Online Algorithms:
A Study of Graph-Theoretic Concepts

Susanne Albers

Max-Planck-Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany.
albers@mpi-sb.mpg.de, http://www.mpi-sb.mpg.de/ albers/

Abstract. In this paper we survey results on the design and analy-
sis of online algorithms, focusing on problems where graphs and graph-
theoretic concepts have proven particularly useful in the formulation or
in the solution of the problem. For each of the problems addressed, we
also present important open questions.

1 Introduction

The traditional design and analysis of algorithms assumes that an algorithm,
which generates output, has complete knowledge of the entire input. However,
this assumption is often unrealistic in practical applications. Many of the algo-
rithmic problems that arise in practice are online. In these problems the input
is only partially available because some relevant input arrives only in the fu-
ture and is not accessible at present. An online algorithm must generate output
without knowledge of the entire input. Online problems arise in areas such as
resource allocation in operating systems, data structuring, robotics, distributed
computing and scheduling. We give some illustrative examples.

Caching: In a two-level memory system, consisting of a small fast memory and
a large slow memory, a caching algorithm has to keep actively referenced pages
in fast memory not knowing which pages will be requested next.

Data structures: In a given data structure, we wish to access elements at low
cost. The goal is to keep the data structure in a good state, not knowing which
elements will have to be accessed in the future.

Robot exploration: A robot is placed in an unknown environment and has to
construct a complete map of the environment using a path that is as short as
possible. The environment is explored only as the robot travels around.

Distributed data management: In a network of processors we wish to dy-
namically re-allocate files so that accesses can be served with low communication
cost. Future accesses are unknown.

We will address these problems in more detail in the following sections.

During the last ten years competitive analysis has proven to be a powerful tool
for analyzing the performance of online algorithms. In a competitive analysis,
introduced by Sleator and Tarjan [50], an online algorithm A is compared to an
optimal offline algorithm OPT. An optimal offline algorithm knows the entire
input in advance and can process it optimally. Given an input I, let C'4(I) and



Copr(I) denote the costs incurred by A and OPT in processing I. Algorithm A
is called c-competitive if there exists a constant a such that

Ca(l) <c-Copr(I) +a,

for all inputs I. Note that a competitive algorithm must perform well on all
input sequences.

2 Caching

In this section, we first investigate uniform caching, also known as paging. For
this problem, access graphs are very useful in the modeling of realistic request
sequences. In the second part of this section we discuss caching problems that
arise in large networks such a the world-wide web.

2.1 Paging

We first define the paging problem formally. In the two-level memory system, all
memory pages have the same size. We assume that the fast memory can store
k pages at any time. A paging algorithm is presented with a request sequence
o =o0(l),...,0(m), where each request o(t), 1 <t < m, specifies a page in the
memory system. A request can be served immediately, if the requested page is
in fast memory. If a requested page is not in fast memory, a page fault occurs.
Then the missing page has to be copied from slow memory to fast memory so
that the request can be served. At the same time the paging algorithm has to
evict a page from fast memory in order to make room for the incoming page.
Typically, a paging algorithm has to work online, i.e. the decision which page to
evict on a fault must be made without knowledge of any future requests. The
goal is to minimize the number of page faults.

We note that an online paging algorithm A is called c-competitive if, for all
request sequences o, the number of faults incurred by A is at most ¢ times the
number of faults incurred by an optimal offline algorithm OPT.

There are two very well-known online algorithms for the paging problem.
Least-Recently-Used (LRU): On a fault evict the page that has been re-
quested least recently.

First-In First-Out (FIFO): On a fault evict the page that has been in fast
memory longest.

An optimal offline algorithm was presented by Belady [16]. The algorithm is
called MIN and has a polynomial running time.

MIN: On a fault evict the page whose next request is farthest in the future.

Sleator and Tarjan [50] analyzed the performance of LRU and FIFO and
showed that on any request sequence the number of page faults incurred by the
algorithms is bounded by & times the number of faults made by OPT. They also
showed that this is optimal.



Theorem 1. [50] LRU and FIFO are k-competitive.

Theorem 2. [50] No deterministic online algorithm for the paging problem can
achieve a competitive ratio smaller than k.

