be explored ina piecemeal fashion using O(m) edge traversals.4.2 Exploration of general graphsThe graph-theoretic abstraction of a scene can be taken even further. Supposethat the environment is modeled by a strongly connected graph G = (V;E). G



can be directed or undirected. Such a general, graph-theoretic modeling of a sceneallows us to neglect geometric features of the environment and to concentrateon combinatorial aspects of the exploration problem. Let n denote the numberof nodes and m denote the number of edges of G.Awerbuch et al. [13] consider piecemeal exploration of arbitrary undirectedgraphs and give a nearly optimal algorithm. The algorithm explores the graphsin strips, where each strip is explored using a breadth-�rst strategy.Theorem 19. An undirected graph can be explored in a piecemeal fashion usingO(m+ n1+o(1)) edge traversals.Open Problem: Is there an algorithm that achieves an optimal bound of O(m+n) on the number of traversals?The most general graph-theoretic exploration problem was formulated byDeng and Papadimitriou [29]. The environment is now modeled by a stronglyconnected directed graph. At any point during the exploration process the robotknows (1) all visited nodes and edges and can recognize them when encounteredagain; and (2) the number of unvisited edges leaving any visited node. The robotdoes not know the head of unvisited edges leaving a visited node or the unvisitededges leading into a visited node. At each point in time, the robot visits a currentnode and has the choice of leaving the current node by traversing a speci�c knownor an arbitrary (i.e. given by an adversary) unvisited outgoing edge. An edgecan only be traversed from tail to head, not vice versa. As usual, the goal is tominimize the total number T of edge traversals. A piecemeal constraint does nothave to be satis�ed here.If the graph is Eulerian, 2m edge traversals su�ce [29]. For a non-Euleriangraph, let the de�ciency d be the minimum number of edges that have to beadded to make the graph Eulerian. Deng and Papadimitriou [29] suggested tostudy the dependence of T on m and d and showed the �rst upper and lowerbounds. They gave a graph such that any algorithm needs 
(d2m= logd) edgetraversals. This lower bound was improved by Koutsoupias [46].Theorem 20. [46] There exist graphs for which every exploration algorithmneeds 
(d2m) edge traversals.Deng and Papadimitriou gave an exponential upper bound.Theorem 21. [29] There is an algorithm that explores a graph with de�ciencyd using dO(d)m edge traversals.Deng and Papadimitriou asked the question whether the exponential gap be-tween the upper and lower bound can be closed. The paper by Albers andHenzinger [3] is a �rst step in this direction: They give an algorithm that issub-exponential in d, namely it achieves an upper bound of dO(log d)m. Albersand Henzinger also show that several exploration strategies based on greedy,depth-�rst and breadth-�rst approaches do not work well. There are graphs forwhich these strategies need 2
(d)m traversals.



We sketch the basic idea of the sub-exponential algorithm. At any time, thealgorithm tries to explore new edges that have not been visited so far. That is,starting at some visited node x with unvisited outgoing edges, the robot exploresnew edges until it gets stuck at a node y, i.e., it reaches y on an unvisited incomingedge and y has no unvisited outgoing edge. Since the robot is not allowed totraverse edges in the reverse direction, an adversary can always force the robotto visit unvisited nodes until it �nally gets stuck at a visited node.The robot then relocates, using visited edges, to some visited node z withunexplored outgoing edges and continues the exploration. The relocation to zis the only step where the robot traverses visited edges. To minimize T onehas to minimize the total number of edges traversed during all relocations. Itturns out that a locally greedy algorithm that tries to minimize the number oftraversed edges during each relocation is not optimal. Instead, the algorithm usesa divide-and-conquer approach. The robot explores a graph with de�ciency d byexploring d2 subgraphs with de�ciencies d=2 each and uses the same approachrecursively on each of the subgraphs. To create subgraphs with small de�ciencies,the robot keeps track of visited nodes that have more visited outgoing thanvisited incoming edges. Intuitively, these nodes are expensive because the robot,when exploring new edges, can get stuck there. The relocation strategy triesto keep portions of the explored subgraphs \balanced" with respect to theirexpensive nodes. If the robot gets stuck at some node, then it relocates to anode z such that \its" portion of the explored subgraph contains the minimumnumber of expensive nodes.Theorem 22. [3] There is an algorithm that explores a graph with de�ciency dusing dO(log d)m edge traversals.Open Problem: Is there an exploration algorithm for directed graphs thatachieves an upper bound on the number of edge traversals that is polynomial ind?5 Online problems in networksMany online problems also arise in the area of distributed computing. We de-scribe only a few problems here. Consider a network of processors each of whichhas its own local memory. Such a network can be modeled by a weighted undi-rected graph. The nodes of the graph represent the processor in the network andthe edges represent the communication links. Let n be the number of nodes andm be the number of edges of the graph.5.1 Migration and replication problemsFirst we address a problem in distributed data management, known as the �leallocation problem. The goal is to dynamically re-allocate �les in the networkso that a sequence read and write requests to �les an be served at low com-munication costs. The con�guration of the system can be changed by migrating