While Theorem 1 gives a strong worst-case analysis of LRU and FIFO, the com-
petitive ratio of k is not very meaningful from a practical point of view. A fast
memory can often hold several hundreds or thousands of pages. In fact, the com-
petitive ratio of k£ is much higher than observed in practice. In an experimental
study presented by Young [53], LRU achieves a competitive ratio between 1 and
2. Also, in practice, the performance of LRU is much better than that of FIFO.
This does not show in the competitive analysis.

The high competitive ratio is due to the fact that a competitive analysis
allows arbitrary request sequences whereas in practice only restricted classes of
request sequences occur. Request sequences generated by real programs typically
exhibit locality of reference: Whenever a page is requested, the next request is
usually to a page that comes from a very small set of associated pages. Locality
of reference can be modeled by access graphs, introduced by Borodin et al. [27].
In an access graph, the nodes represent the memory pages. Whenever a page p
is requested, the next request can only be to a page that is adjacent to p in the
access graph.

Formally, let G = (V, E) be an unweighted graph. As mentioned above, V
represents the set of memory pages. F is a set of edges. A request sequence
o = o(l),...,0(m), is consistent with G if (o(t),o(t + 1)) € E for all ¢t =
1,...,m — 1. We say that an online algorithm A is c-competitive on G if there
exists a constant a such that C4(0) < c¢- Copr(o) + a for all o consistent with
G. The competitive ratio of A on G, denoted by R(A,G), is the infimum of all
c such that A is c-competitive on G. Let

R(G) = min R(4,G)

be the best competitive ratio achievable on G. Borodin et al. [27] showed that
LRU achieves the best possible competitive ratio on access graphs that are trees.
Trees represent the access graphs for many data structures. For any tree T, let
I[(T) denote the number of leaves of T'. Let

T.(G) = {T | T is an n-node subtree of G}.
Theorem 3. [27] For any graph G consisting of at least k + 1 nodes,
R(G) > max {I{(T)—1}.

TETrkt1
Theorem 4. [27] Let G be a tree. Then R(LRU,G) = maxrer, ., {{(T) — 1}.

Borodin et al. [27] also analyzed R(LRU, G) on arbitrary graphs. They showed
that the ratio depends on the number of articulation nodes of G. An articulation
node is a node whose removal disconnects the graph. Another important result,



due to Chrobak and Noga [26], is that LRU is never worse than FIFO on access
graphs. Moreover, Borodin et al. [27] showed that there exist graphs for which
the competitive ratio of FIFO is much higher than that of LRU.

Theorem 5. [26] For any graph G, R(LRU,G) < R(FIFO,QG).

Theorem 6. [27] For any connected graph consisting of at least k + 1 nodes,
R(FIFO,G) > (k+1)/2.

Borodin et al. [27] also presented an optimal online algorithm for any access
graph.

FAR: The algorithm is a marking strategy working in phases. Whenever a page
is requested, it is marked. If there is a fault at a request to a page p, then FAR
evicts an unmarked page from fast memory that has the largest distance to a
marked page in the access graph. A phase ends when all pages in fast memory
are marked and a fault occurs. At this point all marks are erased and a new
phase is started.

Irani et al. [39] showed that this algorithm achieves the best possible com-
petitive ratio, up to a constant factor, for all access graphs.

Theorem 7. [39] For any graph G, R(FAR,G) = O(R(Q)).

Fiat and Karlin [30] presented randomized online paging algorithms for access
graphs that achieve an optimal competitive ratio.

A disadvantage of the algorithm FAR is that the access graph has to be
known in advance. Fiat and Rosen [31] proposed a scheme that grows a dynamic
weighted access graph over time. Whenever two pages p and g are requested
successively for the first time, an edge (p,q) of weight 1 is inserted into the
graph. Every time p and ¢ are requested successively again, the weight w of
the edge is decreased to min{aw, 1} for some a < 1. After each round of vk
requests, all weights are increased by (3, where 3,7 > 1 are some fixed chosen
constants. Fiat and Rosen [31] proposed the following variant of the algorithm
FAR, called FARL: If there is a fault, the algorithm evicts the page that has the
largest distance from the page requested just before the fault. Fiat and Rosen
presented an experimental study in which FARL incurs fewer page faults than
even LRU.

So far we have addressed undirected access graphs. An initial investigation
of directed access graph was presented by Irani et al. [39], who considered struc-
tured program graphs.

Open Problem: Develop online paging algorithms for general directed access
graphs.
2.2 Generalized Caching

Caching problems that arise in large networks such as the world-wide web differ
from ordinary caching in two aspects. Pages may have different sizes and may



incur different costs when loaded into fast memory. The pages or documents to
be cached may be text files, pictures or web pages; the cost of loading a missing
page into fast memory may depend on the size of the page and on the distance
to the nearest node in the network holding the page. In generalized caching we
have again a two-level memory system consisting of a fast and a slow memory.
(In the network setting, the fast memory is the memory of a given node. The
slow memory is the memory of the remaining network.) We assume that the fast
memory has a capacity of K. For any page p, let SIZE(p) be the size and cOsT(p)
be the cost of p. The total size of the pages in fast memory may never exceed
K. The goal is to serve a sequence of requests so that the total loading cost is
as small as possible. Various cost models have been proposed in the literature.

1. The Bit Model [38]: For each page p, we have cosT(p) = SIZE(p). (The
delay in bringing the page into fast memory depends only upon its size.)

2. The Fault Model [38]: For each page p, we have cosT(p) = 1 while the
sizes can be arbitrary.

3. The Cost Model: For each page p, we have SizE(p) = 1 while the costs
can be arbitrary.

4. The General Model: For each page p, both the cost and size can be
arbitrary.

In the Bit Model, and hence in the General Model, computing an optimal
offline service schedule for a given request sequence is NP-hard. The problem is
polynomially solvable in the Cost Model [25]. In fact, caching in the Cost Model
is also known as weighted caching, a special instance of the k-server problem. In
the Fault Model the complexity is unknown.

Open Problem: Determine the complexity of caching in the Fault Model.
Young [54] gave a k-competitive online algorithm for the General Model.

Landlord: For each p in fast memory, the algorithm maintains a variable
CREDIT(p) that takes values between 0 and cosT(p). If a requested page p
is already in fast memory, then CREDIT(p) is reset to any value between its
current value and cosT(p). If the requested page is not in fast memory, then
the following two steps are executed until there is enough room to load p.
(1) For each page ¢ in fast memory, decrease CREDIT(q) by A - SiZE(q), where
A = mingcr CREDIT(q)/S1ZE(q) and F is the set of pages in fast memory.
(2) Evict any page ¢ from fast memory with CREDIT(q) = 0. When there is
enough room, load p and set CREDIT(p) to COST(p).

Theorem 8. [54] Landlord is k-competitive in the General Model.

For the Bit and the Fault Model, Irani presented O(log® k)-competitive online
algorithms and O(log k)-approximation offline algorithms. Here £ is the ratio of
K to the size of the smallest page requested. For the offline problem, Albers et
al. [2] gave constant factor approximation algorithms using only a small amount
of additional space in fast memory, say O(1) times the largest page size. Note
that the largest page size is typically a very small fraction of the total size of



the fast memory, say 1%. The approach is to formulate the caching problems
as integer linear programs and then solve a relaxation to obtain a fractional
optimal solution. The integrality gap of the linear programs is unbounded, but
nevertheless one can show the following.

Theorem 9. [2] There is a polynomial-time algorithm that, given any request
sequence, finds a solution of cost ¢y - OPTLp, where OPTyp is the cost of the
fractional solution (with fast memory K ). The solution uses K + ca - S memory,
where S is the size of the largest page in the sequence. The values of ¢1 and co
are as follows for the various models. Let € and 6 be real numbers with ¢ > 0 and
0<d<1.

1. ¢; =1/6 and ca = 6 for the Bit Model,
2.c0=0+¢)/d and co = 6(1 + 1/(v/1 + € — 1)) for the Fault Model,
3. ¢c1 =4+ ¢ and ¢y = 6/¢ for the General Model.

The ¢, ce values in the above theorem express trade-offs between the approx-
imation ratio and the additional memory needed. For example, in the Bit Model,
we can get a solution with cost OPTy,p using at most S additional memory. In
the Fault model, we can get a solution with cost 4OPTrp using at most 2.5
additional memory. The approximation ratio can be made arbitrarily close to 1
by using c2S additional memory for a large enough c2. In the General Model we
obtain a solution of 50PTyp using 65 additional memory, but we can achieve
approximation ratios arbitrarily close to 4.