and replicating �les, i.e., a �le is moved resp. copied from one local memory toanother.In the investigation of the problem, we generally concentrate on one partic-ular �le in the system. We say that a node v has the �le if the �le is containedin v's local memory. A request at a node v occurs if v wants to read or writethe �le. Immediately after a request, the �le may be migrated or replicated froma node holding the �le to another node in the network. We use the cost modelintroduced by Bartal et al. [15] and Awerbuch et al. [12]. (1) If there is a readrequest at v and v does not have the �le, then the incurred cost is dist(u; v),where u is the closest node with the �le. (2) The cost of a write request at nodev is equal to the cost of communicating from v to all other nodes with a �lereplica. (3) Migrating or replicating a �le from node u to node v incurs a cost ofd � dist(u; v), where d is the �le size factor. (4) A �le replica may be erased at 0cost.Theorem 23. [12,15] There exist deterministic and randomized online algo-rithms for the �le allocation problem that achieve competitive ratios of O(logn).The randomized solution, due to Bartal et al. [15], is very simple and elegant.Coin
ip: If there is a read request at node v and v does not have the �le, thenwith probability 1=d, replicate the �le to v. If there is a write request at nodev, then with probability 1=p3d, migrate the �le to v and erase all other �lereplicas.The �le migration problem is a restricted version of the �le allocation prob-lem where we keep only one copy of each �le in the entire system. If a �le iswritable, this avoids the problem of keeping multiple copies of a �le consistent.For this problem, constant competitive algorithms are known, see [12,14,55].In the �le replication problem, �les are assumed to be read-only and we haveto determine which local memories should contain copies of the read-only �les.Constant competitive algorithms are known for speci�c network topologies suchas uniform networks, trees and rings [4,23]. A uniform network is a completegraph in which all edges have the same length.All of the solutions mentioned above assume that the local memories of theprocessors have in�nite capacity. Bartal et al. [15] showed that if the local memo-ries have �nite capacity, then no online algorithm for �le allocation can be betterthan 
(N)-competitive, where N is the total number of �les that can be accom-modated in the system. They also presented an O(N)-competitive algorithm foruniform networks.Open Problem: Is there an O(N)-competitive algorithm for arbitrary networktopologies when the nodes have limited memory capacity?5.2 Routing problemsMany di�erent online routing problems have been studied in the literature,see [47] for a survey. In the virtual circuit routing problem each communication



link e in the network has a given maximum capacity ce. The input consists of asequence � of communication requests, where each request �(t) can be describeby a 5-tupel (ut; vt; rt; dt; bt). Here ut and vt are the nodes to be connected, rt isthe bandwidth requirement of the request, dt is its duration and bt is a certainbene�t. In response to each request we wish to establish a virtual circuit on apath connecting ut and vt with the given bandwidth. The bene�t parameter isonly speci�ed in problems where calls may also be rejected. A bene�t is obtainedif the call is indeed routed.Aspnes et al. [9] considered the problem variant when connection requestshave unlimited duration and every call has to be routed. The goal is to minimizethe maximum load on any of the links. The idea of their algorithm is to assignwith every edge in the network a cost that is exponential in the fraction ofthe capacity of the edge assigned to on-going circuits. Let P = fP1; : : : ; Ptg bethe routes assigned by the online algorithm to the �rst t requests. Similarly,let POPT = fPOPT1 ; : : : ; POPTt g be the routes assigned by the optimal o�inealgorithm. For every edge e in the network, we de�ne a relative load after trequests, le(t) = Xs:e2Pss�t rs=ce:The online algorithm given below assumes knowledge of a value � whichis an estimate on the maximum load obtained by an optimal o�ine algorithmwhen all the requests are routed. Such a value can be obtained using a doublingstrategy. Whenever the current guess turns out to bee too small, it is doubled.Assign-Route: Let a be a constant and let (u; v; r) be the current request tobe routed. Set r = r=� and le = le=� for all e 2 E. Letcoste = ale+r=ce � alefor all e 2 E. Let P be a shortest path from u to v in the graph with respect tocosts coste. Route the request along P and set le = le + r=ce for all edges on P .Aspnes et al. [9] show that for any sequence of requests that can be routedusing the given edge capacities, the maximum load achieved by Assign-Route isat most O(logn) times as large as the maximum load of an optimal solution.Theorem 24. [9] Assign-Route is an O(logn)-competitive algorithm for theproblem of minimizing the maximum load on the links.The virtual circuit routing problem has also been studied in its throughputversion. In this variant, called the call control problem, a bene�t is associatedwith every request. Requests can be accepted or rejected while link capacitiesmay not be exceeded. Awerbuch et al. [11] examined the case that each call hasa limited duration and showed the following result based on an algorithm similarto Assign-Route.Theorem 25. [11] There is an O(lognT )-competitive algorithm for the problemof maximizing throughput. T denotes the maximum duration of a call.The bound given in Theorem 25 is tight.
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