Open Problem: Are there constant factor approximation algorithms that do
not require extra space in fast memory?

3 Data structures

Many online problems arise in the area of data structures. We consider the list
update problem which is among the most extensively studied online problems.

The list update problem is to maintain a dictionary as an unsorted linear list.
Consider a set of items that is represented as a linear linked list. We receive a
request sequence o, where each request is one of the following operations. (1) It
can be an access to an item in the list, (2) it can be an insertion of a new item
into the list, or (3) it can be a deletion of an item. To access an item, a list
update algorithm starts at the front of the list and searches linearly through
the items until the desired item is found. To insert a new item, the algorithm
first scans the entire list to verify that the item is not already present and then
inserts the item at the end of the list. To delete an item, the algorithm scans the
list to search for the item and then deletes it.

In serving requests a list update algorithm incurs cost. If a request is an
access or a delete operation, then the incurred cost is 7, where i is the position of
the requested item in the list. If the request is an insertion, then the cost is n+1,
where n is the number of items in the list before the insertion. While processing
a request sequence, a list update algorithm may rearrange the list. Immediately



after an access or insertion, the requested item may be moved at no extra cost
to any position closer to the front of the list. These exchanges are called free
exchanges. Using free exchanges, the algorithm can lower the cost on subsequent
requests. At any time two adjacent items in the list may be exchanged at a cost
of 1. These exchanges are called paid exchanges.

With respect to the list update problem, we require that a c-competitive
online algorithm has a performance ratio of ¢ for all size lists. More precisely,
a deterministic online algorithm for list update is called c-competitive if there
is a constant a such that for all size lists and all request sequences o, C'4(0) <
c-Copr(o) + a.

Linear lists are one possibility to represent a dictionary. Certainly, there
are other data structures such as balanced search trees or hash tables that,
depending on the given application, can maintain a dictionary in a more efficient
way. In general, linear lists are useful when the dictionary is small and consists
of only a few dozen items [19]. Furthermore, list update algorithms have been
used as subroutines in algorithms for computing point maxima and convex hulls
[18,32]. Recently, list update techniques have been very successfully applied in
the development of data compression algorithms [6,20,24].

There are three well-known deterministic online algorithms for the list update
problem.

Move-To-Front: Move the requested item to the front of the list.

Transpose: Exchange the requested item with the immediately preceding item
in the list.

Frequency-Count: Maintain a frequency count for each item in the list. When-
ever an item is requested, increase its count by 1. Maintain the list so that the
items always occur in nonincreasing order of frequency count.

The formulations of list update algorithms generally assume that a request
sequence consists of accesses only. It is obvious how to extend the algorithms so
that they can also handle insertions and deletions. On an insertion, the algorithm
first appends the new item at the end of the list and then executes the same
steps as if the item was requested for the first time. On a deletion, the algorithm
first searches for the item and then just removes it.

In the following, we discuss the algorithms Move-To-Front, Transpose and
Frequency-Count. We note that Move-To-Front and Transpose are memoryless
strategies, i.e., they do not need any extra memory to decide where a requested
item should be moved. Thus, from a practical point of view, they are more at-
tractive than Frequency-Count. Sleator and Tarjan [50] analyzed the competitive
ratios of the three algorithms.

Theorem 10. [50] The Move-To-Front algorithm is 2-competitive.

Proposition 11. The algorithms Transpose and Frequency-Count are not c-
competitive, for any constant c.

Albers [1] presented another deterministic online algorithm for the list update
problem. The algorithm belongs to the Timestamp(p) family of algorithms that



were introduced in the context of randomized online algorithms and are defined
for any real number p € [0,1], see [1]. For p = 0, the algorithm is deterministic
and can be formulated as follows.

Timestamp(0): Move the requested item, say z, in front of the first item in
the list that precedes z and that has been requested at most once since the last
request to x. If there is no such item or if z has not been requested so far, then
leave the position of z unchanged.

Theorem 12. [1] The Timestamp(0) algorithm is 2-competitive.

Note that Timestamp(0) is not memoryless. We need information on past
requests in order to determine where a requested item should be moved. Time-
stamp(0) is interesting because it has a better overall performance than Move-To-
Front. The algorithm achieves a competitive ratio of 2, as does Move-To-Front.
However, Timestamp(0) is considerably better than Move-To-Front on request
sequences that are generated by probability distributions [6]. For any probability
distribution, the asymptotic expected cost incurred by TS(0) is at most 1.5
times the asymptotic expected cost incurred by an optimal offline algorithm.
The corresponding bound for Move-To-Front is not better than 7/2.

Karp and Raghavan [42] developed a lower bound on the competitiveness that
can be achieved by deterministic online algorithms. This lower bound implies
that Move-To-Front and Timestamp(0) have an optimal competitive ratio.

Theorem 13. [42] Let A be a deterministic online algorithm for the list update
algorithm. If A is c-competitive, then ¢ > 2.

An important question is whether the competitive ratio of 2 can be improved
using randomization. We analyze randomized online algorithms problem against
oblivious adversaries [17]. An oblivious adversary has to construct the entire
request sequence in advance and is not allowed to see the random choices made
by an online algorithm.

Many randomized online algorithms for list update have been proposed
[1,7,35,36,49]. We present the two most important algorithms. Reingold et al. [49]
gave a very simple algorithm, called Bit.

Bit: Each item in the list maintains a bit that is complemented whenever the
item is accessed. If an access causes a bit to change to 1, then the requested item
is moved to the front of the list. Otherwise the list remains unchanged. The bits
of the items are initialized independently and uniformly at random.

Theorem 14. [49] The Bit algorithm is 1.75-competitive against any oblivious
adversary.

Interestingly, it is possible to combine the algorithms Bit and Timestamp(0), see
Albers et al. [7]. This combined algorithm achieves the best competitive ratio
that is currently known for the list update problem.

Combination: With probability 4/5 the algorithm serves a request sequence
using Bit, and with probability 1/5 it serves a request sequence using Time-
stamp(0).



Theorem 15. [7] The algorithm Combination is 1.6-competitive against any
oblivious adversary.

Teia [51] presented a lower bound for randomized list update algorithms.

Theorem 16. [51] Let A be a randomized online algorithm for the list update
problem. If A is c-competitive against any oblivious adversary, then ¢ > 1.5.

A slightly better lower bound of 1.50084 was presented recently by Ambiihl et
al. [8]. However, the lower bound only holds in the partial cost model where the
cost of serving a request to the i-th item in the list incurs a cost of ¢ — 1 rather
then 1.

Open Problem: Give tight bounds on the competitive ratio achieved by ran-
domized online algorithms against any oblivious adversary.

4 Robot exploration

In robot exploration problems, a robot has to construct a complete map of an un-
known environment using a path that is as short as possible. Many geometric and
graph-theoretic problems have been studied in the past [3,13,22,28,29,33,34,46].
A general problem setting was introduced by Deng et al. [28]. The robot is placed
in a room with obstacles. The exterior wall of the room as well as the obstacles
are modeled by simple polygons. Figure 1 shows an example in which the room
is a rectangle and all obstacles are rectilinear. The robot has 360° vision. Its task
is to move through the scene so that it sees all parts of the room. More precisely,
every point in the room must be visible from some point on the path traversed.

Given a scene S, let L 4(S) be the length of the path traversed by algorithm A
to explore S. Since A does not know S in advance it is also referred to as an online
algorithm. Let Lopr(S) be the length of the path of an optimum algorithm
that knows the scene in advance. We call an online exploration algorithm A
c-competitive if for all scenes S, L4(S) < ¢- Lopr(S).

Exploration algorithms achieving a constant competitive ratio were given
for rooms without obstacles [28,33,34,46]. Note that the exploration problem is
non-trivial even in rooms without obstacles because the room might be a gen-
eral polygon. Deng et al. [28] gave an O(n)-competitive algorithm for exploring
rectilinear rooms with n rectilinear obstacles. Albers and Kursawe [5] showed
that no exploration algorithm in rooms with n obstacles can be better than
2(y/n)-competitive. This lower bound holds even if the obstacles are rectangles.

4.1 Exploration of grid graphs

In the scenario described above it is assumed that the robot can see an infinite
range as long as no obstacle or exterior wall blocks the view. However, in practice,
a robot’s sensors can often scan only a distance of a few meters. This situation
can be modeled by adding a grid to the scene, as shown in Figure 2, and requiring
that the robot moves on the nodes and edges of the grid. A node in the grid
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Fig. 1. A sample scene Fig. 2. A sample scene with a grid

models the vicinity that the robot can see at a given point. Now the robot has to
explore all nodes and edges of the grid using as few edge traversals as possible. A
node is explored when it is visited for the first time and an edge is explored when
it is traversed for the first time. At any node the robot knows its global position
and the directions of the incident edges. Note that using a depth-first strategy,
the graph can be explored using O(m) edge traversals, which is optimal. Here
m denotes the total number of edges of the graph.

Betke et al. [22] introduced an interesting, more complicated variant of this
problem where an additional piecemeal constraint has to be satisfied, i.e, the
robot has to return to a start node s every so often. These returns might be
necessary because the robot has to refuel or drop samples collected on a trip.
Betke et al. developed two algorithms for piecemeal exploration of grids with
rectangular obstacles. The algorithms, called Wavefront and Ray, need O(m)
edge traversals. The Wavefront algorithm implements a breadth-first strategy
while the Ray algorithm implements a simple and elegant depth-first strategy.

Theorem 17. [22] A grid with rectangular obstacles can be explored in a piece-
meal fashion using O(m) edge traversals.

Albers and Kursawe [5] present an algorithm that explores a grid with arbitrary
(rectilinear) obstacles using O(m) edge traversals, which is optimal. The algo-
rithm is a generalization of the Ray algorithm by Betke, Rivest and Singh. In the
original Ray algorithm it is required that the robot always knows a path back
to the start node whose length is most the radius of the graph. When exploring
grids with arbitrary obstacles, this constraint cannot be satisfied. Albers and
Kursawe [5] solve this problem by presenting an efficient strategy for exploring
the boundary of arbitrary obstacles.

Theorem 18. [5] A grid with arbitrary rectilinear obstacles can be explored in
a piecemeal fashion using O(m) edge traversals.

4.2 Exploration of general graphs

The graph-theoretic abstraction of a scene can be taken even further. Suppose
that the environment is modeled by a strongly connected graph G = (V, E). G



can be directed or undirected. Such a general, graph-theoretic modeling of a scene
allows us to neglect geometric features of the environment and to concentrate
on combinatorial aspects of the exploration problem. Let n denote the number
of nodes and m denote the number of edges of G.

Awerbuch et al. [13] consider piecemeal exploration of arbitrary undirected
graphs and give a nearly optimal algorithm. The algorithm explores the graphs
in strips, where each strip is explored using a breadth-first strategy.

Theorem 19. An undirected graph can be explored in a piecemeal fashion using
O(m +nt°M) edge traversals.

Open Problem: Is there an algorithm that achieves an optimal bound of O(m+
n) on the number of traversals?

The most general graph-theoretic exploration problem was formulated by
Deng and Papadimitriou [29]. The environment is now modeled by a strongly
connected directed graph. At any point during the exploration process the robot
knows (1) all visited nodes and edges and can recognize them when encountered
again; and (2) the number of unvisited edges leaving any visited node. The robot
does not know the head of unvisited edges leaving a visited node or the unvisited
edges leading into a visited node. At each point in time, the robot visits a current
node and has the choice of leaving the current node by traversing a specific known
or an arbitrary (i.e. given by an adversary) unvisited outgoing edge. An edge
can only be traversed from tail to head, not vice versa. As usual, the goal is to
minimize the total number T of edge traversals. A piecemeal constraint does not
have to be satisfied here.

If the graph is Eulerian, 2m edge traversals suffice [29]. For a non-Eulerian
graph, let the deficiency d be the minimum number of edges that have to be
added to make the graph Eulerian. Deng and Papadimitriou [29] suggested to
study the dependence of T on m and d and showed the first upper and lower
bounds. They gave a graph such that any algorithm needs £2(d?>m/logd) edge
traversals. This lower bound was improved by Koutsoupias [46].

Theorem 20. [46] There exist graphs for which every exploration algorithm
needs 2(d?>m) edge traversals.

Deng and Papadimitriou gave an exponential upper bound.

Theorem 21. [29] There is an algorithm that explores a graph with deficiency
d using d°@Dm edge traversals.

Deng and Papadimitriou asked the question whether the exponential gap be-
tween the upper and lower bound can be closed. The paper by Albers and
Henzinger [3] is a first step in this direction: They give an algorithm that is
sub-exponential in d, namely it achieves an upper bound of d°(1°8¥m. Albers
and Henzinger also show that several exploration strategies based on greedy,
depth-first and breadth-first approaches do not work well. There are graphs for
which these strategies need 2°(#m traversals.



We sketch the basic idea of the sub-exponential algorithm. At any time, the
algorithm tries to explore new edges that have not been visited so far. That is,
starting at some visited node z with unvisited outgoing edges, the robot explores
new edges until it gets stuck at a node y, i.e., it reaches y on an unvisited incoming
edge and y has no unvisited outgoing edge. Since the robot is not allowed to
traverse edges in the reverse direction, an adversary can always force the robot
to visit unvisited nodes until it finally gets stuck at a visited node.

The robot then relocates, using visited edges, to some visited node z with
unexplored outgoing edges and continues the exploration. The relocation to z
is the only step where the robot traverses visited edges. To minimize T' one
has to minimize the total number of edges traversed during all relocations. It
turns out that a locally greedy algorithm that tries to minimize the number of
traversed edges during each relocation is not optimal. Instead, the algorithm uses
a divide-and-conquer approach. The robot explores a graph with deficiency d by
exploring d? subgraphs with deficiencies d/2 each and uses the same approach
recursively on each of the subgraphs. To create subgraphs with small deficiencies,
the robot keeps track of visited nodes that have more visited outgoing than
visited incoming edges. Intuitively, these nodes are ezpensive because the robot,
when exploring new edges, can get stuck there. The relocation strategy tries
to keep portions of the explored subgraphs “balanced” with respect to their
expensive nodes. If the robot gets stuck at some node, then it relocates to a
node z such that “its” portion of the explored subgraph contains the minimum
number of expensive nodes.

Theorem 22. [3] There is an algorithm that explores a graph with deficiency d
using d°°8 Dm edge traversals.

Open Problem: Is there an exploration algorithm for directed graphs that
achieves an upper bound on the number of edge traversals that is polynomial in
d?

5 Online problems in networks

Many online problems also arise in the area of distributed computing. We de-
scribe only a few problems here. Consider a network of processors each of which
has its own local memory. Such a network can be modeled by a weighted undi-
rected graph. The nodes of the graph represent the processor in the network and
the edges represent the communication links. Let n be the number of nodes and
m be the number of edges of the graph.

5.1 Migration and replication problems

First we address a problem in distributed data management, known as the file
allocation problem. The goal is to dynamically re-allocate files in the network
so that a sequence read and write requests to files an be served at low com-
munication costs. The configuration of the system can be changed by migrating



and replicating files, i.e., a file is moved resp. copied from one local memory to
another.

In the investigation of the problem, we generally concentrate on one partic-
ular file in the system. We say that a node v has the file if the file is contained
in v’s local memory. A request at a node v occurs if v wants to read or write
the file. Immediately after a request, the file may be migrated or replicated from
a node holding the file to another node in the network. We use the cost model
introduced by Bartal et al. [15] and Awerbuch et al. [12]. (1) If there is a read
request at v and v does not have the file, then the incurred cost is dist(u,v),
where u is the closest node with the file. (2) The cost of a write request at node
v is equal to the cost of communicating from v to all other nodes with a file
replica. (3) Migrating or replicating a file from node u to node v incurs a cost of
d - dist(u,v), where d is the file size factor. (4) A file replica may be erased at 0
cost.

Theorem 23. [12,15] There exist deterministic and randomized online algo-
rithms for the file allocation problem that achieve competitive ratios of O(logn).

The randomized solution, due to Bartal et al. [15], is very simple and elegant.

Coinflip: If there is a read request at node v and v does not have the file, then
with probability 1/d, replicate the file to v. If there is a write request at node
v, then with probability 1/\/§d, migrate the file to v and erase all other file
replicas.

The file migration problem is a restricted version of the file allocation prob-
lem where we keep only one copy of each file in the entire system. If a file is
writable, this avoids the problem of keeping multiple copies of a file consistent.
For this problem, constant competitive algorithms are known, see [12,14,55].
In the file replication problem, files are assumed to be read-only and we have
to determine which local memories should contain copies of the read-only files.
Constant competitive algorithms are known for specific network topologies such
as uniform networks, trees and rings [4,23]. A uniform network is a complete
graph in which all edges have the same length.

All of the solutions mentioned above assume that the local memories of the
processors have infinite capacity. Bartal et al. [15] showed that if the local memo-
ries have finite capacity, then no online algorithm for file allocation can be better
than 2(N)-competitive, where N is the total number of files that can be accom-
modated in the system. They also presented an O(NV)-competitive algorithm for
uniform networks.

Open Problem: Is there an O(N)-competitive algorithm for arbitrary network
topologies when the nodes have limited memory capacity?

5.2 Routing problems

Many different online routing problems have been studied in the literature,
see [47] for a survey. In the virtual circuit routing problem each communication



link e in the network has a given maximum capacity c.. The input consists of a
sequence o of communication requests, where each request o(t) can be describe
by a 5-tupel (ug, v, ¢, dy, b). Here uy and vy are the nodes to be connected, r; is
the bandwidth requirement of the request, d; is its duration and b; is a certain
benefit. In response to each request we wish to establish a virtual circuit on a
path connecting u; and v; with the given bandwidth. The benefit parameter is
only specified in problems where calls may also be rejected. A benefit is obtained
if the call is indeed routed.

Aspnes et al. [9] considered the problem variant when connection requests
have unlimited duration and every call has to be routed. The goal is to minimize
the maximum load on any of the links. The idea of their algorithm is to assign
with every edge in the network a cost that is exponential in the fraction of
the capacity of the edge assigned to on-going circuits. Let P = {Py,..., P;} be
the routes assigned by the online algorithm to the first ¢ requests. Similarly,
let POPT = {POPT ... PPPT} be the routes assigned by the optimal offline
algorithm. For every edge e in the network, we define a relative load after ¢

requests,
()= > ri/ce

sie€Pg
s<t

The online algorithm given below assumes knowledge of a value A which
is an estimate on the maximum load obtained by an optimal offline algorithm
when all the requests are routed. Such a value can be obtained using a doubling
strategy. Whenever the current guess turns out to bee too small, it is doubled.

Assign-Route: Let a be a constant and let (u,v,r) be the current request to
be routed. Set 7 =r/A and [, = l./A for all e € E. Let

le +7/ce 1.

coste = a —a

for all e € E. Let P be a shortest path from u to v in the graph with respect to
costs cost.. Route the request along P and set [, = [, + r/c, for all edges on P.
Aspnes et al. [9] show that for any sequence of requests that can be routed
using the given edge capacities, the maximum load achieved by Assign-Route is
at most O(logn) times as large as the maximum load of an optimal solution.

Theorem 24. [9] Assign-Route is an O(logn)-competitive algorithm for the
problem of minimizing the mazimum load on the links.

The virtual circuit routing problem has also been studied in its throughput
version. In this variant, called the call control problem, a benefit is associated
with every request. Requests can be accepted or rejected while link capacities
may not be exceeded. Awerbuch et al. [11] examined the case that each call has
a limited duration and showed the following result based on an algorithm similar
to Assign-Route.

Theorem 25. [11] There is an O(lognT)-competitive algorithm for the problem
of mazimizing throughput. T denotes the mazximum duration of a call.

The bound given in Theorem 25 is tight.



6 Concluding remarks

There are many online problems related to graphs that we have not addressed in
this survey. A classical problem is online coloring: The nodes of a graph arrive
online and we wish to color them using as few colors as possible. There is a sig-
nificant body of work on this problem, see e.g. [37,45,48,52]. In online matching,
a newly arriving node can be matched to a node already present. Unweighted
and weighted versions of this problem have been considered [43,41,44]. The gen-
eralized Steiner tree problem is an extensively studied problem where we have
to construct a minimum weight tree in a graph such that certain connectivity
requirements are satisfied. In the online variant nodes as well as connectivity
requirements arrive online [10,21,40,56].
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